JPH03166745A - Evaluating method for field effect transistor - Google Patents

Evaluating method for field effect transistor

Info

Publication number
JPH03166745A
JPH03166745A JP30490789A JP30490789A JPH03166745A JP H03166745 A JPH03166745 A JP H03166745A JP 30490789 A JP30490789 A JP 30490789A JP 30490789 A JP30490789 A JP 30490789A JP H03166745 A JPH03166745 A JP H03166745A
Authority
JP
Japan
Prior art keywords
gate
breakdown voltage
drain electrodes
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30490789A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP30490789A priority Critical patent/JPH03166745A/en
Publication of JPH03166745A publication Critical patent/JPH03166745A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To select a suitable current value and to perform an acceleration test by a DC by supplying a reverse DC current between gate and drain electrodes. CONSTITUTION:A first breakdown voltage BVgd1 between the gate and drain electrodes of a GaAs Schottky barrier type field effect transistor (GaAsFET) is first measured. Then, a current flowing between the gate and drain electrodes is then increased, and a reverse current is continued for predetermined time. Again, a second breakdown voltage BVgd2 between the gate and drain electrodes of the GaAsFET is measured. A field effect transistor can be evaluated from variation amount (BVgd1-BVgd2) between the first and second breakdown voltages. Thus, a decrease in the breakdown voltage between the gate and drain electrodes can be measured by a simple device of supplying the DC current.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電界効果トランジスタの3・『価方法に関し
、特に過大な高周波入力が見込まれるようなG a A
 sショットキー障壁型電界効果トランジスタ(以降、
G a A s F E Tと略す)の信頼性の評価方
法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing field effect transistors, particularly for G a A where excessive high frequency input is expected.
s Schottky barrier field effect transistor (hereinafter referred to as
The present invention relates to a method for evaluating the reliability of G.A.S.F.E.T.

〔従来の技術〕[Conventional technology]

GaAsFETは過大な高周波入力に対する信頼性の評
価が必要とされる。従来、高温連続高入力試験や高温高
パルス入力試験などによるG a A s F E T
の特性の変化を測定することで信頼性の評価を行なって
いる。
GaAsFET requires reliability evaluation against excessive high frequency input. Conventionally, G a As F E T using high temperature continuous high input tests, high temperature high pulse input tests, etc.
Reliability is evaluated by measuring changes in the characteristics of

GaAsFETの特性のうち、高周波電力の最大出力を
規定するブレークダウン電圧の測定は評価項目として重
要である。このブレークダウン電圧BVgdは、GaA
sFETのソース電極をオープンとし、ゲート・ドレイ
ン電極間に所定の逆方向電流(通常、ゲート幅1mmあ
たり数百μA程度)が流されたときのゲート・ドレイン
電圧として定義される。
Among the characteristics of GaAsFET, measurement of breakdown voltage, which defines the maximum output of high-frequency power, is important as an evaluation item. This breakdown voltage BVgd is GaA
It is defined as the gate-drain voltage when the source electrode of the sFET is open and a predetermined reverse current (usually about several hundred μA per 1 mm of gate width) is passed between the gate and drain electrodes.

特に、過大な高周波入力でQaAsFETを数千時間以
上動作させた場合に、このブレークダウン電圧BVgd
が低下することが知られている。このため、GaAsF
ETの品質保証上、また製造プロセス評価上、ブレーク
ダウン電圧BVgdのこのような低下を評価する試験が
必要となる。
In particular, when the QaAsFET is operated for more than several thousand hours with excessive high frequency input, the breakdown voltage BVgd
is known to decrease. For this reason, GaAsF
For quality assurance of ET and evaluation of manufacturing process, a test to evaluate such a decrease in breakdown voltage BVgd is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、これらの試験はGaAsFETを増幅器に組
み立て比較的良い整合状態にチューニングしたものを、
一定の高温度においてパルス波や連続波の高周波の過大
電力入力を印加した状態を長時間保持する試験のため、
高価な試験装置が必要であり、かつ、試験に数千時間と
いう長い時間が必要であった。加えて、試験の準備に多
大な労力が必要であるなどの問題点があった。
However, in these tests, GaAsFETs assembled into amplifiers and tuned to a relatively good matching condition were tested.
In order to conduct a test in which a pulsed wave or continuous wave high frequency excessive power input is maintained for a long period of time at a constant high temperature,
Expensive testing equipment was required, and testing took several thousand hours. In addition, there were other problems such as the large amount of effort required to prepare for the exam.

本発明は、上記の欠点を解決したもので、簡単な試験装
置を用いてG a A s F E Tの過大な高周波
入力により生じるブレークダウン電圧BVgdの低下を
短時間に試験できる評価方法を提供することを目的とし
ている。
The present invention solves the above-mentioned drawbacks and provides an evaluation method that can test the decrease in breakdown voltage BVgd caused by excessive high-frequency input of GaAs FET in a short time using a simple test device. It is intended to.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による電界効果トランジスタの評価方法は、ショ
ットキー障壁型ゲートを用いた電界効果トランジスタの
ゲート・ドレイン1l極間のブレークダウン電圧を測定
する第1の工程と、上記電界効果トランジスタのゲート
・ドレイン電極間に所定の逆方向電流を所定時間流す第
2の工程と、再び上記電界効果トランジスタのゲート・
ドレイン電極間のブレークダウン電圧を測定する第3の
工程と、上記第1の工程におけるブレークダウン電圧と
上記第3の工程におけるブレークダウン電圧との変化量
から上記電界効果トランジスタを評価することを要旨と
するものである。
The method for evaluating a field effect transistor according to the present invention includes a first step of measuring a breakdown voltage between the gate and drain electrodes of a field effect transistor using a Schottky barrier gate; A second step of flowing a predetermined reverse current between the electrodes for a predetermined time, and again flowing the gate of the field effect transistor.
A third step of measuring the breakdown voltage between the drain electrodes, and evaluating the field effect transistor from the amount of change between the breakdown voltage in the first step and the breakdown voltage in the third step. That is.

なお、上記第2工程においてゲート・ドレイン電極間に
流す逆方向電流の大きさは、ゲート電極がエレクトロマ
イグレーションを起こさない範囲に選ぶ必要があり、ゲ
ート幅に対して2m A / m m程度(0.5mA
/’mm以上、10m A / m m以下)が適当で
ある。
In addition, the magnitude of the reverse direction current flowing between the gate and drain electrodes in the second step needs to be selected within a range that does not cause electromigration of the gate electrode, and is approximately 2 mA/mm (0 .5mA
/'mm or more and 10mA/mm or less) is suitable.

〔作用〕[Effect]

本発明は、GaAsFETに過大な高周波電力を入力し
た場合の劣化は、ゲート・ドレイン電極間に逆方向電流
が流れることによって起こり、主にゲート・ドレイン間
のブレークダウン電圧が劣化するという知見に基づいて
いる。したがって、ゲート・ドレイン電極間に直流の逆
方向電流を流すことによって過大な高周波電力を人力し
た場合と同様の作用を生じ、適当な電流値を選ぶことに
よって直流による加速試験が可能となる。
The present invention is based on the knowledge that when excessive high-frequency power is input to a GaAsFET, deterioration occurs due to a reverse current flowing between the gate and drain electrodes, and the breakdown voltage between the gate and drain mainly deteriorates. ing. Therefore, by passing a direct current in the opposite direction between the gate and drain electrodes, an effect similar to that obtained when excessive high-frequency power is applied manually is produced, and by selecting an appropriate current value, accelerated testing using direct current becomes possible.

〔実施例〕〔Example〕

以下、実施例により本発明をより詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

電界効果トランジスタとして、Q a A s半導体を
用いたショットキー障壁型ゲートを用いたGaAsFE
Tを評価する。このGaAsFE′「のゲート幅は28
0μmである。
GaAsFE using Schottky barrier gate using QaAs semiconductor as field effect transistor
Evaluate T. The gate width of this GaAsFE' is 28
It is 0 μm.

所定の製造工程により作製されたGaAsFETのゲー
ト・ドレイン電極間の第1のプレークダウン電圧BVg
dlを、まず測定する。
First breakdown voltage BVg between the gate and drain electrodes of a GaAsFET manufactured by a predetermined manufacturing process
dl is first measured.

ブレークダウン電圧の測定方法は、GaAsFETのゲ
ート電極とソース電極間に定電流源を接続し、100μ
Aの逆方向電流を流し、この時のゲート・ドレイン電極
間の電圧を測定し、ブレークダウン電圧BVgdとする
。なお、この時ソース電極は接続されておらずオープン
である。
To measure the breakdown voltage, connect a constant current source between the gate electrode and source electrode of the GaAsFET,
A reverse current of A is caused to flow, and the voltage between the gate and drain electrodes at this time is measured and taken as the breakdown voltage BVgd. Note that at this time, the source electrode is not connected and is open.

次に、ゲート・ドレイン電極間に流す電流を0.5mA
に増大し、逆方向電流を30分間流し続ける。この逆方
向電流は、ゲート幅1mmあたり約1.8mAとなる。
Next, the current flowing between the gate and drain electrodes is 0.5 mA.
The reverse current is continued to flow for 30 minutes. This reverse current is about 1.8 mA per 1 mm of gate width.

再び、GaAsFETのゲート・ドレイン電極間の第2
のブレークダウン電圧BVgd2を測定する。
Again, the second electrode between the gate and drain electrodes of the GaAsFET
Measure the breakdown voltage BVgd2.

第1のブレークダウン電圧と第2のブレークダウン電圧
との変化量(BVgd 1−BVgd2)から上記電界
効果トランジスタを評価できる。以上の評価は、約30
分で終了するものである。
The above field effect transistor can be evaluated from the amount of change (BVgd 1 - BVgd2) between the first breakdown voltage and the second breakdown voltage. The above rating is about 30
It will be finished in minutes.

比較例として、従来方法である周囲温度95℃で120
0時間の高温連続入力試験を行なった場合のゲート・ド
レイン電極間のブレークダウン電圧の変化量(高温連続
入力試験を行う前後での変化量)の測定を行なった。
As a comparative example, the conventional method is 120°C at an ambient temperature of 95°C.
The amount of change in breakdown voltage between the gate and drain electrodes (the amount of change before and after performing the high temperature continuous input test) when a 0 hour high temperature continuous input test was performed was measured.

この従来方法による変化量測定結果と本発明の実施例に
よる変化量の測定結果との同一ロットのG a A s
 F E Tでの対応を第1図に示す。
G a As of the same lot between the measurement result of the amount of change by this conventional method and the measurement result of the amount of change by the example of the present invention.
The correspondence in FET is shown in Figure 1.

この図から明らかなように、両者の方法による測定結果
は非常に良く相関していることがわかる。
As is clear from this figure, the measurement results obtained by both methods are highly correlated.

したがって、あらかじめ高温高連続入力試験と本発明の
試験との対応をとっておけば、本発明による評価により
過大な高周波入力に対する信頼性の評価を数千分の一の
時間で行なうことができる。
Therefore, if the correspondence between the high-temperature, high-continuous input test and the test of the present invention is established in advance, reliability evaluation against excessive high-frequency input can be performed in a few thousandths of the time by the evaluation according to the present invention.

[発明の効果] 以上説明したように、本発明による評価方法は、ショッ
トキー障壁型ゲートを用いた電界効果トランジスタのゲ
ート・ドレイン電極間のブレークダウン電圧を測定する
第1の工程と、上記電界効果トランジスタのゲート・ド
レイン電極間に所定の逆方向電流を所定時間流す第2の
工程と、再び上記電界効果トランジスタのゲート・ドレ
イン電極間のブレークダウン電圧を狗定する第3の工程
と、上記第1の工程におけるブレークダウン電圧と上記
第3の工程におけるブレークダウン電圧との変化量から
上記電界効果トランジスタを評価するものである。
[Effects of the Invention] As explained above, the evaluation method according to the present invention includes the first step of measuring the breakdown voltage between the gate and drain electrodes of a field effect transistor using a Schottky barrier gate, and a second step of flowing a predetermined reverse current for a predetermined time between the gate and drain electrodes of the field effect transistor; a third step of again determining the breakdown voltage between the gate and drain electrodes of the field effect transistor; The field effect transistor is evaluated from the amount of change between the breakdown voltage in the first step and the breakdown voltage in the third step.

したがって、本発明により、電界効果[・ランジスタの
信頼性の重要な評価であるゲート・ドレイン電極間のブ
レークダウン電圧の低下を、直流電流を流すという簡便
な装置で、かつ数千分のーという短時間に測定すること
ができる。
Therefore, the present invention can reduce the breakdown voltage between the gate and drain electrodes, which is an important evaluation of the reliability of transistors, by using a simple device that flows a direct current, and can reduce the drop in breakdown voltage between the gate and drain electrodes by a factor of several thousand. Can be measured in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例と従来方法によるブレークダウン電
圧の変化の対応を説明するためのものであり、横軸が従
来方法による変化量、縦軸が本実施例による変化量を示
している。
Figure 1 is for explaining the correspondence between changes in breakdown voltage between this example and the conventional method, with the horizontal axis showing the amount of change due to the conventional method, and the vertical axis showing the amount of change due to this example. .

Claims (1)

【特許請求の範囲】[Claims]  ショットキー障壁型ゲートを用いた電界効果トランジ
スタのゲート・ドレイン電極間のブレークダウン電圧を
測定する第1の工程と、上記電界効果トランジスタのゲ
ート・ドレイン電極間に所定の逆方向電流を所定時間流
す第2の工程と、再び上記電界効果トランジスタのゲー
ト・ドレイン電極間のブレークダウン電圧を測定する第
3の工程と、上記第1の工程におけるブレークダウン電
圧と上記第3の工程におけるブレークダウン電圧との変
化量から上記電界効果トランジスタを評価することを特
徴とする電界効果トランジスタの評価方法。
A first step of measuring the breakdown voltage between the gate and drain electrodes of a field effect transistor using a Schottky barrier gate, and flowing a predetermined reverse current between the gate and drain electrodes of the field effect transistor for a predetermined period of time. a second step; a third step of again measuring the breakdown voltage between the gate and drain electrodes of the field effect transistor; and a breakdown voltage in the first step and the breakdown voltage in the third step. A method for evaluating a field effect transistor, characterized in that the field effect transistor is evaluated from the amount of change in the field effect transistor.
JP30490789A 1989-11-27 1989-11-27 Evaluating method for field effect transistor Pending JPH03166745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30490789A JPH03166745A (en) 1989-11-27 1989-11-27 Evaluating method for field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30490789A JPH03166745A (en) 1989-11-27 1989-11-27 Evaluating method for field effect transistor

Publications (1)

Publication Number Publication Date
JPH03166745A true JPH03166745A (en) 1991-07-18

Family

ID=17938733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30490789A Pending JPH03166745A (en) 1989-11-27 1989-11-27 Evaluating method for field effect transistor

Country Status (1)

Country Link
JP (1) JPH03166745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503408A1 (en) * 2002-04-30 2005-02-02 Sumitomo Electric Industries, Ltd. Method for measuring withstand voltage of semiconductor epitaxial wafer and semiconductor epitaxial wafer
JP2006284490A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Testing method and specification value determination method for semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503408A1 (en) * 2002-04-30 2005-02-02 Sumitomo Electric Industries, Ltd. Method for measuring withstand voltage of semiconductor epitaxial wafer and semiconductor epitaxial wafer
EP1503408A4 (en) * 2002-04-30 2009-08-12 Sumitomo Electric Industries Method for measuring withstand voltage of semiconductor epitaxial wafer and semiconductor epitaxial wafer
JP2006284490A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Testing method and specification value determination method for semiconductor element
JP4577506B2 (en) * 2005-04-04 2010-11-10 トヨタ自動車株式会社 Semiconductor device test method and standard value determination method

Similar Documents

Publication Publication Date Title
US7898277B2 (en) Hot-electronic injection testing of transistors on a wafer
US7230444B2 (en) Method for measuring characteristics of FETs
US20070182439A1 (en) Method for measuring FET characteristics
US7145356B2 (en) Circuits for transistor testing
CN106199366B (en) A kind of method of power MOS (Metal Oxide Semiconductor) device temperature measurement on-line
US6198301B1 (en) Method for determining the hot carrier lifetime of a transistor
CN113092975B (en) Source-drain breakdown voltage testing method for power MOS device
JPH03166745A (en) Evaluating method for field effect transistor
US6525544B1 (en) Method for predicting lifetime of insulating film and method for reliability testing of semiconductor device
JP2001249161A (en) Integrated circuit test method
US4904946A (en) Method for evaluating insulating films
JP6348755B2 (en) Method for testing semiconductor transistors
JP3475822B2 (en) Method for measuring on-resistance of power MOSFET, apparatus for measuring on-resistance of power MOSFET, and power MOSFET
Stephens et al. RF reliability of short channel NMOS devices
RU2311653C1 (en) Method for dividing analog integration chips on basis of reliability
JPH06201761A (en) Aging dielectric breakdown characteristic measuring method for insulating film
Paulter et al. NIST-NPL interlaboratory pulse measurement comparison
JPH09330964A (en) Method for estimating service life of semiconductor device
Wan et al. Embedded instruments for enhancing dependability of analogue and mixed-signal IPs
JPH09152463A (en) Method for testing degradation life of compound semiconductor device and method for evaluating reliability of compound semiconductor device
CN117949798A (en) Multi-parameter characterization device and method for dynamic characteristics of power field effect transistor
RU2739480C1 (en) Method of comparative evaluation of batches of transistors by quality and reliability
Brisbin et al. The effect of the subthreshold slope degradation on NBTI device characterization
JPH08111443A (en) Method and apparatus for evaluating reliability of semiconductor element
JPH07201939A (en) Reliability test method for semiconductor element