JPH03166772A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH03166772A
JPH03166772A JP1306020A JP30602089A JPH03166772A JP H03166772 A JPH03166772 A JP H03166772A JP 1306020 A JP1306020 A JP 1306020A JP 30602089 A JP30602089 A JP 30602089A JP H03166772 A JPH03166772 A JP H03166772A
Authority
JP
Japan
Prior art keywords
film
cvd method
layer
thermal cvd
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1306020A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP1306020A priority Critical patent/JPH03166772A/en
Publication of JPH03166772A publication Critical patent/JPH03166772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance an efficiency by sequentially laminating a film made of boron by a thermal CVD method, then an amorphous silicon i-type layer film by a thermal CVD method and further an amorphous silicon n-type layer film by a plasma CVD method on a board. CONSTITUTION:A film 2 made of boron by a thermal CVD method, then an a-Si i-type layer film 4 by a thermal CVD method on the film 2 and further an a-Si n-type layer film 5 by a plasma CVD method on the film 4 are sequentially laminated on a board 1. Here, since the film 4 is formed by the thermal CVD method, a deterioration of the film quality due to light irradiation is suppressed, boron deposited in advance is thermally diffused in the film 4 at a high temperature at the time of forming the film 4, and a p-type layer 3 is formed on the part of the layer 4 at the side of the board. Further, a pin type a-Si solar cell is eventually formed together with the film 5 formed by the plasma CVD method at a low temperature. Thus, a thin film solar cell having high efficiency is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質シリコン(以下a −Siと略す)薄
膜からなるpin接合構造を利用して充電変換する薄膜
太陽電池の製造方法に関する.〔従来の技術〕 非晶質半導体、特にa −31薄膜を用いた薄膜太陽電
池は、大面積化が容易であり、原料コストが小さくてす
むといった利点を有し、低コスト太陽電池として期待さ
れている.通常、このa −St太陽電池は、ガラスな
どの透光性の基板にSnO.などの透明かつ導電性のあ
る材料からなる透明導電膜によって透明電極を形威し、
その上にプラズマグロー放電分解を利用したプラズマC
VD法によりp型.l型.n型のa−31層を順次積層
し、さらにMや^gなどからなる金属電極を真空蒸着法
やスパフタ法により形成することによって製造する.〔
発明が解決しようとする課題〕 a−Sl太陽電池に関し、現在、改善を必要とされる最
大の課題の一つに光照射下における効率低下の問題があ
る.すなわち、プラズマCVD法により形威されたa−
31膜、特にl層の膜質が光照射により劣化するステプ
ラー・ロンスキー効果として良く知られている現象があ
り、これが効率低下の主原因となっている.これに対し
、熱CVD法によって形威されたa −Sl膜は光によ
る膜質の劣化が小さく、したがって、これを太陽電池の
l層に適用すると、光劣化のほとんどないa −Si太
陽電池を形戒できると期待される. しかしながら、ただ単にこの光劣化の少ない熱CVD法
による1層膜で従来のプラズマCVD法によるl層膜を
置き換えるだけでは、効率の良いa−Si太陽電池を製
造することはできない.これは熱CVD法が一般に次の
ような方法で行われることによる.一般に、熱CVD法
によりl層膜を形成するには、反応室を大気圧もしくは
減圧のHeまたはHz雰囲気中の支持台上に被或膜基板
をおき、450〜500℃の威膜温度に昇温したのち、
反応ガスを導入して分解させ、基板上にa −Si膜を
堆積させる.a−Sill或膜のための反応ガスとして
は、SdLを用い、これを必要に応じてHeまたはH2
により希釈して使用する.このため、従来プラズマCV
D法で形威していたp層.l層,n層のうちのl層を光
劣化の少ない熱CVD法で形威しようとすると次のよう
な問題が起こる.すなわち、プラズマCVDは約200
℃の比較的低温で行われ、熱CVDは前述のように45
0〜500℃の高温で行われるので、プラズマCVDで
p層膜を形威した後にl!icVDでl層膜を形威しよ
うとすると、p層中のH重や不純物が熱拡散し、p層自
身の性質が変化し効率の良い太lI!電池を得ることが
できない.したがって、光劣化の少ない熱CVD法によ
る1層膜をa−51太陽電池に適用するためには、単に
l層膜の製造方法だけではなく全体のデバイス構造や製
造方法を変える必要があり、またその際、量産化を考え
て製造方法はできるだけ簡便な方法とすることも極めて
重要である. 本発明の目的は、1層膜の威膜に熱CVD法を利用して
光による劣化を抑えると共に、他層膜の変質による効率
の低下を防止することのできる薄膜太陽電池の製造方法
を提供することにある.〔課題を解決するための手段〕 上記の目的を達威するために、本発明は、1&板上にa
−Sl薄膜からなるpin接合構造を形威する際に、基
板上に熱CVD法によりほう素からなる膜を、次いでそ
のほう素からなる膜の上に熱CVD法によりa−31の
1層膜を、さらにそのl層膜の上にプラズマCVD法に
よりa−Stのnlll!を順次堆積するものとする. 〔作用〕 l層膜は熱CVD法で形戒されるので、光照射による膜
質の劣化は抑制される.そしてこの五層膜形戒時の高温
によって予め堆積したほう素がl層腹中に熱拡散し、l
層膜の基板側の部分にp型層が形威される.そして、最
後に低温で行われるプラズマCVD法により形威される
n層膜と合わせてpln型のa −Sl太陽電池ができ
上がる.〔実施例〕 以下図を引用して本発明の一実施例について説明する.
第2図は、第1図(a)〜+8+に示した製造工程実施
のための装置を示し、この装置は前室21熱CVD室2
2,プラズマCvD室23および後室24が連結された
もので、各室を通じて支持台25に支持された基板1を
搬送ローラ26により移動させることができる.製造工
程は次の通りである.第1図+8)  ガラス板11上
に透明電極12としてSnowを5000人の厚さで被
着させ、太陽電池形成用基板1を準備する. 第1図〜》 基板1を、バルブ31を開いて排気バルプ
41を介して排気された前室、すなわちロードロック室
21に入れ、次いで仕切りバルプ32を開いてヒータ6
1 . 62を備えた熱CVD室22に搬入し、圧力5
1JTorrのh雰囲気中で480℃に加熱する.真空
引きを経て反応ガス導入バルプ51を開け、B*Hh+
 Heの混合ガスを導入し、圧力を50Torrに調節
して20秒間熱CVD法を行う.この工程で基板1の透
明電極l2の上にほう素薄膜2を形成する.膜形戒後は
ガス導入バルブ5lを閉じ排気バルプ42を介して排気
を行う.第1図(C)  次に再び反応ガス導入バルブ
51を開け、SiJ6,Beの混合ガスを導入し、50
Torrの圧力で30分間熱CVD法を行いl型のa−
51膜4を5000人の厚さで形成する.この際、熱C
VD法実施の480℃の温度でl層膜3へほう素が拡散
し、極く薄いp型層3が形威される. 第1図(dl  次に、真空引きを経て仕切りバルブ3
3を開き、ヒータ63および高周波電8i64を有する
プラズマCVD室23に基板1を搬入する.つづいて、
圧力50Torrの■,雰囲気中で降温を行い、基板温
度を200℃にした後、排気バルプ43を介?て真空引
きする.次いで、反応ガス導入バルブ52を開け、H■
Sine.Pusの混合ガスを導入し、圧力を0.5 
Torrに保ち、高周波電極64に13.56MHzの
高周波電圧を印加し、グロー放電分解法によりn層膜5
を300人の厚さに形成する.この工程は低温であるの
で、n層膜5から1層膜4への不純物拡散はない. 第1図(e)  基板lを仕切りバルブ34を開いて後
室24に移してから外部へ取り出し、Mを蒸着して裏面
電極6を形威して太陽電池が完戒する.本実施例の太陽
電池のセル特性を第3図の&I71として示す.線72
は、p層,l層,n層のうちl層のみ熱CVD法で形成
し、p層並びにn層は従来遣りプラズマCVD法で形威
したa −SL太陽電池の特性である.これらの特性は
いずれも100s+l1/一の光照射時のものである.
線7lで示した太va電池の効率は7.4%であり、線
72で示した太陽電池の効率は5.3%であり、本発明
により効率向上が図られることがわかった.またこの二
つの太陽電池に100mW/一の光を100時間照射し
たが共に劣化は見られなかった. なお、その他の製造方法としてp層と!層を共に熱CV
D法で形成することも考えられるが、熱CVD法では性
能の良いp層膜を得ることができず、このためこのp層
とl層をともに熱CVD法で形威した太陽電池では4%
以下の低い効率しか得られなかった. 上記の実施例は、基板1側から光が入射する太陽電池に
関するものであるが、例えばステンレス鋼からなる基板
を用い、その上に上記の実施例と同様にpin接合構造
を形威し、さらに上面に透明電極を被着してその面から
入射させる太陽電池を製造することも可能である. 〔発明の効果〕 本発明によれば、基板上に熱CVD法でほう素膜および
a−Siのl層膜を堆積することにより、光劣化の少な
いl層膜の一面にp型層を形戒することができ、効率の
良好な薄膜太陽電池を製造することができた.しかも、
上記の熱CVD法によるほう素膜およびi層膜の戒膜は
、同一装置内で引きつづいて行うことができ、ほう素膜
の或膜に要する時間も短時間であるので、ごく簡便な製
造方法である.
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film solar cell that performs charge conversion using a pin junction structure made of an amorphous silicon (hereinafter abbreviated as a-Si) thin film. .. [Prior Art] Thin-film solar cells using amorphous semiconductors, especially a-31 thin films, have the advantages of being easy to increase in area and requiring low raw material costs, and are expected to be used as low-cost solar cells. ing. Usually, this a-St solar cell is made of SnO. A transparent conductive film made of transparent and conductive materials such as
On top of that, plasma C using plasma glow discharge decomposition
p-type by VD method. l type. It is manufactured by sequentially laminating n-type a-31 layers and further forming metal electrodes made of M, ^g, etc. by vacuum evaporation or sputtering. [
Problems to be Solved by the Invention Regarding a-Sl solar cells, one of the biggest problems that currently requires improvement is the problem of reduced efficiency under light irradiation. In other words, a-
There is a well-known phenomenon known as the Stepler-Wronski effect, in which the film quality of the 31 film, especially the L layer, deteriorates due to light irradiation, and this is the main cause of the decrease in efficiency. On the other hand, the a-Sl film formed by thermal CVD has little deterioration in film quality due to light. Therefore, if this film is applied to the L layer of a solar cell, an a-Si solar cell with almost no light deterioration can be formed. It is expected that you will be able to discipline yourself. However, it is not possible to produce an efficient a-Si solar cell simply by replacing the conventional l-layer film produced by plasma CVD with a single-layer film produced by thermal CVD, which exhibits less photodeterioration. This is because thermal CVD is generally performed in the following manner. Generally, to form a 1-layer film by the thermal CVD method, the substrate to be coated is placed on a support stand in a He or Hz atmosphere at atmospheric pressure or reduced pressure in a reaction chamber, and the film temperature is raised to 450 to 500°C. After warming,
A reactive gas is introduced and decomposed, and an a-Si film is deposited on the substrate. SdL is used as a reaction gas for a-Sill film, and it is optionally mixed with He or H2.
Use by diluting with For this reason, conventional plasma CV
The p layer that was prominent in the D method. When attempting to form the L layer of the L layer and the N layer using thermal CVD, which causes less photodeterioration, the following problems occur. In other words, plasma CVD requires approximately 200
Thermal CVD is carried out at a relatively low temperature of 45°C as mentioned above.
Since the process is carried out at a high temperature of 0 to 500°C, after forming the p-layer film by plasma CVD, l! When attempting to form an L-layer film using icVD, the hydrogen atoms and impurities in the p-layer are thermally diffused, changing the properties of the p-layer itself, resulting in efficient thick film formation. I can't get batteries. Therefore, in order to apply a single-layer film produced by thermal CVD with less photodeterioration to the A-51 solar cell, it is necessary to change not only the method of manufacturing the L-layer film but also the overall device structure and manufacturing method. At this time, it is extremely important to make the manufacturing method as simple as possible in consideration of mass production. An object of the present invention is to provide a method for manufacturing a thin-film solar cell that can suppress deterioration caused by light by using a thermal CVD method for a single-layer film, and prevent a decrease in efficiency due to deterioration of other layer films. It's about doing. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a
- When forming a pin junction structure made of a thin Sl film, a film made of boron is deposited on the substrate by thermal CVD, and then a single layer of A-31 is deposited on the film made of boron by thermal CVD. Then, a-St nllll! is further deposited on the L layer film by plasma CVD method. are deposited sequentially. [Function] Since the l-layer film is formed using the thermal CVD method, deterioration of the film quality due to light irradiation is suppressed. Due to the high temperature during this five-layer membrane formation, the boron deposited in advance is thermally diffused into the l layer, and
A p-type layer is formed on the substrate side of the layer film. Finally, a pln-type a-Sl solar cell is completed by combining the n-layer film with a plasma CVD method performed at low temperatures. [Example] An example of the present invention will be described below with reference to the figures.
FIG. 2 shows an apparatus for carrying out the manufacturing process shown in FIGS.
2. The plasma CvD chamber 23 and the rear chamber 24 are connected, and the substrate 1 supported on the support stand 25 can be moved by the transport rollers 26 through each chamber. The manufacturing process is as follows. Figure 1+8) Snow is deposited as a transparent electrode 12 on a glass plate 11 to a thickness of 5000 mm to prepare a substrate 1 for forming a solar cell. Figure 1 ~》 Open the valve 31 and put the substrate 1 into the front chamber, that is, the load lock chamber 21, which is exhausted through the exhaust valve 41. Then, open the partition valve 32 and put the substrate 1 into the front chamber, which is exhausted through the exhaust valve 41.
1. 62 into a thermal CVD chamber 22 equipped with a pressure of 5.
Heat to 480°C in an atmosphere of 1 JTorr. After evacuation, open the reaction gas introduction valve 51, and B*Hh+
A mixed gas of He was introduced, the pressure was adjusted to 50 Torr, and thermal CVD was performed for 20 seconds. In this step, a boron thin film 2 is formed on the transparent electrode l2 of the substrate 1. After the membrane formation, the gas introduction valve 5l is closed and the gas is exhausted via the exhaust valve 42. FIG. 1(C) Next, open the reaction gas introduction valve 51 again and introduce the mixed gas of SiJ6 and Be.
A thermal CVD method was performed at a pressure of Torr for 30 minutes to obtain l-type a-
51 film 4 is formed to a thickness of 5,000 layers. At this time, heat C
At the temperature of 480° C. used in the VD method, boron diffuses into the l-layer film 3, forming an extremely thin p-type layer 3. Figure 1 (dl) Next, after vacuuming, the partition valve 3
3, and the substrate 1 is carried into the plasma CVD chamber 23, which has a heater 63 and a high-frequency electric generator 8i64. Continuing,
After lowering the temperature in an atmosphere with a pressure of 50 Torr and bringing the substrate temperature to 200° C., the exhaust valve 43 is used to cool the substrate. to vacuum. Next, open the reaction gas introduction valve 52, and
Sine. Introduce the Pus mixed gas and increase the pressure to 0.5
Torr, a high frequency voltage of 13.56 MHz is applied to the high frequency electrode 64, and the n-layer film 5 is decomposed by glow discharge decomposition method.
300 people thick. Since this process is performed at a low temperature, there is no impurity diffusion from the n-layer film 5 to the single-layer film 4. FIG. 1(e) The substrate 1 is moved to the rear chamber 24 by opening the partition valve 34, and then taken out to the outside, M is vapor-deposited, the back electrode 6 is formed, and the solar cell is completed. The cell characteristics of the solar cell of this example are shown as &I71 in Figure 3. line 72
These are the characteristics of an a-SL solar cell in which only the l layer of the p layer, l layer, and n layer is formed by thermal CVD, and the p layer and n layer are formed by the conventional plasma CVD method. All of these characteristics are based on light irradiation of 100s+l1/1.
The efficiency of the thick VA battery shown by line 7l is 7.4%, and the efficiency of the solar cell shown by line 72 is 5.3%, indicating that the efficiency can be improved by the present invention. Furthermore, when these two solar cells were irradiated with light of 100 mW/1 for 100 hours, no deterioration was observed in either case. In addition, as for other manufacturing methods, p-layer and! Heat CV of both layers
Although it is possible to form the P layer using the D method, it is not possible to obtain a p-layer film with good performance using the thermal CVD method.For this reason, in a solar cell in which both the P layer and the L layer are formed using the thermal CVD method, the cost is 4%.
Only the following low efficiency was obtained. The above embodiment relates to a solar cell in which light enters from the substrate 1 side. For example, a substrate made of stainless steel is used, a pin junction structure is formed thereon in the same manner as in the above embodiment, and It is also possible to manufacture a solar cell in which a transparent electrode is attached to the top surface and light is incident from that surface. [Effects of the Invention] According to the present invention, by depositing a boron film and an a-Si l-layer film on a substrate by thermal CVD, a p-type layer can be formed on one surface of the l-layer film, which is less susceptible to photodeterioration. As a result, we were able to produce highly efficient thin-film solar cells. Moreover,
The formation of the boron film and the i-layer film by the above-mentioned thermal CVD method can be performed successively in the same equipment, and the time required to form a certain boron film is short, making for extremely simple manufacturing. It is a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程をial〜(8》
の順に示す断面図、第2図は第1図に示した工程に用い
る装置の断面図、第3図は第1図に示した実施例による
太陽電池と比較例の太陽電池の電圧・電流特性線図であ
る. 1:基板、11:ガラス板、l2:透明電極、2:ほう
素膜、3:p型層、4:a−Sll層膜、5:a−Sl
n層膜、6:裏面電極、22:熱CVD室、23:プラ
ズマCVD室. 第1閉
Figure 1 shows the manufacturing process of one embodiment of the present invention.
2 is a sectional view of the apparatus used in the process shown in FIG. 1, and FIG. 3 is a voltage/current characteristic of the solar cell according to the example shown in FIG. 1 and the solar cell of the comparative example. This is a line diagram. 1: Substrate, 11: Glass plate, l2: Transparent electrode, 2: Boron film, 3: P-type layer, 4: a-Sll layer film, 5: a-Sl
n-layer film, 6: back electrode, 22: thermal CVD chamber, 23: plasma CVD chamber. 1st close

Claims (1)

【特許請求の範囲】[Claims] 1)基板上に非晶質シリコン薄膜からなるpin接合構
造を形成する際に、基板上に熱CVD法によりほう素か
らなる膜を、次いでそのほう素からなる膜の上に熱CV
D法による非晶質シリコンのi層膜を、さらにそのi層
膜の上にプラズマCVD法により非晶質シリコンのn層
膜を順次堆積することを特徴とする薄膜太陽電池の製造
方法。
1) When forming a pin junction structure made of an amorphous silicon thin film on a substrate, a film made of boron is deposited on the substrate by thermal CVD, and then a film made of boron is deposited on top of the film made of boron by thermal CVD.
1. A method for manufacturing a thin film solar cell, comprising sequentially depositing an i-layer film of amorphous silicon by the D method, and then an n-layer film of amorphous silicon by the plasma CVD method on the i-layer film.
JP1306020A 1989-11-25 1989-11-25 Manufacture of thin film solar cell Pending JPH03166772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306020A JPH03166772A (en) 1989-11-25 1989-11-25 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306020A JPH03166772A (en) 1989-11-25 1989-11-25 Manufacture of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH03166772A true JPH03166772A (en) 1991-07-18

Family

ID=17952110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306020A Pending JPH03166772A (en) 1989-11-25 1989-11-25 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH03166772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005730C2 (en) * 2010-11-19 2012-05-22 Tempress Systems B V Photovoltaic cell and a method for producing such a photovoltaic cell.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005730C2 (en) * 2010-11-19 2012-05-22 Tempress Systems B V Photovoltaic cell and a method for producing such a photovoltaic cell.
WO2012067509A1 (en) * 2010-11-19 2012-05-24 Tempress Systems Bv Method for producing a semiconductor device and a semiconductor device

Similar Documents

Publication Publication Date Title
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
US20070157966A1 (en) Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
JPS6150378A (en) Manufacture of amorphous solar cell
JP2000138384A (en) Amorphous semiconductor device and its manufacture
US4799968A (en) Photovoltaic device
JPH01290267A (en) Manufacture of photoelectric conversion element
JP4314716B2 (en) Crystalline silicon thin film photovoltaic device
AU669221B2 (en) Photoelectrical conversion device and generating system using the same
JPH03166772A (en) Manufacture of thin film solar cell
JP2000183377A (en) Manufacture of silicon thin-film optoelectric conversion device
US6242687B1 (en) Amorphous silicon photovoltaic devices and method of making same
Pernet et al. Growth of thin μc-Si: H on intrinsic a-Si: H for solar cells application
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
Aberle et al. Poly-Si on glass thin-film PV research at UNSW
TWI511309B (en) Tandem type thin film silicon solar cell with double layer cell structure
JP2757896B2 (en) Photovoltaic device
Kambe et al. Narrow Band Gap Amorphous Silicon-Based Solar Cells Prepared by High Temperature Processing
JPS59154081A (en) Solar battery
JP2984430B2 (en) Photovoltaic element
JPH03166771A (en) Thin film solar cell
JP2815711B2 (en) Thin-film semiconductor device manufacturing equipment
JPS6095977A (en) Photovoltaic device
JP2000252488A (en) Manufacture of silicon thin-film photoelectric conversion device
JPH04212474A (en) Manufacture of thin film solar battery
JPH06302841A (en) Method and apparatus for manufacturing solar cell