JPH03167222A - Production of polyimide of good moldability - Google Patents

Production of polyimide of good moldability

Info

Publication number
JPH03167222A
JPH03167222A JP30641889A JP30641889A JPH03167222A JP H03167222 A JPH03167222 A JP H03167222A JP 30641889 A JP30641889 A JP 30641889A JP 30641889 A JP30641889 A JP 30641889A JP H03167222 A JPH03167222 A JP H03167222A
Authority
JP
Japan
Prior art keywords
group
polyimide
formula
bis
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30641889A
Other languages
Japanese (ja)
Other versions
JP3327919B2 (en
Inventor
Masahiro Ota
正博 太田
Saburo Kawashima
川島 三郎
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP30641889A priority Critical patent/JP3327919B2/en
Publication of JPH03167222A publication Critical patent/JPH03167222A/en
Application granted granted Critical
Publication of JP3327919B2 publication Critical patent/JP3327919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain a polyimide improved in heat stability and moldability by reacting a specified aromatic diamine with a tetracarboxylic acid dianhydride in the presence of a dicarboxylic acid anhydride and imidizing the polyamic acid. CONSTITUTION:An aromatic diamine (A) of formula I (wherein X is a bivalent group of-CO-or-SO2-) is reacted with 0.9-1.0mol, per mol of component A, of a tetracarboxylic acid dianhydride (B) of formula II (wherein R is a tetravalent group selected from the group consisting of a 2C or higher aliphatic group, an alicyclic group, a monocyclic aromatic group, a condensed polycyclic aro matic group and a noncondensed polycyclic aromatic group consisting of aro matic groups bonded directly or through bridging members) at 0-250 deg.C for 4-24hr in an organic solvent in the presence of 0.001-1.0mol, per mol of component A, of a dicarboxylic acid anhydride (C) of formula III (wherein Z is a bivalent group of a 1-10C aliphatic group or an alicyclic group) to obtain a polyamic acid. This polyamic acid is dehydrated by heating to 100-400 deg.C or imidized with an imidizing agent to obtain the title polyimide having repeating units of formula IV as an essential skeleton.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶融成形用ポリイミド樹脂に関し、更に詳し
くは、熱安定性の良好な、成形加工性に優れたポリイミ
ドの製造方法に関する。 〔従来の技術〕 従来からテトラカルボン酸二無水物とジア稟ンの反応に
よって得られるポリイミドは、その高耐熱性に加え、力
学的強度、寸法安定性に優れ、難燃性、電気絶縁性など
を俳せ持つために、電気電子機器、宇宙航空用機器、輸
送機器などの分野で使用されており、今後共耐熱性が要
求される分野に広く用いられることが期待されている。 従来、優れた特性を示すボリイくドが種々開発されてい
る。 しかしながら、耐熱性に優れていても、明瞭なガラス転
移温度を有しないために、成形材料として用いる場合に
焼結成形などの手法を用いて加工しなければならないと
か、また加工性は優れているが、ガラス転柊温度が低く
、しかもノ\ロゲン化炭化水素に司溶で、耐熱性、耐溶
剤性の面からは満足がゆかないとか、性能に一長一短が
あった。 一方、T.L.SL.Clair Proger等は先
に機械的性質、熱的性質、電気的性質、耐溶剤性などに
優れ、かつ耐熱性を有するポリイξドとして下記一般式
(V)および(Vl) (V) (Vl) (式中、Rは、炭素数2以−Lの脂肋族基、環式脂肪族
火、単環式芳香族基、縮合多環式芳香族基、芳香族が直
接又は架橋員により相互に連結された非縮合多環式芳香
族基から成る群より選ばれた4価の基を示す)で表され
る繰り返し構造単位を有するポリイミドを見出している
(Int.J.Adhesionand Adhesi
ve  4 ,No 2,静ril 1984、および
特開昭62−53372)。 −L記ポリイミドは、多くの良好な物性を有する新規な
耐熱性樹脂である。 しかしながら、上記のポリイミドは、優れた流動性を示
し、加工性の良好なポリイミドではあるが、通常の押出
戒形、射出成形可能なエンジニアリングプラスチンクに
比べると、その}容融粘度が高く、射出、押出戒形が困
難である.そのため、フイルム等を+!!造する場合、
ボリアよド酸の状態で、且つ流延法によるしかなかった
。 〔発明が解決しようとする課題〕 本発明の課題は、ポリイミドが本来イイする優れた特性
に加え、戒形加工性に優れたポリイミドを製造する方法
を提供することである。 〔課題を解決するための手段〕 本発明者らは、前記課題を解決するために鋭意研究を行
って、本発明を達威した。 すなわち、本発明は、ジアミンとテトラカルボン酸二無
水物とを反応させ、得られたポリアミド酸を熱的または
化学的にイごド化するポリイミドの製造方法に於いて、 (イ)ジアミンが、一般式(1) (式中、XはーCO−または−SOt一の2価の基を示
す)で表される芳香族ジアミンであり、 (口)テトラカルボン酸二無水物が、一般式(■00 1j11 II        II O0 (式中、Rは、炭素数2以上の脂肪族基、環式脂肪族基
、単環式芳香族基、縮合多環式芳香族基、芳香族が直接
又は架橋員により相互に連結された非縮合多環式芳香族
基から或る群より選ばれた4価の火を示す)で表される
テトラカルボン酸二無水物であり、 (ハ)さらに反応が、一般式(I[[)9 (式中、2は炭素数1以上10以下の脂肪族基または環
式脂肪族基の2価の基を示す)で表されるジカルボン酸
無水物の在在下に行われ、 (二)テトラカルボン酸二無水物の量が、芳香族ジアミ
ン1モル当り0.9乃至1.0モル比であり、かつジカ
ルボン酸無水物の量が芳香族ジアミンlモル当り0.0
01乃至 一般式(IV) 1.0モル比である、 (式中、XおよびRは、前記と同し意味を示す)で表さ
れる繰返し構造単位を基本骨格として有する成形加工性
の良好なポリイミドの製造方法である。 本発明の方法で使用されるジアミンは一般式(1)で表
される芳香族ジアミン化合物、すなわち、ビス(3−ア
ごノフェニル)スルホンまたは3.3′ジアミノベンゾ
フェノンである。 また、本発明の方法で得られるポリイミドの良好な物性
を損なわない範囲で、上記ジアミンの一部を他のジア旦
ンで代替して使用しても何ら差し支えない.一部代替し
て使用できるジアミン化合物としては、例えば、一フェ
ニレンジアミン、0−フェニレンジアミン、p−フェニ
レンジアごン、トアミノベンジルアミン、p−アミノベ
ンジルア果ン、ビス(3−ア旦ノフエニル)エーテル,
 (3− 7 ミノフェニル)(4−アミノフエニル)
エーテル、ビス(4−アξノフェニル)エーテル、ビス
(3−アξノフェニル)スルフィド、(3−アミノフェ
ニル)(4〜アミノフエニル)スルフィド、ビス(4−
アミノフエニル)スルフィF、ビス(3−アミノフエニ
ル)スルホキシド、(3−アくノフェニル)(4−アミ
ノフェニル)スルホキシト、ビス(4−アミノフェニル
)スルホキシド、(3−アξノフエニル)(4−アミノ
フエニル)スルホン、ビス(4−アξノフエニル)スル
ホン、3,4“−ジアごノベンゾフエノン、4.4゜−
ジアミノベンゾフエノン、3,3゛−ジアξノジフエニ
ルメタン、3.4’−ジアミノジフェニルメタン、 4.4′−ジアξノジフエニルメタン、ビス(4−(3
75ノフェノキシ)フエニル)メタン、ビス〔4(4−
アごノフエノキシ)フェニル]メタン、1.1.ビス(
4−(3−アξノフ↓ノキシ)フェニル)エタン、l,
1−ビス(4−(4−アξノフェノキシ)フェニル〕エ
タン、1.2−ビス(4−(3−アごノフェノキシ)フ
エニル〕エタン、1.2−ビス(4−(4−アミノフエ
ノキシ)フエニル〕エタン、2.2−ビス(4−(3ア
ミノフェノキシ)フエニル〕プロパン、2.2ビス(4
−(4−アミノフェノキシ)フエニル〕プロパン、2−
+4−(3−アミノフエノキシ)フェニルl−2−[4
−(3−アミノフエノキシ)−3−メチルフエニル1プ
ロパン、2.2−ビス[4− (3−アミノフェノキシ
)−3メチルフエニル1プロパン、2−14−(3−ア
ミノフエノキシ)フェニルー2− [4− (3〜アミ
ノフェノキシ−3.5−ジメチルフェニル1 プロパン
、2,2−ビス[4−(3−アミノフェノキシ)−3.
5−ジメチルフエニルl プロパン、2.2−ビス(4
−(3−アミノフエノキシ)フェニル)ブタン、2.2
−ビス(4−(4−アごノフエノキシ)フェニル]ブタ
ン、2.2−ビス〔4−(3−アミノフエノキシ)フェ
ニル) −1.1,1,3.3.3−へキサフルオロプ
ロパン、2.2−ビス(4−(4−アミノフエノキシ)
フェニル)−1.1.1,3.3.3−へキサフルオ口
プロパン、■,3−ビス(3−ア短ノフエノキシ)ヘン
ゼン、1.3−ビス(4−アξノフェノキシ)ベンゼン
、1.4−ビス(3−アミノフェノキシ)ヘンゼン、1
,4−ビス(4−アごノフエノートシ)ヘンゼン、4.
4’−ビス(3−アミノフエノキシ)ビフエニル、4.
4“−ビス(4−アミノフエノキシ)ビフエニル、4.
4゛−ビス(3−アごノフエノキシ) −3.3’ジメ
チルビフエニル、4.4゛−ビス(3−アミノフエノキ
シ)−3.5’−ジメチルビフエニル、4,4゜−ビス
゛(3−アミノフエノキシ) −3,5”−ジメチルビ
フエニル、4.4゛−ビス(3−アミノフエノートシ)
 −3,3゜55゛−テトラメチルビフエニル、4,4
゛− ヒ゛ス(3アミノフェノキシ) −3.3’−ジ
クロロヒ゛フエニノレ、4・4゛−ビス(3−アミノフ
エノキシ) −3.5−ジクロロビフエニル、4.4゜
−ビス(3−アミノフエノー1シ) −3.3’ .5
.5”−テ1・ラクロロビフエニル、4.4ビス(3−
ア稟ノフエノキシ) −3.3−ジブし1モビフェニル
、4.4゛−ビス(3−アミノフエノキシ) −3.5
ジブロモビフエニル、4,4゜−ビス(3−アミノフエ
ノキシ) −3.3’,5.5’−テトラブロモビフエ
ニノレ、ビス[4−(4〜アミノフエノキシ)フエニノ
レ]ケトン、ビス(4−(3−アξノフエノキシ)フエ
ニノレ)ケトン、ビス(4−(3−アミノフエノキシ)
フエニル]スルフイド、ビス(4−(4−アミノフエノ
キシ)フェニル〕スルフイド、ビス(4−(3−アくノ
フェノキシ)フエニル〕−3−メトキシフエニル〕スル
フィド、(4−(3−アミノフエノキシ)フエニル) 
 (4−(3−アミノフエノキシ)−3.5−ジメトキ
シフエニル]スルフイド、ビス(4−(3−アミノフエ
ノキシ)−3.5−ジメトキシフエニル〕スルフイド、
ビス(4−(3−アミノフエノキシ)フエニノレ〕スノ
レホキシド、ビス(4−(4−アミノフエノキシ)フエ
ニル〕スルホキシド、ビス(4−(3−アミノフエノキ
シ)フエニル〕スルホン、ビス(4−(4−アミノフェ
ノキシ)フエニル〕スルホン、ビス(4−(3アミノフ
ェノキシ)フエニル]エーテル、ビス〔4−(4−アξ
ノフエノキシ)フエニル〕エーテノレ、1.4−ビス(
4−(3−ア
[Industrial Application Field] The present invention relates to a polyimide resin for melt molding, and more particularly to a method for producing a polyimide having good thermal stability and excellent moldability. [Prior art] Polyimide obtained by the reaction of tetracarboxylic dianhydride and dianhydride has not only high heat resistance but also excellent mechanical strength and dimensional stability, flame retardancy, electrical insulation properties, etc. It is used in fields such as electrical and electronic equipment, aerospace equipment, and transportation equipment, and is expected to be widely used in fields that require high heat resistance in the future. Hitherto, various types of solid metal have been developed that exhibit excellent properties. However, even if it has excellent heat resistance, it does not have a clear glass transition temperature, so it must be processed using methods such as sintering when used as a molding material, and it has excellent processability. However, it had advantages and disadvantages in terms of performance, such as the glass turning temperature was low and it was soluble in halogenated hydrocarbons, making it unsatisfactory in terms of heat resistance and solvent resistance. On the other hand, T. L. SL. Claire Proger and others previously developed the following general formulas (V) and (Vl) (V) (Vl) as polyide ξ which has excellent mechanical properties, thermal properties, electrical properties, solvent resistance, etc. and has heat resistance. (In the formula, R is an aliphatic group having 2 or more carbon atoms, L, a cycloaliphatic group, a monocyclic aromatic group, a fused polycyclic aromatic group, or an aromatic group in which aromatic groups are mutually linked directly or through a bridge member. They have discovered a polyimide having a repeating structural unit represented by a tetravalent group selected from the group consisting of connected non-fused polycyclic aromatic groups (Int. J. Adhesion and Adhesi).
ve 4, No. 2, Shizuka Ril 1984, and JP-A-62-53372). -L polyimide is a new heat-resistant resin that has many good physical properties. However, although the above-mentioned polyimide exhibits excellent fluidity and good processability, it has a high melt viscosity and is difficult to injection mold when compared to engineering plastics that can be extruded or injection molded. , extrusion is difficult. Therefore, film, etc. +! ! When building
It was in the form of boric acid and the only option was to use the casting method. [Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a polyimide that has excellent shapeability in addition to the excellent properties that polyimide inherently has. [Means for Solving the Problems] In order to solve the above problems, the present inventors conducted extensive research and succeeded in the present invention. That is, the present invention provides a method for producing polyimide in which a diamine and a tetracarboxylic dianhydride are reacted and the resulting polyamic acid is thermally or chemically oxidized, in which (a) the diamine is It is an aromatic diamine represented by the general formula (1) (wherein, X represents a divalent group of -CO- or -SOt); ■00 1j11 II II O0 (wherein, R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a fused polycyclic aromatic group, or an aromatic group in which the aromatic group is directly or a bridge member) (3) is a tetracarboxylic dianhydride represented by (representing a tetravalent fire selected from a certain group of non-fused polycyclic aromatic groups interconnected with each other); In the presence of a dicarboxylic acid anhydride represented by the formula (I[[)9 (wherein 2 represents a divalent group of an aliphatic group or a cycloaliphatic group having 1 to 10 carbon atoms) (2) The amount of tetracarboxylic dianhydride is 0.9 to 1.0 molar ratio per 1 mol of aromatic diamine, and the amount of dicarboxylic acid anhydride is 0.0 per 1 mol of aromatic diamine.
01 to general formula (IV) 1.0 molar ratio, having a repeating structural unit represented by (wherein X and R have the same meanings as above) as a basic skeleton and having good moldability. This is a method for producing polyimide. The diamine used in the method of the present invention is an aromatic diamine compound represented by the general formula (1), ie, bis(3-agonophenyl)sulfone or 3,3' diaminobenzophenone. Moreover, there is no problem in replacing a part of the above-mentioned diamines with other diamines as long as the good physical properties of the polyimide obtained by the method of the present invention are not impaired. Examples of diamine compounds that can be used as partial substitutes include monophenylenediamine, 0-phenylenediamine, p-phenylenediamine, toaminobenzylamine, p-aminobenzylamine, bis(3-andanophenyl )ether,
(3-7 minophenyl) (4-aminophenyl)
Ether, bis(4-aξnophenyl) ether, bis(3-aξnophenyl) sulfide, (3-aminophenyl)(4-aminophenyl) sulfide, bis(4-
Aminophenyl) sulfy F, bis(3-aminophenyl) sulfoxide, (3-acunophenyl)(4-aminophenyl) sulfoxide, bis(4-aminophenyl) sulfoxide, (3-aξnophenyl)(4-aminophenyl) sulfone , bis(4-anξnophenyl)sulfone, 3,4"-diagonobenzophenone, 4.4゜-
Diaminobenzophenone, 3,3'-diaxinodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaxinodiphenylmethane, bis(4-(3
75 nophenoxy)phenyl)methane, bis[4(4-
agonophenoxy)phenyl]methane, 1.1. Screw(
4-(3-Aξnov↓noxy)phenyl)ethane, l,
1-bis(4-(4-anophenoxy)phenyl)ethane, 1.2-bis(4-(3-agonophenoxy)phenyl)ethane, 1.2-bis(4-(4-aminophenoxy) ) phenyl]ethane, 2.2-bis(4-(3aminophenoxy)phenyl)propane, 2.2bis(4
-(4-aminophenoxy)phenyl]propane, 2-
+4-(3-aminophenoxy)phenyl l-2-[4
-(3-aminophenoxy)-3-methylphenyl 1-propane, 2,2-bis[4-(3-aminophenoxy)-3methylphenyl 1-propane, 2-14-(3-aminophenoxy)phenyl-2-[4- (3 ~aminophenoxy-3,5-dimethylphenyl 1 propane, 2,2-bis[4-(3-aminophenoxy)-3.
5-dimethylphenyl propane, 2,2-bis(4
-(3-aminophenoxy)phenyl)butane, 2.2
-bis(4-(4-agonophenoxy)phenyl]butane, 2.2-bis[4-(3-aminophenoxy)phenyl) -1.1,1,3.3.3-hexafluoropropane, 2 .2-bis(4-(4-aminophenoxy)
phenyl)-1.1.1,3.3.3-hexafluoropropane, .4-bis(3-aminophenoxy)henzen, 1
, 4-bis(4-agonophenotsi)Hensen, 4.
4'-bis(3-aminophenoxy)biphenyl, 4.
4"-bis(4-aminophenoxy)biphenyl, 4.
4′-bis(3-agonophenoxy)-3.3′-dimethylbiphenyl, 4.4′-bis(3-aminophenoxy)-3.5′-dimethylbiphenyl, 4,4′-bis(3- aminophenoxy) -3,5"-dimethylbiphenyl, 4.4"-bis(3-aminophenoxy)
-3,3゜55゛-tetramethylbiphenyl, 4,4
-Hys(3-aminophenoxy) -3.3'-dichlorohyphenylene, 4,4'-bis(3-aminophenoxy) -3,5-dichlorobiphenyl, 4.4'-bis(3-aminophenol) C) -3.3'. 5
.. 5”-Te1-lachlorobiphenyl, 4.4bis(3-
aminophenoxy) -3.3-dibutylmobiphenyl, 4.4'-bis(3-aminophenoxy) -3.5
Dibromobiphenyl, 4,4゜-bis(3-aminophenoxy)-3.3',5.5'-tetrabromobiphenylene, bis[4-(4-aminophenoxy)phenol]ketone, bis(4-( 3-Aξnophenoxy)phenol)ketone, bis(4-(3-aminophenoxy)
phenyl] sulfide, bis(4-(4-aminophenoxy)phenyl) sulfide, bis(4-(3-acunophenoxy)phenyl]-3-methoxyphenyl] sulfide, (4-(3-aminophenoxy)phenyl)
(4-(3-aminophenoxy)-3.5-dimethoxyphenyl] sulfide, bis(4-(3-aminophenoxy)-3.5-dimethoxyphenyl) sulfide,
Bis(4-(3-aminophenoxy)phenol)snorrefoxide, bis(4-(4-aminophenoxy)phenyl)sulfoxide, bis(4-(3-aminophenoxy)phenyl)sulfone, bis(4-(4-aminophenoxy)phenyl) ] Sulfone, bis(4-(3aminophenoxy)phenyl)ether, bis[4-(4-aξ
nophenoxy) phenyl] ether, 1,4-bis(
4-(3-a

〔実施例〕〔Example〕

以下、本発明を実施例および比較例により具体的に説明
する。 実施例1 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、3.3′−ジアミノベンゾフェノン212g 
( 1.0モル)、N,N−ジメチルアセトアξド29
70gを装入し、室温で窒素雰囲気下に、3,3゜,4
,4゛−ベンゾフェノンテトラカルボン酸二無水物31
2g(0.97モル)を溶液温度の上昇に注意しながら
分割して加え、室温で約20時間かきまぜた。このポリ
アミド酸溶液に、室温で窒素雰囲気下に、無水グルタル
酸13.6g(0.12モル)を加え、さらに1時間か
きまぜた.次いで、この溶液に202 g (2モル)
のトリエチルアくンおよび306g(3モル)の無水酢
酸を滴下した.滴下終了後約1時間で黄色のボリイくド
粉が析出し始めた.さらに室温で10時間かきまぜて濾
過した.さらにメタノールに分散洗浄し、濾別、180
″Cで2時間乾燥して、470gのポリイミド粉を得た
.このボリイくド粉のガラス転移温度は250℃で、融
点は298゜Cであった(DSC法による.以下同じ)
.また、このポリイミド粉の対数粘度は0.52a/g
であった。ここに対数粘度はパラクロロフェノール:フ
ェノール(重量比90:10)の混合溶媒を用い、濃度
0.5g/100++J!溶媒で、35℃で測定した値
である。 本実施例で得られたボリイごド粉を用い、高化式フロー
テスター(島津製作所、CF↑−500、オリフイス直
径0.1cm 、長さlea)で、溶融粘度と圧力(!
j’l断速度)との関係を測定した.第1図は380゛
Cの温度に5分間保った後、剪断速度を種々変えて測定
した熔融粘度と剪断速度との関係である.比較例l 実施例lと全く同様に、但し無水グルタル酸を反応させ
るという操作を行わずに、464gのポリイミド粉末を
得た。 得られたボリイ旦ド粉の対数粘度は0.52a/gであ
った。 このポリイミドわ】を用い、実施例lと同様にフローテ
スターで、熔融粘度の測定を行い、第1図に示す結果を
得た。 実施例lで得られたポリイくド扮に比較して低剪断速度
領域での溶融粘度が高く、加工性に劣ることを示すもの
であった. 実施例2 実施例1と同様な反応装置に、3,3゜−ジアミノベン
ゾフェノン212g(1.0モル)とN,N−ジメチル
アセトアξド2970gを装入し、室温で窒素雰囲気下
、9.22g(0.66モル)の1,2−シクロヘキサ
ンジカルボン酸無水物と、312g(0.97モル)の
3.3’.4.4’−ペンゾフェノンテトラカルボン酸
二無水物を溶液温度の上昇に注意しながら加え、室温で
約20時間かきまぜた. 次いで、この溶液に202g(2モル)のトリエチルア
ξンおよび306g (3モル)の無水酢酸を滴下した
.20時間かきまぜて淡黄色スラリーを得た.このスラ
リーを濾別し、メタノールで洗浄し、180℃で8時間
減圧乾燥して、486gの淡黄色ボリイくド粉を得た.
このボリイ逅ド粉のガラス転移温度は250℃で、融点
は298℃、対数粘度は0.50a/gであった. 本実施例で得られたポリイミドの威形安定性をフローテ
スターのシリンダー内滞留時間を変えて測定した.シリ
ンダー温度は380℃、圧力は100kg/c+++”
で行った. 結果を第2図に示す。シリンダー内での滞留時間が長く
なっても、溶融粘度は殆ど変化せず、成形安定性の良好
なことが分かる。 比較例2 実施例2と全く同様に、但し、1.2−シクロヘキサン
ジカルボン酸無水物を使用せずに淡黄色のポリイミド$
5)末を得た. ボリイ稟ド粉のガラス転移温は250 ’C、対数粘度
は0.50di/gであった。 実施例2と同様にフローテスターシリンダ内での滞留時
間を変え、溶融粘度を測定したところ、滞留時間が長く
なるにしたがって溶融粘度が増加し、実施例2で得られ
たボリイごドに比べ成形安定性が劣ることを示した.結
果を第2図に示す.実施例3 実施例lと同様な反応装置に、3,3゜−ジア壽ノベン
ゾフエノン212g(1.0モル) 、3.3’.4.
4’一ベンゾフェノンテトラカルボン酸二無水物315
.l3g(0.98モル〉、無水シトラコン酸4.5g
(0.04モル)および2970gのトクレゾールを装
入し、窒素雰囲気下にかきまぜながら、加熱昇温した.
120℃付近で褐色透明の均一溶液となった, 150
 ’Cまで加熱し、かきまぜを続けると、約20分で黄
色ポリイミド粉が析出し始めた.さらに加熱下で2時間
かきまぜたを続けた後、濾過してポリイミドI)を得た
.このポリイミド粉をメタノールおよびアセトンで洗浄
した後、180゜Cで8時間減圧乾燥して、474gの
ボリイ5ド粉を得た. このポリイミド粉の対数粘度は0.57a/g、ガラス
転移温度は251”Cで、融点は298゜Cであった.
温度400″C、圧力100 kg/c+*”でフロー
テスターにて繰り返し押し出し測定を行った.すなわち
、380゜Cで5分間保持し、100kg/cm2の圧
力で押し出した.得られたストランドを粉砕し、さらに
同一条件で押し出すというテストを5回連続して行った
.繰り返し回数による粘度の変化は殆ど見られなかった
.第3図に結果を示す. 実施例4 実施例と同様な反応装置で、実施例lにおける3.3′
−ジアξノベンゾフエノン212g(1.0モル)をビ
ス(3−アεノフエニール)スルホン248g(1.0
モル)に代えるほかは全く同様に反応を行って、ボリア
ξド酸溶液を得た.このボリアξド酸溶液に、室温で窒
素雰囲気下に、無水グルタルM  17.03 (0.
15モル)を加え、さらに1時間かきまぜた.次いで、
この冫容冫夜に202 g (2モノレ)のトリエチル
アミンおよび306g(3モル)の無水酢酸を滴下した
。滴下終了後約1時間で苗色のポリイミド粉が析出し始
めた.さらに室温で10時間かきまぜて濾過した.さら
にメタノールに分散洗浄し、濾別180’Cで2時間乾
燥して506 gのポリ・イミド拐を得た.このポリイ
ミド粉のガラス転移温度は269゜Cであった.このポ
リイミド粉のガラス転移温度は269゜C (DSCに
よる。以下同し)であった.また、このポリイミドわl
の対数粘度は0.51di/gであった. 実施例lと同様の方法で溶融粘度と圧力(剪断速度)と
の関係を測定した.第4図は380 ’Cの温度に5分
間保った後、剪断速度を種々変えて測定した熔融粘度と
剪断速度との関係である。 比較例3 実施例4と全く同様に、但し無水グルタル酸を反応させ
るという操作を行わずに、496gのポリイミド15】
宋を得た。 得られたポリイミド粉の対数粘度は0.51a/gであ
った. このボリイごド粉を用い、実施例!と同様にフローテス
ターで、熔融粘度の測定を行い、第4図に示す結果を得
た. 実施例4で得られたポリイミドに比較して低剪断速度領
域で溶融粘度が高く実施例4より得られたポリイミドよ
り或形加工性に劣ることが分かる実施例5 実施例1と同様な反応装置に、ビス(3−アξノフエニ
ル)スルホン212g(1.0モル)およびN,N−ジ
メチルアセトアミド3170 gを装入し、室温で窒素
雰囲気下、9.22g(0.06モル)の1.2−シク
ロヘキサンジカルボン酸無水物と、312g(0.97
モル)の3.3’ ,4.4’−ベンゾフェノンジカル
ボン酸二無水物を溶液温度の上昇に注意しながら加え、
室温で約20時間かきまぜた. 次いで、この溶液に202 g (2モル)のトリエチ
ルアミンおよび306g (3モル)の無水酢酸を滴下
した。20時間かきまぜて淡黄色スラリーをi}た。こ
のスラリーを濾別し、メタノールで洗浄し、[0℃で8
時間減圧乾燥して、475gの淡黄色ボリイ壽ド粉を得
た。このポリイミド粉のガラス転移温度は250’Cで
、融点298゜C、対数粘度は0.50dl/gであっ
た. 本実施例で得られたポリイミドの戒形安定性をフローテ
スターのシリンダー内滞留時間を変え、測定した。温度
は380゜C、圧力はIOOJ/c+m”で行った。 結果を第5図に示す.シリンダー内での滞留時間が長く
なっても、溶融粘度は殆ど変化せず、熱安定性の良好な
ことが分かる. 比較例4 実施例5と全く同様に、(1、1.2−シクロヘキサン
ジカルボン酸無水物を使用せずに淡黄色のポリイミド粉
末を得た. ポリイミド粉のガラス転移温度は250゜C、対数粘度
は0.50a’/gであった。 実AI例5と同様にフローテスターシリンダ内での滞留
時間を変え、溶融粘度を測定を測定したところ、滞留時
間が長くなるにしたがって溶融粘度が増加し、実施例5
で得られたポリイミドに比べ熱安定性の劣るものであっ
た.結果を第5図に示す。 実施例6 実施例lと同様な反応装置に、ビス(3−アξノフェニ
ル)スルホン248g(1.0モル) 、3.3’,4
.4’−ベンゾフエノンテトラカルボン酸二無水物31
5.6g(0.98モル)、無水シトラコン酸4.48
g(0.04モル)および計クレゾール3170gを装
入し、窒素雰囲気下に、かきまぜながら徐々に加熱昇温
した.120″C付近で褐色透明の均一溶液となった.
l50℃まで加熱し、かきまぜを続けると、約20分で
黄色ポリイξド扮が析出し始めた。さらに加熱下で2時
間かきまぜを続けた後、濾過してポリイミド粉を得た. このボリイ5ド粉をメタノールおよびアセトンで各1回
洗浄した後、180℃で8時間減圧乾燥して、507g
のポリイミド粉を得た. このボリイごド粉の対数粘度は0.56d1/gで、ガ
ラス転移温度は270℃であった. 実施例lと同槌、但し、温度420 ’C、圧力100
kg/cm”  でフローテスターのシリンダーにより
、溶融粘度の繰り返し測定を行った.測定回数による粘
度の変化は殆ど見られなかった。第6図に結果を示す. 〔発明の効果〕 本発明の方法によれば、機械的性質、熱的性質、電気的
性質、耐溶剤性に優れ、しかも耐熱性である上に熱的に
長時間安定で成形加工性に優れたポリイミドを提供する
ことができる.
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. Example 1 212 g of 3,3'-diaminobenzophenone was placed in a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen inlet tube.
(1.0 mol), N,N-dimethylacetate 29
Charge 70g and heat at room temperature under nitrogen atmosphere at 3,3°,4
,4'-benzophenonetetracarboxylic dianhydride 31
2 g (0.97 mol) was added in portions while being careful not to increase the solution temperature, and the mixture was stirred at room temperature for about 20 hours. To this polyamic acid solution, 13.6 g (0.12 mol) of glutaric anhydride was added at room temperature under a nitrogen atmosphere, and the mixture was further stirred for 1 hour. Then 202 g (2 moles) was added to this solution.
of triethylamine and 306 g (3 moles) of acetic anhydride were added dropwise. Approximately 1 hour after the completion of the dropwise addition, yellow powder began to precipitate. The mixture was further stirred at room temperature for 10 hours and filtered. Further, dispersion washing in methanol, filtration separation, 180
470g of polyimide powder was obtained by drying for 2 hours at "C".The glass transition temperature of this polyimide powder was 250°C, and the melting point was 298°C (according to the DSC method. The same applies hereinafter).
.. In addition, the logarithmic viscosity of this polyimide powder is 0.52a/g
Met. Here, the logarithmic viscosity is determined using a mixed solvent of parachlorophenol:phenol (weight ratio 90:10), and the concentration is 0.5g/100++J! This is a value measured at 35°C in a solvent. Using the powdered powder obtained in this example, the melt viscosity and pressure (!
We measured the relationship between the Figure 1 shows the relationship between melt viscosity and shear rate measured at various shear rates after being maintained at a temperature of 380°C for 5 minutes. Comparative Example 1 464 g of polyimide powder was obtained in exactly the same manner as in Example 1, except that the reaction with glutaric anhydride was not performed. The logarithmic viscosity of the obtained Bolii Dando powder was 0.52 a/g. Using this polyimide, the melt viscosity was measured using a flow tester in the same manner as in Example 1, and the results shown in FIG. 1 were obtained. Compared to the polyamide obtained in Example 1, the melt viscosity in the low shear rate region was higher, indicating inferior processability. Example 2 212 g (1.0 mol) of 3,3゜-diaminobenzophenone and 2970 g of N,N-dimethylacetate were charged into a reaction apparatus similar to that of Example 1, and the mixture was heated at room temperature under a nitrogen atmosphere for 9 hours. .22 g (0.66 mol) of 1,2-cyclohexanedicarboxylic anhydride and 312 g (0.97 mol) of 3.3'. 4.4'-Penzophenonetetracarboxylic dianhydride was added while being careful not to raise the solution temperature, and the mixture was stirred at room temperature for about 20 hours. Then, 202 g (2 moles) of triethylamine and 306 g (3 moles) of acetic anhydride were added dropwise to this solution. After stirring for 20 hours, a pale yellow slurry was obtained. This slurry was filtered, washed with methanol, and dried under reduced pressure at 180°C for 8 hours to obtain 486 g of pale yellow powder.
The glass transition temperature of this powder was 250°C, the melting point was 298°C, and the logarithmic viscosity was 0.50 a/g. The shape stability of the polyimide obtained in this example was measured by changing the residence time in the cylinder of a flow tester. Cylinder temperature is 380℃, pressure is 100kg/c+++"
I went there. The results are shown in Figure 2. Even if the residence time in the cylinder becomes longer, the melt viscosity hardly changes, indicating that the molding stability is good. Comparative Example 2 A pale yellow polyimide $ was prepared in exactly the same manner as in Example 2, except that 1,2-cyclohexanedicarboxylic anhydride was not used.
5) Got the end. The glass transition temperature of the Borii powder was 250'C, and the logarithmic viscosity was 0.50 di/g. As in Example 2, the residence time in the flow tester cylinder was varied and the melt viscosity was measured. As the residence time became longer, the melt viscosity increased, and compared to the solid gold obtained in Example 2, the melt viscosity increased. It was shown that the stability was poor. The results are shown in Figure 2. Example 3 Into a reactor similar to Example 1 were added 212 g (1.0 mol) of 3,3°-diajunobenzophenone, 3.3'. 4.
4'-benzophenonetetracarboxylic dianhydride 315
.. l3g (0.98 mol), citraconic anhydride 4.5g
(0.04 mol) and 2970 g of Tocresol were charged, and the temperature was raised while stirring under a nitrogen atmosphere.
It became a brown transparent homogeneous solution at around 120℃, 150
When heated to 'C and continued stirring, yellow polyimide powder began to precipitate in about 20 minutes. After further stirring under heating for 2 hours, the mixture was filtered to obtain polyimide I). This polyimide powder was washed with methanol and acetone, and then dried under reduced pressure at 180°C for 8 hours to obtain 474 g of polyimide powder. This polyimide powder had a logarithmic viscosity of 0.57 a/g, a glass transition temperature of 251''C, and a melting point of 298°C.
Repeated extrusion measurements were carried out using a flow tester at a temperature of 400''C and a pressure of 100 kg/c++''. That is, it was held at 380°C for 5 minutes and extruded at a pressure of 100kg/cm2. The resulting strand was crushed and extruded under the same conditions five times in a row. Almost no change in viscosity was observed depending on the number of repetitions. Figure 3 shows the results. Example 4 In the same reactor as in Example 3.3' in Example I
- 212 g (1.0 mol) of diaξnobenzophenone was mixed with 248 g (1.0 mol) of bis(3-aεnophenol) sulfone.
A boria ξ-doic acid solution was obtained by carrying out the reaction in exactly the same manner except that the amount of mol) was changed. Anhydrous glutaric acid M 17.03 (0.0%) was added to this boria ξ-doic acid solution at room temperature under a nitrogen atmosphere.
15 mol) was added and stirred for an additional hour. Then,
At this time, 202 g (2 monooles) of triethylamine and 306 g (3 moles) of acetic anhydride were added dropwise. Approximately 1 hour after the dropping was completed, seedling-colored polyimide powder began to precipitate. The mixture was further stirred at room temperature for 10 hours and filtered. Further, it was dispersed and washed in methanol, filtered, and dried at 180'C for 2 hours to obtain 506 g of polyimide particles. The glass transition temperature of this polyimide powder was 269°C. The glass transition temperature of this polyimide powder was 269°C (based on DSC, hereinafter the same). Also, this polyimide
The logarithmic viscosity of was 0.51 di/g. The relationship between melt viscosity and pressure (shear rate) was measured in the same manner as in Example 1. FIG. 4 shows the relationship between melt viscosity and shear rate measured at various shear rates after being maintained at a temperature of 380'C for 5 minutes. Comparative Example 3 In exactly the same manner as in Example 4, but without performing the operation of reacting glutaric anhydride, 496 g of polyimide 15]
obtained the Song Dynasty. The logarithmic viscosity of the obtained polyimide powder was 0.51a/g. Example using this Bolii godo powder! The melt viscosity was measured using a flow tester in the same manner as above, and the results shown in Figure 4 were obtained. Example 5 It can be seen that the melt viscosity is higher in the low shear rate region than the polyimide obtained in Example 4, and the formability is inferior to the polyimide obtained in Example 4. Reactor similar to Example 1 212 g (1.0 mol) of bis(3-anξnophenyl)sulfone and 3170 g of N,N-dimethylacetamide were charged, and 9.22 g (0.06 mol) of 1. 2-cyclohexanedicarboxylic anhydride, 312 g (0.97
mol) of 3.3',4.4'-benzophenonedicarboxylic dianhydride was added while being careful not to increase the solution temperature,
Stir at room temperature for about 20 hours. 202 g (2 mol) of triethylamine and 306 g (3 mol) of acetic anhydride were then added dropwise to this solution. The mixture was stirred for 20 hours to form a pale yellow slurry. The slurry was filtered, washed with methanol [8
It was dried under reduced pressure for hours to obtain 475 g of pale yellow powder. This polyimide powder had a glass transition temperature of 250'C, a melting point of 298°C, and a logarithmic viscosity of 0.50 dl/g. The stability of the polyimide obtained in this example was measured by varying the residence time in the cylinder of a flow tester. The temperature was 380°C and the pressure was IOOJ/c+m. Comparative Example 4 Pale yellow polyimide powder was obtained in exactly the same manner as in Example 5 without using 1,1,2-cyclohexanedicarboxylic anhydride. The glass transition temperature of the polyimide powder was 250°. C, the logarithmic viscosity was 0.50a'/g.As in Actual AI Example 5, the residence time in the flow tester cylinder was changed and the melt viscosity was measured. Viscosity increases, Example 5
The thermal stability was inferior to that of the polyimide obtained in . The results are shown in Figure 5. Example 6 In a reactor similar to Example 1, 248 g (1.0 mol) of bis(3-anξnophenyl)sulfone, 3.3',4
.. 4'-Benzophenonetetracarboxylic dianhydride 31
5.6g (0.98 mol), citraconic anhydride 4.48
(0.04 mol) and a total of 3170 g of cresol were charged, and the temperature was gradually increased while stirring in a nitrogen atmosphere. At around 120''C, it became a brown transparent homogeneous solution.
When heated to 50° C. and continued stirring, yellow polyimides began to precipitate in about 20 minutes. After further stirring under heating for 2 hours, the mixture was filtered to obtain polyimide powder. After washing this Boli 5 powder once each with methanol and acetone, it was dried under reduced pressure at 180°C for 8 hours, and 507 g
Polyimide powder was obtained. The logarithmic viscosity of this powder was 0.56 d1/g, and the glass transition temperature was 270°C. Same mallet as Example 1, but temperature 420'C, pressure 100
The melt viscosity was repeatedly measured using the cylinder of a flow tester at 1.5 kg/cm. Almost no change in viscosity was observed depending on the number of measurements. The results are shown in Figure 6. [Effects of the Invention] Method of the Invention According to this publication, it is possible to provide a polyimide that has excellent mechanical properties, thermal properties, electrical properties, and solvent resistance, is heat resistant, is thermally stable for a long time, and has excellent moldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第4図は、本発明の方法で製造したポリイ
ミドの溶融粘度と剪断速度との関係を示し、第1図は実
施例lおよび比較例1で得られたポリイミドについての
測定結果、第4図は実施例4および比較例3で得られた
ポリイミドについての測定結果である. 第2図および第5図は、本発明の方法で製造したポリイ
ミドの溶融粘度とシノンダー内滞留時間との関係を示し
、第2図は実施例2および比較例2で得られたポリイξ
ドについての測定結果、第5図は実施例5および比較例
4で得られたポリイミドについての測定結果である.
1 and 4 show the relationship between the melt viscosity and shear rate of polyimide produced by the method of the present invention, and FIG. 1 shows the measurement results for the polyimide obtained in Example 1 and Comparative Example 1, Figure 4 shows the measurement results for the polyimides obtained in Example 4 and Comparative Example 3. FIGS. 2 and 5 show the relationship between the melt viscosity of polyimide produced by the method of the present invention and the residence time in the cynonder.
Figure 5 shows the measurement results for polyimide obtained in Example 5 and Comparative Example 4.

Claims (1)

【特許請求の範囲】[Claims] (1)ジアミンとテトラカルボン酸二無水物とを反応さ
せ、得られたポリアミド酸を熱的または化学的にイミド
化するポリイミドの製造方法において、 (イ)ジアミンが、一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、Xは−CO−または−SO_2−の2価の基を
示す)で表される芳香族ジアミンであり、 (ロ)テトラカルボン酸二無水物が、一般式(II) ▲数式、化学式、表等があります▼(II) (式中、Rは、炭素数2以上の脂肪族基、環式脂肪族基
、単環式芳香族基、縮合多環式芳香族基、芳香族が直接
又は架橋員により相互に連結された非縮合多環式芳香族
基から成る群より選ばれた4価の基を示す)で表される
テトラカルボン酸二無水物であり、 (ハ)さらに反応が一般式(III) ▲数式、化学式、表等があります▼(III) (式中、Zは炭素数1以上10以下の脂肪族基または環
式脂肪族基の2価の基を示す)で表されるジカルボン酸
無水物の存在下に行われ、 (ニ)テトラカルボン酸二無水物の量が芳香族ジアミン
1モル当り0.9乃至1.0モル比であり、かつジカル
ボン酸無水物の量が芳香族ジアミン1モル当り0.00
1乃至1.0モル比である一般式(IV) ▲数式、化学式、表等があります▼(IV) (式中、XおよびRは、前記と同じ意味を示す)で表さ
れる繰返し構造単位を基本骨格として有する成形加工性
の良好なポリイミドの製造方法。
(1) In the method for producing polyimide, which involves reacting a diamine with a tetracarboxylic dianhydride and thermally or chemically imidizing the obtained polyamic acid, (a) the diamine has the general formula (I) ▲mathematical formula , chemical formulas, tables, etc. ▼ (I) (In the formula, X represents a divalent group of -CO- or -SO_2-) is an aromatic diamine, and (b) tetracarboxylic dianhydride. The product has the general formula (II) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (II) (wherein R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, A tetracarboxylic acid represented by a tetravalent group selected from the group consisting of a fused polycyclic aromatic group and a non-fused polycyclic aromatic group in which aromatics are interconnected directly or through a bridge member. It is a dianhydride, and (c) the reaction is expressed by the general formula (III) ▲ Numerical formulas, chemical formulas, tables, etc. (d) The amount of tetracarboxylic dianhydride is 0.9 to 1.0 per mole of aromatic diamine. molar ratio, and the amount of dicarboxylic acid anhydride is 0.00 per mole of aromatic diamine.
General formula (IV) with a molar ratio of 1 to 1.0 ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (IV) A repeating structural unit represented by (in the formula, X and R have the same meanings as above) A method for producing polyimide having good moldability and having as a basic skeleton.
JP30641889A 1989-11-28 1989-11-28 Method for producing polyimide having good moldability Expired - Lifetime JP3327919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30641889A JP3327919B2 (en) 1989-11-28 1989-11-28 Method for producing polyimide having good moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30641889A JP3327919B2 (en) 1989-11-28 1989-11-28 Method for producing polyimide having good moldability

Publications (2)

Publication Number Publication Date
JPH03167222A true JPH03167222A (en) 1991-07-19
JP3327919B2 JP3327919B2 (en) 2002-09-24

Family

ID=17956782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30641889A Expired - Lifetime JP3327919B2 (en) 1989-11-28 1989-11-28 Method for producing polyimide having good moldability

Country Status (1)

Country Link
JP (1) JP3327919B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258229A (en) * 1984-06-05 1985-12-20 Mitsui Toatsu Chem Inc Preparation of prepolymer solution used for aromatic polyimide resin
JPS6178834A (en) * 1984-09-26 1986-04-22 Mitsui Toatsu Chem Inc Production of aromatic polyimide
JPS6195029A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide resin powder, bonding method and film-forming method using polyimide resin powder
JPS6195030A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide film
JPH01131239A (en) * 1987-11-16 1989-05-24 Mitsui Toatsu Chem Inc Production of polyimide of good processability
JPH01138266A (en) * 1987-11-25 1989-05-31 Mitsui Toatsu Chem Inc Polyimide composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258229A (en) * 1984-06-05 1985-12-20 Mitsui Toatsu Chem Inc Preparation of prepolymer solution used for aromatic polyimide resin
JPS6178834A (en) * 1984-09-26 1986-04-22 Mitsui Toatsu Chem Inc Production of aromatic polyimide
JPS6195029A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide resin powder, bonding method and film-forming method using polyimide resin powder
JPS6195030A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide film
JPH01131239A (en) * 1987-11-16 1989-05-24 Mitsui Toatsu Chem Inc Production of polyimide of good processability
JPH01138266A (en) * 1987-11-25 1989-05-31 Mitsui Toatsu Chem Inc Polyimide composite material

Also Published As

Publication number Publication date
JP3327919B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
CN108219133B (en) Polyimide resin containing furan ring and preparation method thereof
Hsiao et al. Synthesis and properties of poly (ether imide) s having ortho-linked aromatic units in the main chain
JP5174311B2 (en) Polyamide acid, polyimide, production method thereof, and polyimide film comprising the same
EP0280801B1 (en) Colorless transparent polyimide shaped articles and process for their production
EP1148078A1 (en) Polyimide containing crosslinkable group and process for producing the same
JPH0433809B2 (en)
JPH01110530A (en) Production of polyimide having good thermal stability
US5120826A (en) Polyamide-imide polymers having fluorine-containing linking groups
JP3177286B2 (en) Polyimide and method for producing the same
JPH03167222A (en) Production of polyimide of good moldability
JP2748992B2 (en) Crystalline polyimide and method for producing the same
JPS62185715A (en) Colorless polyimide film
Kim et al. Curable aromatic polyimides containing enaminonitrile groups
JP2606914B2 (en) Method for producing polyimide having good thermal stability
JPH07316294A (en) Polyimide copolymer and production thereof
JP2563548B2 (en) Method for producing polyimide with good moldability
JP3327920B2 (en) Method for producing polyimide having good moldability
JP2565556B2 (en) Method for producing polyimide with good moldability
JP3456256B2 (en) Polyimide copolymer and method for producing the same
JPH03195732A (en) New polyesterimide
JPH0551617B2 (en)
JPH02160829A (en) Production of polyimide of good moldability
JP3201826B2 (en) Liquid crystalline and low dielectric polyimide and method for producing the same
JP2606913B2 (en) Method for producing polyimide having good thermal stability
JPH02173041A (en) Production of polyimide of good moldability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8