JPH01138266A - Polyimide composite material - Google Patents

Polyimide composite material

Info

Publication number
JPH01138266A
JPH01138266A JP62295316A JP29531687A JPH01138266A JP H01138266 A JPH01138266 A JP H01138266A JP 62295316 A JP62295316 A JP 62295316A JP 29531687 A JP29531687 A JP 29531687A JP H01138266 A JPH01138266 A JP H01138266A
Authority
JP
Japan
Prior art keywords
group
polyimide
formula
composite material
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62295316A
Other languages
Japanese (ja)
Inventor
Tomohito Koba
木場 友人
Toshiyuki Nakakura
中倉 敏行
Hideo Sakai
坂井 英男
Masahiro Ota
正博 太田
Satoshi Kishi
岸 智
Misao Masuda
益田 操
Chiaki Maruko
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62295316A priority Critical patent/JPH01138266A/en
Priority to AU24060/88A priority patent/AU599517B2/en
Priority to DE3855276T priority patent/DE3855276T2/en
Priority to EP88309957A priority patent/EP0313407B1/en
Priority to CA000580963A priority patent/CA1316628C/en
Priority to KR1019880013826A priority patent/KR910008327B1/en
Priority to US07/261,520 priority patent/US5043419A/en
Publication of JPH01138266A publication Critical patent/JPH01138266A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyimide composite material freed of voids in the interface between a polyimide and a fibrous reinforcement, by mixing a specified polyimide with a fibrous reinforcement. CONSTITUTION:This polyimide composite material is formed of a fibrous reinforcement and a polyimide having a basic skeleton composed of repeating units of formula I (wherein X is a direct bond, a 1-10C bivalent hydrocarbon group, a carbonyl group or the like, Y1-Y4 are each a hydrogen atom, a lower alkyl group or a lower alkoxyl group, and R is a tetravalent group selected from among a 2C or higher aliphatic group, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, etc.) and formed by thermally or chemically imidating a polyamic acid obtained by reacting 1.0mol of a tetracarboxylic acid dianhydride of formula III (wherein X and Y1-Y4 are each as defined above) with 1.0-1.5mol of an ether diamine of formula III (wherein X and Y1-Y4 are as defined above) in the presence of 0.001-1.0mol of aliphatic and/or cycloaliphatic dicarboxylic acid dianhydride of formula IV (wherein Z is a 1-10C aliphatic and/or cycloaliphatic group).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、耐薬品性、機械強度に優れ、且つ成形
加工性にすぐれたポリイミド系複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polyimide composite material that has excellent heat resistance, chemical resistance, mechanical strength, and moldability.

〔従来の技術〕[Conventional technology]

従来からポリイミドと繊維状補強材よりなる複合材料を
用いて成形した成形品は、その力学的強度、特に高温時
での強度保持率に優れ、且つ耐溶剤性、寸法安定性に優
れるため、宇宙航空用機などの構造材料として注目され
ている。
Conventionally, molded products made from composite materials made of polyimide and fibrous reinforcing materials have excellent mechanical strength, especially strength retention at high temperatures, as well as excellent solvent resistance and dimensional stability, so they have been used in space. It is attracting attention as a structural material for aircraft, etc.

然しなから、ポリイミドは一般的に溶融粘度が高い為に
、ポリイミドをマトリックスとする複合材料は、ポリカ
ーボネート、ポリエチレンテレフタレートなどのエンジ
ニアリングプラスチックをマトリックスとする複合材料
に比較して成形加工条件が厳しく、問題があった。
However, since polyimide generally has a high melt viscosity, composite materials using polyimide as a matrix require stricter molding conditions than composite materials using engineering plastics such as polycarbonate or polyethylene terephthalate as a matrix, which poses problems. was there.

熔融粘度が低く加工性に優れている特殊なポリイミドも
知られているが、それらは熱変形温度が低く、しかもハ
ロゲン化炭化水素などの溶剤に可溶である為、これらの
樹脂をマトリックスとする複合材料では、耐熱性、耐薬
品性に問題があった。
Special polyimides with low melt viscosity and excellent processability are also known, but these resins have low heat distortion temperatures and are soluble in solvents such as halogenated hydrocarbons, so these resins can be used as a matrix. Composite materials have had problems with heat resistance and chemical resistance.

一方、本発明者の一人はさきに機械的性質、熱的性質、
電気的性質、耐溶剤性などにすぐれ、かつ耐熱性を有す
るポリイミドとして式(I)(式中、Xは直結、炭素数
1乃至10の二価の炭化水素基、六フッ素化されたイソ
プロピリデン基、カルボニル基、チオ基、またはスルホ
ニル基から成る群より選ばれた基を表し、Yl、Y2、
Y。
On the other hand, one of the inventors of the present invention first studied mechanical properties, thermal properties,
A polyimide having excellent electrical properties, solvent resistance, etc., and heat resistance is represented by the formula (I) (wherein, X is a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, hexafluorinated isopropylidene) Yl, Y2,
Y.

およびY4は夫々水素、低級アルキル基、低級アルコキ
シ基、塩素または臭素からなる群より選ばれた基を表し
、またRは炭素数2以上の脂肪族基、環式脂肪族基、単
環式芳香族基、縮合多環式芳香族基、芳香族基が直接又
は架橋員より相互に連結された非縮合多環式芳香族基か
ら成る群より選ばれた4価の基を表す。) で表される繰り返し単位を有するポリイミドを見出した
(特開昭61−143478、同62−68817 、
同62−86021 、特願昭61−076475、同
61−274206など)。上記のポリイミドは、多く
の良好な物性を有する新規な耐熱性樹脂であり、該ポリ
イミドと繊維状補強材よりなる複合材料も開発されてい
る(特願昭6l−901705) 。
and Y4 each represent a group selected from the group consisting of hydrogen, a lower alkyl group, a lower alkoxy group, chlorine or bromine, and R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group. represents a tetravalent group selected from the group consisting of a group group, a fused polycyclic aromatic group, and a non-fused polycyclic aromatic group in which aromatic groups are interconnected directly or through a bridge member. ) We have discovered a polyimide having a repeating unit represented by
No. 62-86021, Japanese Patent Application No. 61-076475, No. 61-274206, etc.). The above-mentioned polyimide is a new heat-resistant resin having many good physical properties, and a composite material made of the polyimide and a fibrous reinforcing material has also been developed (Japanese Patent Application No. 61-901705).

しかしながら、上記ポリイミドは溶融粘度が高い為、複
合材料とした場合、繊維状補強材と該ポリイミドとの界
面に空隙が生じ、十分なる機械的強度を有するものが得
られないという問題があった。
However, since the above-mentioned polyimide has a high melt viscosity, when it is made into a composite material, voids are generated at the interface between the fibrous reinforcing material and the polyimide, and there is a problem that a material having sufficient mechanical strength cannot be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記ポリイミドが有する本来の特性を
損なうことなく、該ポリイミドと繊維状補強材との界面
に空隙のない、優れた機械的強度を有するポリイミド系
複合材料を得ることにある。
An object of the present invention is to obtain a polyimide composite material having excellent mechanical strength and having no voids at the interface between the polyimide and the fibrous reinforcing material without impairing the original properties of the polyimide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記問題点を解決するために鋭意研究を行
った結果、 ポリイミドと繊維状補強材よりなるポリイミド系複合材
料において、該ポリイミドが式(I)で示(式中、X、
Y、〜Y、、Rは前に同じ)す繰り返し単位を基本骨格
とし、且つ該ポリイミドが式(n) ]111 (式中、Rは前に同じ) で表されるテトラカルボン酸二無水物1.0モル比、及
び式(III)で表されるエーテルジアミン1.0〜1
.5モル比を使用し、 (式中、X、Y+ 、Yz 、YsおよびY4は前に同
じ) 式(IV)で表される脂肪族および/又は脂環式ジカル
ボン酸無水物0.001〜1.0モル比(以下ジカルボ
ン酸無水物と略称する。)の存在下でえられるポリアミ
ド酸を熱的または化学的にイミド化しび/又は環式脂肪
族基よりなる2価の基を表す、)てえられるポリイミド
であることを特徴とするポリイミド系複合材料である。
The present inventors conducted intensive research to solve the above problems, and found that in a polyimide-based composite material consisting of polyimide and a fibrous reinforcing material, the polyimide is represented by the formula (I) (wherein X,
A tetracarboxylic dianhydride whose basic skeleton is a repeating unit (Y, ~Y,, R are the same as above), and the polyimide is represented by the formula (n) ]111 (wherein R is the same as above) 1.0 molar ratio, and ether diamine represented by formula (III) 1.0 to 1
.. (wherein X, Y+, Yz, Ys and Y4 are the same as before) aliphatic and/or cycloaliphatic dicarboxylic acid anhydride of formula (IV) from 0.001 to 1 Represents a divalent group consisting of thermally or chemically imidized polyamic acid obtained in the presence of a .0 molar ratio (hereinafter abbreviated as dicarboxylic acid anhydride) and/or a cycloaliphatic group) This is a polyimide-based composite material characterized by being a polyimide that can be used as a polyimide.

本発明のポリイミドを製造する為の原料としての弐(I
I)を有するエーテルジアミンとしては、ビス〔4〜 
(3−アミノフェノキシ)フェニルコメタン、1,1−
ビス(4−(3−7ミノフエノキシ)フェニル〕エタン
、2,2−ビス(4−(3−アミノフェノキシ)フェニ
ル〕プロパン、2−〔4−(3−アミノフェノキシ)フ
ェニルツー2−C4−C3−アミノフェノキシ)−3−
メチルフェニル〕プロパン、2,2−ビスC4−<3−
アミノフェノキシ)−3−メチルフェニル〕プロパン、
2− (4−(3−アミノフェノキシ)フェニル)−2
−(4−(3−アミノフェノキシ) −3,5−ジメチ
ルフェニル〕プロパン、2,2−ビス〔4−(3−アミ
ノフェノキシ) −3,5−ジメチルフェニル〕プロパ
ン、2,2−ビス(4−(3−アミノフェノキシ)フェ
ニルコブタン、2.2−ビス〔4−(3−アミノフェノ
キシ)フェニル) −1,1,1,3,3,3−ヘキサ
フルオロプロパン、4.4”−ビス(3−アミノフェノ
キシ)ビフェニル、4,4゛−ビ・ス(3−アミノフェ
ノキシ)−3−メチルビフェニル、4,4°−ビス(3
−アミノフェノキシ)−3゜3°−ジメチルビフェニル
、4,4°−ビス(3−アミノフェノキシ) −3,5
−ジメチルビフェニル、4゜4°−ビス(3−アミノフ
ェノキシ) −3,3’、5.5゜−テトラメチルビフ
ェニル、4.4’−ビス(3−アミノフェノキシ) −
3,3’−ジクロロビフェニル、4.4”−ビス(3−
アミノフェノキシ) −3,5−ジクロロビフェニル、
4,4°−ビス(3−アミノフェノキシ) −3,3°
、5.5”−テトラクロロビフェニル、4.4″−ビス
(3−アミノフェノキシ) −3,3°−ジブロモビフ
エニル、4,4”−ビス(3−アミノフェノキシ) −
3,5−ジブロモビフェニル、4.4’−ビス(3−ア
ミノフェノキシ) −3,3″、5.5″ −テトラブ
ロモビフェニル、ビス(4−(3−アミノフェノキシ)
フェニルコケトン、ビス(4−(3−アミノフェノキシ
)フェニル〕スルフィド、ビスC4−(3−アミノフェ
ノキシ)−3−メトキシフェニル]スルフィド、(4−
(3−アミノフェノキシ)フェニル)[:4−(3−ア
ミノフェノキシ)3.5−ジメトキシフェニルフスルフ
ィド、ビス(4−(3−アミノフェノキシ)  −3,
5−ジメトキシフェニルフスルフィド、ビス(4−(3
−アミノフェノキシ)フェニル〕スルホンなどが挙げら
れ、これらは単独あるいは2種以上混合して用いられる
Ni(I) as a raw material for producing the polyimide of the present invention
As the ether diamine having I), bis[4-
(3-aminophenoxy)phenylcomethane, 1,1-
Bis(4-(3-7minophenoxy)phenyl]ethane, 2,2-bis(4-(3-aminophenoxy)phenyl)propane, 2-[4-(3-aminophenoxy)phenyl]2-C4-C3 -aminophenoxy)-3-
methylphenyl]propane, 2,2-bisC4-<3-
aminophenoxy)-3-methylphenyl]propane,
2- (4-(3-aminophenoxy)phenyl)-2
-(4-(3-aminophenoxy) -3,5-dimethylphenyl]propane, 2,2-bis[4-(3-aminophenoxy) -3,5-dimethylphenyl]propane, 2,2-bis( 4-(3-aminophenoxy)phenylcobutane, 2,2-bis[4-(3-aminophenoxy)phenyl)-1,1,1,3,3,3-hexafluoropropane, 4.4”- Bis(3-aminophenoxy)biphenyl, 4,4゛-bis(3-aminophenoxy)-3-methylbiphenyl, 4,4°-bis(3
-aminophenoxy)-3゜3°-dimethylbiphenyl, 4,4°-bis(3-aminophenoxy) -3,5
-dimethylbiphenyl, 4°4°-bis(3-aminophenoxy) -3,3',5.5°-tetramethylbiphenyl, 4.4'-bis(3-aminophenoxy) -
3,3'-dichlorobiphenyl, 4.4''-bis(3-
aminophenoxy)-3,5-dichlorobiphenyl,
4,4°-bis(3-aminophenoxy) -3,3°
, 5.5"-tetrachlorobiphenyl, 4.4"-bis(3-aminophenoxy) -3,3°-dibromobiphenyl, 4,4"-bis(3-aminophenoxy) -
3,5-dibromobiphenyl, 4,4'-bis(3-aminophenoxy) -3,3'',5.5''-tetrabromobiphenyl, bis(4-(3-aminophenoxy)
Phenylkoketone, bis(4-(3-aminophenoxy)phenyl)sulfide, bisC4-(3-aminophenoxy)-3-methoxyphenyl]sulfide, (4-
(3-aminophenoxy)phenyl)[:4-(3-aminophenoxy)3.5-dimethoxyphenyl fusulfide, bis(4-(3-aminophenoxy)-3,
5-dimethoxyphenyl fusulfide, bis(4-(3
-aminophenoxy)phenyl]sulfone, etc., and these may be used alone or in combination of two or more.

なお、本発明の方法のポリイミドの良好な物性を損なわ
ない範囲で、上記ジアミンの一部を他の公知のポリイミ
ドに使用されるジアミンで代替して用いることは何ら差
し支えない。
Note that, as long as the good physical properties of the polyimide used in the method of the present invention are not impaired, there is no problem in substituting a part of the above-mentioned diamine with a diamine used in other known polyimides.

また式(ff)で表されるテトラカルボン酸二無水物と
しては、例えば、エチレンテトラカルボン酸二無水物、
ブタンテトラカルボン酸二無水物、シクロペンクンテト
ラカルボン酸二無水物、ピロメリット酸二無水物、1.
1−ビス(2,3−ジカルボキシフェニル)エタンニ無
水物、ビス(2,3−ジカルボキシフェニル)メタンニ
無水物、ビス(3,4−ジカルボキシフェニル)メタン
ニ無水物、2.2−ビス(3,4−ジカルボキシフェニ
ル)プロパンニ無水物、2,2−ビス(2,3−ジカル
ボキシフェニル)プロパンニ無水物、2.2−ビス(3
,4−ジカルボキシフェニル) −1,1,L3.3.
3−へキサフルオロプロパンニ無水物、2.2−ビス(
2,3−ジカルボキシフェニル) −1,1,1,3,
3,3−へキサフルオロプロパンニ無水物、3.3’、
4.4’ −ベンシフエノンテトラカルボン酸二無水物
、2.2’、3゜3゛−ベンゾフェノンテトラカルポン
酸二無水物、す3,3°、4.4’−ビフェニルテトラ
カルボン酸二無水物、2,2°、3.3’−ビフェニル
テトラカルボン酸二無水物、ビス(3,4−ジカルボキ
シフェニル)エーテルニ無水物、ビス(2,3−ジカル
ボキシフェニル)エーテルニ無水物、ビス(3,4−ジ
カルボキシフェニル)スルホンニ無水物、4.4“−(
p−フェニレンジオキシ)シフタル酸二無水物、4゜4
’−(m−フェニレンジオキシ)シフタル酸二無水物、
2,3,6.7−ナフタレンテトラカルボン酸二無水物
、1,4,5.8−ナフタレンテトラカルボン酸二無水
物、1,2,5.6−ナフタレンテトラカルボン酸二無
水物、1.2,3.4−ベンゼンテトラカルボン酸二無
水物、3,4,9.10−ペリレンテトラカルボン酸二
無水物、2.3,6.7−アントラセンテトラカルボン
酸二無水物、1,2,7.8−フェナントレンテトラカ
ルボン酸二無水物などであり、これらテトラカルボン酸
二無水物は単独あるいは2種以上混合して用いられる。
Examples of the tetracarboxylic dianhydride represented by formula (ff) include ethylenetetracarboxylic dianhydride,
Butane tetracarboxylic dianhydride, cyclopenkune tetracarboxylic dianhydride, pyromellitic dianhydride, 1.
1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 2,2-bis( 3,4-dicarboxyphenyl)propanihydride, 2,2-bis(2,3-dicarboxyphenyl)propanihydride, 2,2-bis(3
,4-dicarboxyphenyl) -1,1,L3.3.
3-hexafluoropropanihydride, 2,2-bis(
2,3-dicarboxyphenyl) -1,1,1,3,
3,3-hexafluoropropanihydride, 3.3',
4.4'-Benzyphenonetetracarboxylic dianhydride, 2.2',3゜3゛-benzophenonetetracarboxylic dianhydride, 3,3°,4.4'-biphenyltetracarboxylic dianhydride Anhydride, 2,2°, 3.3'-biphenyltetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, bis (3,4-dicarboxyphenyl)sulfone dianhydride, 4.4"-(
p-phenylenedioxy) cyphthalic dianhydride, 4゜4
'-(m-phenylenedioxy)cyphthalic dianhydride,
2,3,6.7-naphthalenetetracarboxylic dianhydride, 1,4,5.8-naphthalenetetracarboxylic dianhydride, 1,2,5.6-naphthalenetetracarboxylic dianhydride, 1. 2,3.4-benzenetetracarboxylic dianhydride, 3,4,9.10-perylenetetracarboxylic dianhydride, 2.3,6.7-anthracenetetracarboxylic dianhydride, 1,2, 7,8-phenanthrenetetracarboxylic dianhydride, etc., and these tetracarboxylic dianhydrides may be used alone or in a mixture of two or more.

また式(rV)で表されるジカルボン酸無水物としては
、例えば、無水マロン酸、無水コハク酸、無水グルタル
酸、無水アジピン酸、無水ピメリン酸、無水スペリン酸
、無水アゼライン酸、無水セバシン酸、無水メチルマロ
ン酸、無水エチルマロン酸、無水ジメチルマロン酸、無
水メチルコハク酸、無水2.2−ジメチルコハク酸、無
水2,3−ジメチルコハク酸、無水テトラメチルコハク
酸、無水マレイン酸、無水シトラコン酸、無水グルタコ
ン酸、無水メチレンコハク酸、無水アリルマロン酸、無
水テラコン酸、無水ムコン酸、シクロブタンジカルボン
酸無水物、シクロヘキサンジカルボン酸無水物、シクロ
ヘキセンジカルボン酸無水物、シラウノウ酸無水物など
であり、これら脂肪族および/又は脂環式ジカルボン酸
無水物は単独あるいは2種以上混合して用いられる。
Examples of the dicarboxylic anhydride represented by formula (rV) include malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, speric anhydride, azelaic anhydride, sebacic anhydride, Methylmalonic anhydride, ethylmalonic anhydride, dimethylmalonic anhydride, methylsuccinic anhydride, 2,2-dimethylsuccinic anhydride, 2,3-dimethylsuccinic anhydride, tetramethylsuccinic anhydride, maleic anhydride, citraconic anhydride , glutaconic anhydride, methylenesuccinic anhydride, allylmalonic anhydride, terraconic anhydride, muconic anhydride, cyclobutanedicarboxylic anhydride, cyclohexanedicarboxylic anhydride, cyclohexenedicarboxylic anhydride, silaunoic anhydride, etc., and these fatty acids The group and/or alicyclic dicarboxylic acid anhydrides may be used alone or in combination of two or more.

本発明では式(I[)を有するテトラカルボン酸二無水
物1.0モル比に式(III)を有するエーテルジアミ
ン1.0〜1.5モル比を使用し、これにジカルボン酸
無水物0.001〜1.0モル比、好ましくは0.01
〜0.5モル比の存在下でえられるポリアミド酸を熱的
または化学的にイミド化してえられるが、ここで使用す
るジカルボン酸無水物に本発明の特徴があり、ジカルボ
ン酸無水物はポリイミドの生成時、直接あるいは間接的
に反応に寄与し、ポリイミドの構成成分の一部あるいは
ポリイミドの生成反応の触媒的作用をはたし、加工性の
良いポリイミドをえるための主要な役割をするものであ
る。即ち、ジカルボン酸無水物が0.001モル比以下
では加工性の良いポリイミドをえることはできず、また
逆に1.0モル比以上使用すると良好な機械的特性を有
するポリイミドかえられない。
In the present invention, 1.0 to 1.5 molar ratio of ether diamine having formula (III) is used to 1.0 molar ratio of tetracarboxylic dianhydride having formula (I[), and 0 to 1.5 molar ratio of ether diamine having formula (III) is used. .001-1.0 molar ratio, preferably 0.01
It is obtained by thermally or chemically imidizing a polyamic acid obtained in the presence of a molar ratio of ~0.5, but the dicarboxylic anhydride used here is a feature of the present invention, and the dicarboxylic anhydride is a polyimide. A substance that directly or indirectly contributes to the reaction during the production of polyimide, serves as a part of the constituent components of polyimide, or acts as a catalyst for the polyimide production reaction, and plays a major role in obtaining polyimide with good processability. It is. That is, if the dicarboxylic acid anhydride is used in a molar ratio of less than 0.001, a polyimide with good processability cannot be obtained, and conversely, if it is used in a molar ratio of more than 1.0, a polyimide with good mechanical properties cannot be obtained.

ジカルボン酸無水物が0.001〜1.0モル比の存在
下で良好な加工性を有するポリイミドを製造できるが、
この場合ポリイミドの原料であるテトラカルボン酸二無
水物とエーテルジアミンとの使用割合はテトラカルボン
酸二無水物1.0モル比に対し、エーテルジアミン1.
0〜1.5比を使用する場合に効果があり、この範囲以
外では本発明の高温で熱安定性のよいポリイミドをえる
ことはできな以上テトラカルボン酸二無水物、エーテル
ジアミン、及びジカルボン酸無水物を使用してポリイミ
ドを製造するが、この場合ポリイミドの公知の製造方法
はすべて利用できる。即ち、(I)テトラカルボン酸二
無水物、エーテルジアミン、ジカルボン酸無水物三者を
有機溶媒(例えばN、N−ジメチルアセトアミド、N、
N−ジメチルホルムアミド等通常のポリイミドに使用さ
れるもの)に溶解させ、アミド酸を形成した後、化学イ
ミド化剤(例えばトリエチルアミン、無水酢酸等)の存
在または非存在下で処理してポリイミドにする方法、(
2)テトラカルボン酸二無水物、エーテルジアミンを有
機溶媒に溶解させた後、ジカルボン酸無水物を添加し、
アミド酸を形成した後、化学イミド化剤の存在または非
存在下で処理してポリイミドにする方法、(3)エーテ
ルジアミンとジカルボン酸無水物を有機溶媒に溶解させ
た後、テトラカルボン酸二無水物を添加し、アミド酸を
形成した後、化学イミド化剤の存在または非存在下で処
理してボリイミドにする方法、(4)有機溶媒を使用し
ないでテトラカルボン酸二無水物、エーテルジアミン、
ジカルボン酸無水物、王者を粉末状態で混合後、化学イ
ミド′化剤の存在または非存在下で処理してポリイミド
にする方法等である。通常アミド酸とする温度は0゛C
〜250°Cが好ましく、アミド酸を熱的にイミド化す
る温度は100 ’C〜400°Cが好ましい。
Polyimide having good processability can be produced in the presence of dicarboxylic acid anhydride at a molar ratio of 0.001 to 1.0;
In this case, the ratio of tetracarboxylic dianhydride and ether diamine used as raw materials for polyimide is 1.0 molar ratio of tetracarboxylic dianhydride to 1.0 molar ratio of ether diamine.
It is effective when using a ratio of 0 to 1.5; outside this range, the polyimide of the present invention having good thermal stability at high temperatures cannot be obtained. Polyimides are produced using anhydrides, and in this case all known methods for producing polyimides can be used. That is, (I) tetracarboxylic dianhydride, ether diamine, and dicarboxylic anhydride are dissolved in an organic solvent (e.g., N,N-dimethylacetamide, N,
N-dimethylformamide (such as those commonly used for polyimides) to form an amic acid, which is then treated in the presence or absence of a chemical imidizing agent (e.g. triethylamine, acetic anhydride, etc.) to form a polyimide. Method,(
2) After dissolving the tetracarboxylic dianhydride and ether diamine in an organic solvent, adding the dicarboxylic anhydride,
After forming an amic acid, it is treated to form a polyimide in the presence or absence of a chemical imidizing agent; (3) an ether diamine and a dicarboxylic acid anhydride are dissolved in an organic solvent, and then a tetracarboxylic dianhydride is formed; (4) A method of adding a compound to form an amic acid and then processing it in the presence or absence of a chemical imidizing agent to form a polyimide.
This method involves mixing dicarboxylic acid anhydride and king powder in powder form, and then treating the mixture in the presence or absence of a chemical imidizing agent to form a polyimide. The temperature at which amic acid is usually made is 0°C.
~250°C is preferred, and the temperature at which the amic acid is thermally imidized is preferably 100'C ~ 400°C.

以上いづれの方法によっても本発明の特徴とする高温で
流動性の良いポリイミドをえることができる。
By any of the above methods, a polyimide having good fluidity at high temperatures, which is a feature of the present invention, can be obtained.

本発明のポリイミドを溶融成形に供する場合、本発明の
目的をそこなわない範囲で他の熱可塑性樹脂、たとえば
ポリエチレン、ポリプロピレン、ポリカーボネート、ボ
リアリレート、ポリアミド、ポリスルホン、ポリエーテ
ルスルホン、ポリエーテルケトン、ポリエーテルエーテ
ルケトン、ポリフェニレンスルフィド、ポリアミドイミ
ド、ポリエーテルイミド、変性ポリフェニレンオキシド
などを目的に応じて適当量を配合することも可能である
。またさらに通常の樹脂組成物に使用するつぎのような
充填剤などを、発明の目的を損なわない程度で用いても
よい。すなわちグラフディト、カーボンランダム、ケイ
石粉、二硫化モリブデン、フッ素樹脂などの耐摩耗性向
上材、ガラス繊維、カーボン繊維、ボロン繊維、炭化ケ
イ素繊維、カーボンウィスカー、アスベスト、金属繊維
、セラミック繊維などの補強材、二酸化アンチモン、炭
酸マグネシウム、炭酸カルシウムなどの難燃性向上剤、
クレー、マイカなどの電気的特性向上材、アスベスト、
シリカ、グラファイトなどの耐トラツキング向上剤、硫
酸バリウム、シリカ、メクケイ酸カルシウムなどの耐酸
性向上剤、鉄粉、亜鉛粉、アルミニウム粉、銅粉などの
熱伝導度向上剤、その他ガラスピーズ、ガラス球、タル
ク、ケイ藻土、アルミナ、シラスバルン、水和アルミナ
、金属酸化物、着色料などである。
When the polyimide of the present invention is subjected to melt molding, other thermoplastic resins such as polyethylene, polypropylene, polycarbonate, polyarylate, polyamide, polysulfone, polyether sulfone, polyether ketone, and It is also possible to blend ether ether ketone, polyphenylene sulfide, polyamideimide, polyetherimide, modified polyphenylene oxide, etc. in appropriate amounts depending on the purpose. Furthermore, the following fillers used in ordinary resin compositions may be used to the extent that the purpose of the invention is not impaired. In other words, wear-resistance improving materials such as graphite, carbon random, silica powder, molybdenum disulfide, and fluorine resin, reinforcing materials such as glass fiber, carbon fiber, boron fiber, silicon carbide fiber, carbon whisker, asbestos, metal fiber, and ceramic fiber. , antimony dioxide, magnesium carbonate, calcium carbonate and other flame retardant improvers,
Electrical property improving materials such as clay and mica, asbestos,
Tracking resistance improvers such as silica and graphite, acid resistance improvers such as barium sulfate, silica, and calcium mekusilicate, thermal conductivity improvers such as iron powder, zinc powder, aluminum powder, and copper powder, and other glass beads and glass balls. , talc, diatomaceous earth, alumina, shirasu balloon, hydrated alumina, metal oxides, colorants, etc.

本発明で用いる繊維状補強材とは、例えばガラス繊維の
ヤーン、ロービング、炭素繊維のトウといった一方向長
繊維、及びそれらの織布、マット、フェルトなどの多方
向連続繊維などを意味する。
The fibrous reinforcing material used in the present invention means, for example, unidirectional long fibers such as glass fiber yarns, rovings, and carbon fiber tows, and multidirectional continuous fibers thereof such as woven fabrics, mats, and felts.

これら繊維状補強材としてはE−ガラス、S−ガラス、
T−ガラス、C−ガラス、AR−ガラスなどのガラス繊
維、ポリアクリロニトリル系、ピッチ系、・レーヨン系
などの炭素繊維、デュポン社のケブラーに代表される芳
香族ポリアミド繊維、日本カーボン社のニカロンなどの
炭化ケイ素繊維、ステンレス繊維などの金属繊維、その
他アルミナ繊維、ボロン繊維などが挙げられる。
These fibrous reinforcing materials include E-glass, S-glass,
Glass fibers such as T-glass, C-glass, and AR-glass; carbon fibers such as polyacrylonitrile, pitch, and rayon; aromatic polyamide fibers such as DuPont's Kevlar; Nippon Carbon's Nicalon, etc. Examples include silicon carbide fibers, metal fibers such as stainless steel fibers, alumina fibers, boron fibers, etc.

これ等繊維状補強材は単独あるいは組合せて用いられる
These fibrous reinforcing materials may be used alone or in combination.

繊維状補強材の選択に当たっては繊維の持つ強度、弾性
率、破断伸度といった機械的特性、電気特性、比重など
を基に、複合材料の要求特性に合わせて選択すべきであ
る。例えば比強度、比弾性率への要求値が高い場合は炭
素繊維、ガラス繊維などを選択すべきであり、又電磁波
シールド特性が要求される場合は炭素繊維、金属繊維な
どが好ましい。また電気絶縁特性が要求される場合はガ
ラス繊維などが好適である。
When selecting a fibrous reinforcing material, it should be selected in accordance with the required properties of the composite material, based on the mechanical properties of the fibers such as strength, modulus of elasticity, and elongation at break, electrical properties, and specific gravity. For example, when specific strength and specific modulus are required to be high, carbon fibers, glass fibers, etc. should be selected, and when electromagnetic shielding properties are required, carbon fibers, metal fibers, etc. are preferable. Furthermore, when electrical insulation properties are required, glass fiber or the like is suitable.

t」雄状補強材の繊維径、収束本数については眉いる繊
維状補強材の種類によって異なるが、例えば炭素繊維の
場合、繊維径は4〜8μ履、収束本数は1,000〜1
2,000本が一般的である。繊維径は得られる複合材
料の機械特性の面からは細い方が好ましい。
The fiber diameter and number of converging fibers of the male reinforcing material vary depending on the type of fibrous reinforcing material, but for example, in the case of carbon fiber, the fiber diameter is 4 to 8μ and the number of convergence is 1,000 to 1.
2,000 pieces is common. The smaller the fiber diameter, the better from the viewpoint of the mechanical properties of the resulting composite material.

また繊維状補強材を表面処理することはポリイミドとの
密着性向上の面から好ましく、例えばガラス繊維の場合
シラン系、チタネート系カップリング剤で処理すること
は特に好ましい。
Further, it is preferable to surface-treat the fibrous reinforcing material from the viewpoint of improving the adhesion with polyimide. For example, in the case of glass fiber, it is particularly preferable to treat it with a silane-based or titanate-based coupling agent.

これらの繊維状補強材の使用量は複合材料中の容積含有
率として5〜85%、好ましくは30〜70%である。
The amount of these fibrous reinforcing materials used is 5 to 85%, preferably 30 to 70%, as a volumetric content in the composite material.

繊維状補強材の容積含有率が低いと補強材の効果が期待
できず、逆に高いと得られる複合材料の眉間強度が著し
く低下し好ましくない。
If the volume content of the fibrous reinforcing material is low, the effect of the reinforcing material cannot be expected, and on the other hand, if the volume content is high, the glabellar strength of the resulting composite material will be markedly reduced, which is undesirable.

ポリイミドと繊維状補強材よりポリイミド系複合材料を
製造するには通常公知の方法は全て利用できる。
All known methods can be used to produce a polyimide composite material from polyimide and a fibrous reinforcing material.

例えばポリイミドを溶融状態で繊維状補強材に含浸させ
る溶融含浸法、粉末状のポリイミドを空気中に浮遊、ま
たは水などの液体中に懸濁させた状態で含浸させる流動
床法が挙げられる。流動床法の場合、含浸後必要により
乾燥した後、繊維状補強材中のポリイミドを加熱溶融す
ることは一体化したポリイミド系複合材料を得る為に特
に有効である。また含浸時の粒径は細かい方が望ましく
使用する繊維フィラメント径以下が好ましい。
Examples include a melt impregnation method in which a fibrous reinforcing material is impregnated with polyimide in a molten state, and a fluidized bed method in which powdered polyimide is impregnated while suspended in air or suspended in a liquid such as water. In the case of the fluidized bed method, heating and melting the polyimide in the fibrous reinforcing material after impregnation and optionally drying is particularly effective for obtaining an integrated polyimide composite material. Further, the particle size at the time of impregnation is preferably smaller than the diameter of the fiber filament used.

さらにまた、ポリイミド粉または当該ポリイミドのフィ
ルムを繊維状補強材の片面または両面に置き、熱圧させ
る方法も用いられる。この際繊維状補強材が織布の場合
、所望する成形品厚みに必要な枚数の織布とポリイミド
粉またはポリイミドフィルムを交互に積層し熱圧するこ
とに専り、含浸と成形とを同時に行い、樹脂分布の均一
な成形品を得ることができる。
Furthermore, a method is also used in which polyimide powder or a film of the polyimide is placed on one or both sides of the fibrous reinforcing material and hot-pressed. At this time, if the fibrous reinforcing material is a woven fabric, the number of woven fabrics and polyimide powder or polyimide film required for the desired thickness of the molded product are alternately laminated and hot-pressed, and impregnation and molding are performed simultaneously. A molded product with uniform resin distribution can be obtained.

また溶融含浸法として、特開昭61−229534.2
29535.229536及び特願昭62−21625
3に代表的に示されているように、溶融樹脂を表面に有
する加熱ロールまたは加熱ベルトに繊維状補強材を接触
させて含浸させる方法なども挙げられる。
Also, as a melt impregnation method, JP-A-61-229534.2
29535.229536 and patent application No. 62-21625
As typically shown in No. 3, there is also a method in which a heating roll or heating belt having a molten resin on its surface is brought into contact with the fibrous reinforcing material to impregnate it.

即ち、この方法では複数のボビンより引き出した一方向
長繊維、例えばトウを引揃えた繊維シートまたは多方向
連続繊維を張力調整ロールにて引取方向に一定の張力を
かける。一方、ポリイミドは押出機で加熱溶融させ、グ
イから所定の温度に昇温した加熱ロール表面上の下ベル
トに塗布する。
That is, in this method, unidirectional long fibers pulled out from a plurality of bobbins, such as a fiber sheet with aligned tows or multidirectional continuous fibers, are subjected to a constant tension in the drawing direction using a tension adjustment roll. On the other hand, polyimide is heated and melted in an extruder, and applied from a goo to the lower belt on the surface of a heated roll heated to a predetermined temperature.

ついで前述の繊維シートまたは多方向連続繊維を上下一
対のベルトにはさまれた状態で1本または複数の加熱ロ
ール群の間を通過させて含浸させる。
Next, the above-described fiber sheet or multidirectional continuous fiber is passed between one or more groups of heated rolls while being sandwiched between a pair of upper and lower belts to be impregnated.

この連続溶融含浸法は特に好ましい方法である。This continuous melt impregnation method is a particularly preferred method.

以上のようにして得た複合材料は積層し、加熱圧縮によ
り所望する形状の成形物を製造することができる。
The composite material obtained as described above can be laminated and heated and compressed to produce a molded product in a desired shape.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例により具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4′−ビス(3−アミノフェノキシ)ジフ
ェニル379 g (I,03モル)と溶媒としてN、
N−ジメチルアセトアミド5371 gを装入し室温で
窒素雰囲気下に、無水ピロメリット酸二無水物217.
8 g (I,00モル)を溶液温度の上昇に注意しな
がら分割して加え、室温で約20時間かきまぜた。・ 
このポリアミド酸溶液に室温で窒素雰囲気下に無水グル
タル酸17.6g (0,155モル)を加え、更に1
時間撹拌を行った0次にこの溶液に202g(2モル)
のトリエチルアミンおよび306g(3モル)の無水酢
酸を滴下した0滴下終了后約1時間で黄色のポリイミド
粉が析出しはじめた。
Example 1 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen inlet tube, 379 g (1,03 mol) of 4,4'-bis(3-aminophenoxy)diphenyl and N as a solvent were added.
5371 g of N-dimethylacetamide was charged and 217 g of pyromellitic dianhydride was added at room temperature under a nitrogen atmosphere.
8 g (I, 00 mol) was added in portions while being careful not to increase the solution temperature, and the mixture was stirred at room temperature for about 20 hours.・
17.6 g (0,155 mol) of glutaric anhydride was added to this polyamic acid solution at room temperature under a nitrogen atmosphere, and
After stirring for an hour, add 202 g (2 moles) to this solution.
Triethylamine and 306 g (3 mol) of acetic anhydride were added dropwise. Approximately 1 hour after the completion of the dropwise addition, yellow polyimide powder began to precipitate.

さらに室温で10時間撹拌し、スラリーを濾別したのち
メタノールで洗浄し、180°Cで2時間乾燥して54
7gのポリイミド粉を得た。このポリイミド粉のガラス
転移温度は253°C,融点は378°C(DSC測定
による。以下同じ)、対数粘度は0.62dl/gであ
った。ここに対数粘度はパラクロロフェノール/フェノ
ール(重量比90/10)の混合溶媒中、濃度0.5 
g / 100m1=溶媒で加熱溶解した後、35°C
に冷却して測定した値である。
After further stirring at room temperature for 10 hours, the slurry was filtered, washed with methanol, and dried at 180°C for 2 hours.
7 g of polyimide powder was obtained. This polyimide powder had a glass transition temperature of 253°C, a melting point of 378°C (based on DSC measurement; the same applies hereinafter), and a logarithmic viscosity of 0.62 dl/g. Here, the logarithmic viscosity is a concentration of 0.5 in a mixed solvent of parachlorophenol/phenol (weight ratio 90/10).
g / 100ml = 35°C after heating and dissolving with solvent
This is the value measured after cooling to .

このポリイミドと炭素繊維から次のようにして複合材料
を製造した。製造に使用した装置の概略を第1図に示す
A composite material was produced from this polyimide and carbon fiber in the following manner. Figure 1 shows an outline of the equipment used for production.

100本のボビン1から引き出された炭素繊維(ベスフ
ァイトHTA−7−3に;東邦レーヨン社商標)のトウ
2100本を整列器3で一方向に整列させた後、張力調
整ロール4.5.6を通過させて150mm幅の繊維シ
ート7とした。
After aligning 2,100 tows of carbon fiber (Besphite HTA-7-3; trademark of Toho Rayon Co., Ltd.) drawn from 100 bobbins 1 in one direction with an aligner 3, tension adjustment rolls 4.5. 6 to obtain a fiber sheet 7 having a width of 150 mm.

一方、押出機(図示せず)で加熱溶融したポリイミドを
ダイ8を経由して、下ベルト用ロール9(ここでは3本
)で420’Cに加熱された下ベルト10の表面に70
II11の厚みで塗布した。ついで前記シートを下ベル
トと、上ベルト用ロール11(ここでは3本)で420
°Cに加熱された上ベルト12にはさんだ状態で、35
0°Cに加熱された径240mmの含浸ロール13(こ
こでは3本)の間を、150kgの張力をかけながら2
0口/分の速度で通過させた。この様にしてポリイミド
を含浸させたポリイミド・炭素繊維複合材14は冷却し
た後引取用ロール15.16.17を経て巻取軸1日に
巻き取った。
On the other hand, polyimide heated and melted in an extruder (not shown) is passed through a die 8 and applied to the surface of the lower belt 10 heated to 420'C by lower belt rolls 9 (three rolls in this case).
It was applied to a thickness of II11. Then, the sheet is rolled 420 times with the lower belt and upper belt rolls 11 (here, 3 rolls).
35 °C while being sandwiched between the upper belt 12 heated to 35 °C.
2 impregnating rolls 13 (here, 3 rolls) with a diameter of 240 mm heated to 0°C while applying a tension of 150 kg.
It was passed at a rate of 0 ports/min. The polyimide/carbon fiber composite material 14 impregnated with polyimide in this manner was cooled and then wound up on a winding shaft via take-up rolls 15, 16, and 17 on one day.

得られた複合材料は幅150++ua、厚み0.13m
mのものであった。
The resulting composite material has a width of 150++ua and a thickness of 0.13m.
It was from m.

ついで上記ポリイミド系複合材料を20枚一方向に積層
し、400’C,30Kg/dの条件で20分間熱プレ
スして200 X 200mm、厚み2.5開の平板を
得た。
Next, 20 sheets of the above polyimide composite material were laminated in one direction and hot pressed at 400'C and 30 kg/d for 20 minutes to obtain a flat plate measuring 200 x 200 mm and 2.5 mm thick.

得られた平板の繊維状補強材容積百分率(以下Vtと記
す)、ボイド率、曲げ強度、曲げ弾性率を測定した所、
Vt60%、ボイド率1%以下、曲げ強度191Kg/
mm” 、曲げ弾性率12.300Kg/ n+m”と
良好な結果を得た。尚、Vt、ボイド率は平板の比重及
び繊維状補強材重量百分率から求めた値であり、曲げ強
度および曲げ弾性率はJIS K 7230に拠る値で
ある。
When the fibrous reinforcement volume percentage (hereinafter referred to as Vt), void ratio, bending strength, and bending elastic modulus of the obtained flat plate were measured,
Vt 60%, void rate 1% or less, bending strength 191Kg/
Good results were obtained with a bending elastic modulus of 12.300 Kg/n+m. Note that Vt and void ratio are values determined from the specific gravity of the flat plate and the weight percentage of the fibrous reinforcing material, and the bending strength and bending elastic modulus are values based on JIS K 7230.

比較例1 無水グルタル酸を使用しない以外は、実施例1と同様に
して、545gのポリイミド粉を得た。得られたポリイ
ミド粉の対数粘度は0.52dl/gであった。
Comparative Example 1 545 g of polyimide powder was obtained in the same manner as in Example 1 except that glutaric anhydride was not used. The logarithmic viscosity of the obtained polyimide powder was 0.52 dl/g.

この様にして得たポリイミドを用い、実施例1と同様に
してポリイミド系複合材料を得た。複合材料を実施例1
と同様に成形し、物性評価したがVt60%、ボイド率
7.3%、曲げ強度91Kg/am”、曲げ弾性率5,
500Kg/mm”とポリイミドの流動性が著しく低く
、脱泡不十分な為、8i端に低い強度、弾性率となった
Using the thus obtained polyimide, a polyimide composite material was obtained in the same manner as in Example 1. Composite material Example 1
It was molded in the same manner as above, and its physical properties were evaluated: Vt 60%, void ratio 7.3%, bending strength 91 Kg/am", bending modulus 5,
The fluidity of the polyimide was extremely low at 500 Kg/mm'', and the defoaming was insufficient, resulting in low strength and elastic modulus at the 8i end.

参考例1゜ 実施例1及び比較例1でえられたポリイミド粉末を用い
、高化式フローテスター(島津製作所、CFT−500
、オリフィス直径0.1cm、長さ1cI11)で、溶
融粘度と剪断速度との関係を測定した。
Reference Example 1゜Using the polyimide powder obtained in Example 1 and Comparative Example 1, a Koka type flow tester (Shimadzu Corporation, CFT-500) was used.
, orifice diameter 0.1 cm, length 1 cI11), and the relationship between melt viscosity and shear rate was measured.

第2図は420’Cの温度に5分間保った後、剪断速度
を種々変えて測定した溶融粘度と剪断速度との関係であ
る。
FIG. 2 shows the relationship between melt viscosity and shear rate measured at various shear rates after being maintained at a temperature of 420'C for 5 minutes.

実施例2〜5 繊維状補強材の種類およびベルトへのポリイミド塗布厚
を表に示す様に変えた以外は実施例1と全く同様に操作
してポリイミド系複合材料を得た。
Examples 2 to 5 Polyimide composite materials were obtained in the same manner as in Example 1, except that the type of fibrous reinforcing material and the thickness of polyimide applied to the belt were changed as shown in the table.

ついで得られた複合材料を表に示す枚数一方向に積層後
、実施例1と同様に操作して平板を得た。
Next, the obtained composite material was laminated in one direction in the number shown in the table, and then operated in the same manner as in Example 1 to obtain a flat plate.

得られた平板の物性を表に示す。The physical properties of the obtained flat plate are shown in the table.

実施例6〜7 繊維状補強材の種類、ベルトへのポリイミド塗布厚を表
に示す様に、又張力を30Kgに変えた以外は実施例1
と全く同様に操作してポリイミド系複合材料を得た。つ
いで得られた複合材料を表に示す枚数積層後、実施例2
と同様に操作して平板を得た。得られた平板の物性を表
に示す。
Examples 6-7 Example 1 except that the type of fibrous reinforcing material and the thickness of polyimide coating on the belt were changed as shown in the table, and the tension was changed to 30 kg.
A polyimide composite material was obtained in exactly the same manner as above. Then, after laminating the obtained composite material in the number of sheets shown in the table, Example 2
A flat plate was obtained in the same manner as above. The physical properties of the obtained flat plate are shown in the table.

実施例日 厚さ50μmの耐熱性離型フィルムの上に厚み1.0m
m、内寸30cmX30Ωのアルミ製額縁状枠を置き、
実施例1で得たポリイミド粉5gを上記フィルム上の枠
内に均一に分散させた。ついで枠を除去した後、30c
m+X30cn+の炭素繊維織布(ベスファイトw −
3101;東邦レーヨン社製)を前記ポリイミド扮上に
置き、さらにポリイミド粉5gを前記織布上に均一に分
散させた。ついで市販の耐熱性離型フィルムを載せた後
、400°Cの下金型上に移し金型を閉じて400°C
170Kg/cシの条件で10分間加熱、圧縮した。つ
いで金型を加圧状態で250″Cまで冷却後、金型を開
いて内容物を取り出し耐熱性フィルムを剥がして複合材
料を得た。この様にして得た複合材料はついで6分割し
積層後、実施例1と同様の条件で成形し平板を得た。得
られた平板のVt、曲げ強度、曲げ弾性率は各々60%
、82Kg/lll5”、6.300Kg/m*” T
!アッたφ実施例日 実施例1と同様の装置にビス(4−(3−アミノフェノ
キシ)フェニル〕スルフィド412g(I,03モル)
とN、N−ジメチルアセトアミド5747 gを装入し
、室温で窒素雰囲気下にピロメリット酸二無水物217
g (I,0モル)および1.2−シクロヘキサンジカ
ルボン酸無水物9.53g (0,062モル)を溶液
温度の上昇に注意しながら加え、室温で約20時間かき
まぜた。
Example day: 1.0 m thick on top of a 50 μm thick heat-resistant release film.
m, place an aluminum picture frame with inner dimensions of 30cm x 30Ω,
5 g of the polyimide powder obtained in Example 1 was uniformly dispersed within the frame on the film. Then, after removing the frame, 30c
m+X30cn+ carbon fiber woven fabric (Besphite w −
3101; manufactured by Toho Rayon Co., Ltd.) was placed on the polyimide cloth, and further, 5 g of polyimide powder was uniformly dispersed on the woven cloth. Next, after placing a commercially available heat-resistant mold release film on it, it was transferred to the lower mold at 400°C, the mold was closed, and the temperature was heated at 400°C.
It was heated and compressed for 10 minutes at 170 kg/c. The mold was then cooled under pressure to 250''C, the mold was opened, the contents were taken out and the heat-resistant film was peeled off to obtain a composite material.The composite material thus obtained was then divided into six parts and laminated. Thereafter, a flat plate was obtained by molding under the same conditions as in Example 1. The Vt, bending strength, and bending modulus of the obtained flat plate were each 60%.
, 82Kg/ll5”, 6.300Kg/m*”T
! On the day of the example, 412 g (I, 03 mol) of bis(4-(3-aminophenoxy)phenyl) sulfide was added to the same apparatus as in Example 1.
and 5747 g of N,N-dimethylacetamide were charged, and 217 g of pyromellitic dianhydride was added at room temperature under a nitrogen atmosphere.
g (I, 0 mol) and 9.53 g (0,062 mol) of 1,2-cyclohexanedicarboxylic anhydride were added while being careful not to increase the solution temperature, and the mixture was stirred at room temperature for about 20 hours.

次に、この溶液に202g(2モル)のトリエチルアミ
ンおよび306g (3,0モル)の無水酢酸を滴下し
、室温で20時間撹拌し、淡黄色スラリーを得た。この
スラリーを濾別した後メタノールで洗浄し、180°C
で8時間減圧乾燥して597gの淡黄色ポリイミド粉を
得た。このポリイミド粉のガラス転移温度は232°C
5対数粘度は0.49dl/ gであった。 得られた
ポリイミドは実施例1と同様に高化式フローテスターを
使用し、シリンダー温度320°C滞留時間5分、圧力
100/cfflで測定した溶融粘度は5600ポイズ
であった。
Next, 202 g (2 moles) of triethylamine and 306 g (3.0 moles) of acetic anhydride were added dropwise to this solution, and the mixture was stirred at room temperature for 20 hours to obtain a pale yellow slurry. This slurry was filtered, washed with methanol, and heated to 180°C.
The mixture was dried under reduced pressure for 8 hours to obtain 597 g of pale yellow polyimide powder. The glass transition temperature of this polyimide powder is 232°C
The 5-log viscosity was 0.49 dl/g. The resulting polyimide had a melt viscosity of 5,600 poise, as measured using a Koka type flow tester in the same manner as in Example 1, at a cylinder temperature of 320°C, residence time of 5 minutes, and pressure of 100/cffl.

この様にして得られたポリイミドを用い、含浸温度を3
40°Cに変えた以外は実施例1と同様にして処理して
複合材料を得た。ついで成形温度を320°Cに変えた
以外は実施例1と同様に熱プレスして平板を得た。得ら
れた平板の曲げ強度、曲げ弾性率は各々180Kg/m
m” 、11,100Kg/mm”であった。
Using the polyimide obtained in this way, the impregnation temperature was set to 3.
A composite material was obtained by processing in the same manner as in Example 1 except that the temperature was changed to 40°C. Then, a flat plate was obtained by hot pressing in the same manner as in Example 1 except that the molding temperature was changed to 320°C. The bending strength and bending elastic modulus of the obtained flat plate were each 180 kg/m.
m", 11,100 Kg/mm".

比較例2 1.2−シクロヘキサンジカルボン酸無水物を使用しな
い以外は、実施例9と同様にして、淡黄色のポリイミド
粉を得た。ポリイミド粉のガラス転移温度は235°C
1対数粘度は0.49dl/、gであった。
Comparative Example 2 A pale yellow polyimide powder was obtained in the same manner as in Example 9, except that 1.2-cyclohexanedicarboxylic anhydride was not used. The glass transition temperature of polyimide powder is 235°C
The logarithmic viscosity was 0.49 dl/g.

実施例9と同様にフローテスター・シリンダー温度42
0°C1滞留時間5分、圧力100 /cJで測定した
溶融粘度は8000ポイズであった。−この様にして得
たポリイミドを用い、実施例9と同様にしてポリイミド
系複合材料を得た。複合材料を実施例9と同様に成形し
、物性評価したがVt 60%、ボイド率5.8%、曲
げ強度90 K g / m Im ”、曲げ弾性率5
,800Kg/’lll11”とポリイミドの流動性が
著しく低く、脱泡不十分な為、極端に低い強度、弾性率
となった。
Flow tester cylinder temperature 42 as in Example 9
The melt viscosity measured at 0°C1 residence time of 5 minutes and a pressure of 100/cJ was 8000 poise. - Using the thus obtained polyimide, a polyimide composite material was obtained in the same manner as in Example 9. The composite material was molded in the same manner as in Example 9, and its physical properties were evaluated: Vt: 60%, void ratio: 5.8%, bending strength: 90 K g/m Im'', bending modulus: 5
, 800Kg/'lll11'', the fluidity of the polyimide was extremely low and defoaming was insufficient, resulting in extremely low strength and elastic modulus.

参考例2 実施例9及び比較例2でえられたポリイミド粉末を用い
、参考例1と同様のフローテスターを用い、熱安定性を
、温度320°C1圧力100Kg/cm”の条件でフ
ローテスターのシリンダー内での滞留時間と溶融粘度の
関係を測定した。結果を第3図に示す。
Reference Example 2 Using the polyimide powder obtained in Example 9 and Comparative Example 2, the thermal stability was tested using the same flow tester as in Reference Example 1 at a temperature of 320° C. and a pressure of 100 kg/cm. The relationship between residence time in the cylinder and melt viscosity was measured.The results are shown in FIG.

実施例9で得たポリイミド粉の場合、シリンダー内での
滞留時間が長くなっても 溶融粘度はほとんど変化せず
熱安定性に優れているのに対し、比較例2で得たポリイ
ミド粉の場合、滞留時間が長(なるにしたがって溶融粘
度が増加し熱安定性に劣ることが分る。
In the case of the polyimide powder obtained in Example 9, the melt viscosity hardly changes even if the residence time in the cylinder becomes long and the thermal stability is excellent, whereas in the case of the polyimide powder obtained in Comparative Example 2 It can be seen that as the residence time becomes longer, the melt viscosity increases and the thermal stability deteriorates.

実施例10 実施例1と同様の装置にビス(4−(3−アミノフェノ
キシ)フェニルフケトン400g (I,01モル)と
ビス(3,4−ジカルボキシフェニル)エーテルニ無水
物310 g (I,00モル)および無水シトラコン
酸5.6g (040gモル)を、4000 gのm−
クレゾールと共に装入し、窒素雰囲気下にかきまぜなが
ら徐々に加熱昇温した。120″C付近で褐色透明な均
一溶液となった。150°Cまで昇温し、この温度で約
20分撹拌させた時点で黄色のポリイミド粉が析出しは
じめた。さらにこの温度で2時間撹拌を続けた後濾過し
てポリイミド粉をえた。このポリイミド粉をメタノール
およびアセトンで洗浄した後、180℃で8時間減圧乾
燥して676gのポリイミド粉を得た。このポリイミド
粉の対数粘度は0.85dl/g、ガラス転移温度は2
00°Cであった。
Example 10 In the same apparatus as in Example 1, 400 g (I, 01 mol) of bis(4-(3-aminophenoxy)phenyl fuketone) and 310 g (I, 4000 g of m-
It was charged together with cresol, and the temperature was gradually increased while stirring under a nitrogen atmosphere. It became a brown transparent homogeneous solution at around 120"C. When the temperature was raised to 150°C and stirred at this temperature for about 20 minutes, yellow polyimide powder began to precipitate. Stirred for further 2 hours at this temperature. This polyimide powder was washed with methanol and acetone, and then dried under reduced pressure at 180°C for 8 hours to obtain 676 g of polyimide powder.The logarithmic viscosity of this polyimide powder was 0. 85 dl/g, glass transition temperature is 2
It was 00°C.

この様にして得たポリイミドを用い、含浸温度を320
°Cに変えた以外は実施例1と同様にして複合材料を得
た。ついで成形温度を300℃に変えた以外は実施例1
と同様に熱プレスして平板を得た得られた平板の曲げ強
度、曲げ弾性率はそれぞれ173Kg /as” 、 
10300にg/am”であった。
Using the polyimide obtained in this way, the impregnation temperature was set to 320°C.
A composite material was obtained in the same manner as in Example 1 except that the temperature was changed to °C. Example 1 except that the molding temperature was then changed to 300°C.
The bending strength and bending elastic modulus of the obtained flat plate obtained by hot pressing in the same manner as 173 Kg/as",
10,300 g/am”.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によればポリイミドが本来有する優れた特
性に加え、著しく成形加工性の良好な新規なポリイミド
系複合材料が提供される。
According to the method of the present invention, a novel polyimide-based composite material which not only has the excellent properties originally possessed by polyimide but also has extremely good moldability is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリイミド系複合材料を製造する装置の1例で
ある。 第2図は本発明に使用されるポリイミドの溶融粘度(ボ
イズ)と剪断速度の関係を、また第3図は本発明に使用
されるポリイミドのフローテスター・シリンダー内滞留
時間と溶融粘度の関係を、それぞれ示す別図である。 特許出願人 三井東圧化学株式会社 手続補正書(方式) 昭和62年3月18日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 昭和62年特許願第295316号 2、発明の名称 ポリイミド系複合材料 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区霞が関三丁目2番5号名称(31
2)  三井東圧化学株式会社4、補正命令の日付 昭和63年2月23日(発送臼) 6、補正の対象
FIG. 1 shows an example of an apparatus for manufacturing a polyimide composite material. Figure 2 shows the relationship between the melt viscosity (voids) and shear rate of the polyimide used in the present invention, and Figure 3 shows the relationship between the residence time in the flow tester cylinder and the melt viscosity of the polyimide used in the present invention. , are separate diagrams showing each. Patent applicant: Mitsui Toatsu Kagaku Co., Ltd. Procedural amendment (method) March 18, 1988 Director General of the Patent Office Kunio Ogawa 1, Indication of the case 1988 Patent Application No. 295316 2, Name of the invention Polyimide system Composite Materials 3, Relationship with the Amendment Person Case Patent Applicant Address 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Name (31
2) Mitsui Toatsu Kagaku Co., Ltd. 4. Date of amendment order: February 23, 1988 (Shipping mortar) 6. Subject of amendment

Claims (1)

【特許請求の範囲】 ポリイミドと繊維状補強材よりなるポリイミド系複合材
料において、該ポリイミドが式( I )で示す ▲数式、化学式、表等があります▼( I ) (式中、Xは直結、炭素数1乃至10の二価の炭化水素
基、六フッ素化されたイソプロピリデン基、カルボニル
基、チオ基、またはスルホニル基から成る群より選ばれ
た基を表し、Y_1、Y_2、Y_3およびY_4は夫
々水素、低級アルキル基、低級アルコキシ基、塩素また
は臭素からなる群より選ばれた基を表し、またRは炭素
数2以上の脂肪族基、環式脂肪族基、単環式芳香族基、
縮合多環式芳香族基、芳香族基が直接又は架橋員より相
互に連結された非縮合多環式芳香族基から成る群より選
ばれた4価の基を表す。) 繰り返し単位を基本骨格とし、且つ該ポリイミドが式(
II) ▲数式、化学式、表等があります▼(II) (式中、Rは前に同じ) で表されるテトラカルボン酸二無水物1.0モル比 ▲数式、化学式、表等があります▼(III) (式中、X、Y_1、Y_2、Y_3およびY_4は前
に同じ) 及び式(III)で表されるエーテルジアミン1.0〜1
.5モル比に、さらに式(IV)で表される脂肪族および
/又は脂環式ジカルボン酸無水物0.001〜1.0モ
ル比の存在下でえられるポリアミド酸を熱的または化学
的にイミド化してえられるポリイミドであることを特徴
とするポリイミド系複合材料▲数式、化学式、表等があ
ります▼(IV) (式中、Zは炭素数1以上10以下の脂肪族基および/
又は環式脂肪族基よりなる2価の基を表す。)
[Claims] In a polyimide-based composite material consisting of polyimide and a fibrous reinforcing material, the polyimide is represented by the formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (wherein, X is a direct link, Represents a group selected from the group consisting of a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, or a sulfonyl group, and Y_1, Y_2, Y_3 and Y_4 are Each represents a group selected from the group consisting of hydrogen, a lower alkyl group, a lower alkoxy group, chlorine or bromine, and R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group,
It represents a tetravalent group selected from the group consisting of a fused polycyclic aromatic group and a non-fused polycyclic aromatic group in which aromatic groups are interconnected directly or through a bridge member. ) The repeating unit is the basic skeleton, and the polyimide has the formula (
II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, R is the same as before) 1.0 molar ratio of tetracarboxylic dianhydride ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (III) (wherein X, Y_1, Y_2, Y_3 and Y_4 are the same as before) and ether diamine 1.0 to 1 represented by formula (III)
.. 5 molar ratio, and in the presence of an aliphatic and/or alicyclic dicarboxylic acid anhydride represented by formula (IV) in a 0.001 to 1.0 molar ratio, thermally or chemically A polyimide composite material characterized by being a polyimide obtained by imidization ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (IV) (In the formula, Z is an aliphatic group having 1 to 10 carbon atoms and /
Or it represents a divalent group consisting of a cycloaliphatic group. )
JP62295316A 1987-10-23 1987-11-25 Polyimide composite material Pending JPH01138266A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62295316A JPH01138266A (en) 1987-11-25 1987-11-25 Polyimide composite material
AU24060/88A AU599517B2 (en) 1987-10-23 1988-10-18 Method for preparing polyimide and composite material thereof
DE3855276T DE3855276T2 (en) 1987-10-23 1988-10-21 Process for the production of polyimide and composite material thereof
EP88309957A EP0313407B1 (en) 1987-10-23 1988-10-21 Method for preparing polyimide and composite material thereof
CA000580963A CA1316628C (en) 1987-10-23 1988-10-21 Method for preparing polyimide and composite material thereof
KR1019880013826A KR910008327B1 (en) 1987-10-23 1988-10-22 Method for preparing polyimide
US07/261,520 US5043419A (en) 1987-10-23 1988-10-24 Process for preparing a polyimide and a composite material containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295316A JPH01138266A (en) 1987-11-25 1987-11-25 Polyimide composite material

Publications (1)

Publication Number Publication Date
JPH01138266A true JPH01138266A (en) 1989-05-31

Family

ID=17819030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295316A Pending JPH01138266A (en) 1987-10-23 1987-11-25 Polyimide composite material

Country Status (1)

Country Link
JP (1) JPH01138266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167222A (en) * 1989-11-28 1991-07-19 Mitsui Toatsu Chem Inc Production of polyimide of good moldability
JPH0455432A (en) * 1990-06-25 1992-02-24 Sumitomo Bakelite Co Ltd Solvent-soluble polyimide oligomer and composition containing the same
JPH04213325A (en) * 1990-01-30 1992-08-04 Trw Inc Polyimide resin prepared by addition reaction
WO1993021277A1 (en) * 1992-04-22 1993-10-28 Mitsui Toatsu Chemicals, Incorporated Polyimide resin composition
JPH0790036A (en) * 1990-01-30 1995-04-04 Trw Inc Polyimide resin prepared by addition reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170122A (en) * 1983-03-14 1984-09-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Melt-fusable polyimide
JPS62220530A (en) * 1986-03-24 1987-09-28 Mitsui Toatsu Chem Inc Composite material
JPS62236858A (en) * 1986-04-09 1987-10-16 Mitsui Toatsu Chem Inc Polyimide resin composition
JPS62253655A (en) * 1986-04-28 1987-11-05 Mitsui Toatsu Chem Inc Composition for polyimide resin
JPS62265350A (en) * 1986-05-14 1987-11-18 Mitsui Toatsu Chem Inc Polyimide resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170122A (en) * 1983-03-14 1984-09-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Melt-fusable polyimide
JPS62220530A (en) * 1986-03-24 1987-09-28 Mitsui Toatsu Chem Inc Composite material
JPS62236858A (en) * 1986-04-09 1987-10-16 Mitsui Toatsu Chem Inc Polyimide resin composition
JPS62253655A (en) * 1986-04-28 1987-11-05 Mitsui Toatsu Chem Inc Composition for polyimide resin
JPS62265350A (en) * 1986-05-14 1987-11-18 Mitsui Toatsu Chem Inc Polyimide resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167222A (en) * 1989-11-28 1991-07-19 Mitsui Toatsu Chem Inc Production of polyimide of good moldability
JPH04213325A (en) * 1990-01-30 1992-08-04 Trw Inc Polyimide resin prepared by addition reaction
JPH0790036A (en) * 1990-01-30 1995-04-04 Trw Inc Polyimide resin prepared by addition reaction
JPH0455432A (en) * 1990-06-25 1992-02-24 Sumitomo Bakelite Co Ltd Solvent-soluble polyimide oligomer and composition containing the same
WO1993021277A1 (en) * 1992-04-22 1993-10-28 Mitsui Toatsu Chemicals, Incorporated Polyimide resin composition

Similar Documents

Publication Publication Date Title
KR910008327B1 (en) Method for preparing polyimide
JPH01138266A (en) Polyimide composite material
JP2886918B2 (en) Polyimide composite material
JP3544788B2 (en) Linear polyamic acid, linear polyimide and thermosetting polyimide
JPH0347837A (en) Polyimide and production thereof
JPH01138265A (en) Polyimide composite material
JP2919636B2 (en) Polyimide resin composition for sliding material
JPH01113461A (en) Composite polyimide material
JPH05272063A (en) Surface-modifying agent for carbon fiber
JP2000044684A (en) Linear polyamic acid, linear polyimide and thermosetting polyimide
JP2748995B2 (en) Polyimide for melt molding, method for producing the same, and resin composition thereof
JP2999835B2 (en) Polyimide resin composition
JP2610905B2 (en) Polyimide composite material
JPH11292966A (en) Linear polymamic acid, linear polyimide and thermosetting polyimide
JPH0381342A (en) Manufacture of prepreg
JP2594964B2 (en) Polyimide composite material
JPH09118823A (en) Polyimide-based composition material
JP2518861B2 (en) Polyimide composite material
JPH11269268A (en) Linear polyamic acid, linear polyimide, and thermosetting polyimide
JPH01221428A (en) Production of polyimide of good heat stability
JP2000044685A (en) Linear polyamic acid, linear polyimide and thermosetting polyimide
JPH11292967A (en) Linear polyamic acid, linear polyimide and thermosetting polyimide
JPH09111119A (en) Composite polyimide material
JPH02167340A (en) Production of polyimide having excellent molding and processing property
JPH02160831A (en) Production of polyimide of good moldability