JPH0316644B2 - - Google Patents

Info

Publication number
JPH0316644B2
JPH0316644B2 JP56078985A JP7898581A JPH0316644B2 JP H0316644 B2 JPH0316644 B2 JP H0316644B2 JP 56078985 A JP56078985 A JP 56078985A JP 7898581 A JP7898581 A JP 7898581A JP H0316644 B2 JPH0316644 B2 JP H0316644B2
Authority
JP
Japan
Prior art keywords
transistor
current
collector
emitter
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56078985A
Other languages
Japanese (ja)
Other versions
JPS5717034A (en
Inventor
Akinobu Masuko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7898581A priority Critical patent/JPS5717034A/en
Publication of JPS5717034A publication Critical patent/JPS5717034A/en
Publication of JPH0316644B2 publication Critical patent/JPH0316644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector

Description

【発明の詳細な説明】 この発明は負荷に流れる過電流を制限する過電
流制限回路、特にトランジスタ回路における過電
流を制限する過電流制限回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an overcurrent limiting circuit that limits overcurrent flowing through a load, and particularly to an overcurrent limiting circuit that limits overcurrent in a transistor circuit.

一般に負荷が純抵抗負荷の場合には抵抗で決ま
る電流しか流れないが容量負荷の場合には負荷に
電荷が充電されるまで駆動トランジスタは瞬間的
に低インピーダンスとなりこのためこのトランジ
スタに過大電流が流れ駆動トランジスタが破壊ま
たは劣化される。
Generally, if the load is a purely resistive load, only the current determined by the resistance will flow, but if the load is a capacitive load, the drive transistor will momentarily have a low impedance until the load is charged, so an excessive current will flow through this transistor. The drive transistor is destroyed or deteriorated.

この発明は上記欠点を鑑みてなされ種々の負荷
に対する過大電流を制限する過電流制限回路を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above drawbacks, and an object of the present invention is to provide an overcurrent limiting circuit that limits excessive currents to various loads.

以下図面を参照してこの発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る過電流制限回路を示す
一実施例であり、この実施例によると、NPNト
ランジスタQ1のベースは信号入力源に接続さ
れ、このトランジスタQ1のエミツタは接地さ
れ、コレクタは抵抗R1を介してNPNトランジ
スタQ2のエミツタに接続されている。このトラ
ンジスタQ2のベースは基準電圧源Eに接続さ
れ、コレクタはPNPトランジスタQ3のベース
に接続されると共に抵抗R2を介して電源Vcc
接続される。このトランジスタQ3のエミツタは
NPNトランジスタ即ち出力トランジスタQ4の
コレクタ及び電源Vccに接続される。この出力ト
ランジスタQ4のベースはトランジスタQ3のコ
レクタに接続されエミツタは負荷Lを介して接地
されている。また、この出力トランジスタQ4の
ベース及びエミツタはNPNトランジスタQ5の
ベース及びエミツタに夫々接続されている。この
NPNトランジスタQ5のコレクタは抵抗R3を
介して電源Vccに接続されると共にPNPトランジ
スタQ6のベースに接続されている。このトラン
ジスタQ6のエミツタ及びコレクタは電源Vcc
びトランジスタQ2のエミツタに夫々接続されて
いる。
FIG. 1 shows an embodiment of an overcurrent limiting circuit according to the present invention. According to this embodiment, the base of an NPN transistor Q1 is connected to a signal input source, the emitter of this transistor Q1 is grounded, and the collector is It is connected to the emitter of NPN transistor Q2 via resistor R1. The base of this transistor Q2 is connected to a reference voltage source E, and the collector is connected to the base of a PNP transistor Q3 and to the power supply Vcc via a resistor R2. The emitter of this transistor Q3 is
It is connected to the collector of the NPN transistor, ie, the output transistor Q4, and to the power supply Vcc . The base of the output transistor Q4 is connected to the collector of the transistor Q3, and the emitter is grounded via a load L. Further, the base and emitter of this output transistor Q4 are connected to the base and emitter of an NPN transistor Q5, respectively. this
The collector of the NPN transistor Q5 is connected to the power supply Vcc via the resistor R3, and is also connected to the base of the PNP transistor Q6. The emitter and collector of this transistor Q6 are connected to the power supply Vcc and the emitter of transistor Q2, respectively.

上記回路構成において基準電圧源E、トランジ
スタQ2及び抵抗R1は定電流源を構成し基準電
圧源Eの電圧VZとエミツタ抵抗R1によつて定
まる一定電流を流す。トランジスタQ2の電流増
幅率が高くベース電流を無視したとすればこのト
ランジスタQ2のコレクタ電流iCは略ic=(VZ
Q2のベース・エミツタ間電圧)÷R1となる。抵
抗R2はトランジスタQ1がOFFとなつたとき
トランジスタQ1のリーク電流を阻止する機能を
有する。そして、この抵抗R2の抵抗値はリーク
電流による電圧降下によりトランジスタQ3が
ONしないような値に決められてある。
In the circuit configuration described above, the reference voltage source E, the transistor Q2, and the resistor R1 constitute a constant current source, and flow a constant current determined by the voltage VZ of the reference voltage source E and the emitter resistor R1. If the current amplification factor of transistor Q2 is high and the base current is ignored, the collector current i C of this transistor Q2 is approximately i c = (V Z
Q2 base-emitter voltage) ÷ R1. The resistor R2 has a function of blocking leakage current from the transistor Q1 when the transistor Q1 is turned off. The resistance value of this resistor R2 is determined by the voltage drop caused by the leakage current.
The value is set so that it will not turn on.

次に第1図の回路の動作を説明する。トランジ
スタQ1のベースに正極性の入力信号が供給され
るとこのトランジスタQ1が導通し、電流icがト
ランジスタQ2に流れる。そして、この電流によ
る抵抗R2での電圧降下によりトランジスタQ3
は導通し、トランジスタQ4が導通する。その結
果、負荷Lに電力が供給される。この時、トラン
ジスタQ4と並列に接続されているトランジスタ
Q5も導通し、トランジスタQ5のコレクタ・エ
ミツタ路には抵抗R3を介して電流が流れる。こ
れにより、抵抗R3の両端に現われる降下電圧が
トランジスタQ6のエミツタ・ベース間に供給さ
れるが、正常な電力が負荷Lに供給されている場
合はこのトランジスタQ6が導通されないように
抵抗R3の値が決められている。即ち、通常動作
時における前記抵抗R3での電圧降下によつては
トランジスタQ6はオンしない。
Next, the operation of the circuit shown in FIG. 1 will be explained. When a positive input signal is supplied to the base of transistor Q1, transistor Q1 becomes conductive and current i c flows to transistor Q2. Then, due to the voltage drop across resistor R2 due to this current, transistor Q3
becomes conductive, and transistor Q4 becomes conductive. As a result, power is supplied to the load L. At this time, the transistor Q5 connected in parallel with the transistor Q4 also becomes conductive, and a current flows through the collector-emitter path of the transistor Q5 via the resistor R3. As a result, the voltage drop appearing across the resistor R3 is supplied between the emitter and base of the transistor Q6, but the value of the resistor R3 is set so that the transistor Q6 is not turned on when normal power is being supplied to the load L. has been decided. That is, the transistor Q6 is not turned on due to the voltage drop across the resistor R3 during normal operation.

以上のように構成された過電流制限回路におい
てトランジスタQ4に流すことのできる最大電流
をI1、このトランジスタQ4のエミツタ面積を
S1、トランジスタQ4に並列に接続されているト
ランジスタQ5の面積をS2とすればトランジスタ
Q5の電流I2は次式で表わされる。
In the overcurrent limiting circuit configured as above, I 1 is the maximum current that can flow through transistor Q4, and the emitter area of transistor Q4 is
S 1 and the area of the transistor Q5 connected in parallel to the transistor Q4 is S 2 , the current I 2 of the transistor Q5 is expressed by the following equation.

I2=S2/S1・I1・α …(1) α:定数 この式(1)に示すように、トランジスタQ4,Q
5のベース電圧は等しいのでエミツタ面積の異な
る2個のトランジスタが並列に接続されると各ト
ランジスタに流れる電流の比はエミツタ面積比と
等しくなる。上記式(1)においてトランジスタQ
4,Q5の電流密度が同じならばαは1となる。
しかしトランジスタQ4とQ5が同一チツプ内に
形成された場合、両トランジスタの面積比を容易
に設定できるためα≠1にすることもできる。上
式(1)で示したように正常動作時には過電流検出抵
抗R3が接続されたトランジスタQ5には電流I2
以下の電流が流れる。負荷が短絡したりしてトラ
ンジスタQ5を流れる電流が異常に増加しトラン
ジスタQ6のベース・エミツタ間の抵抗R3に発
生するI2・R3なる電圧がトランジスタQ6を導
通させるに充分なものになつた場合には、このト
ランジスタQ6が導通する。このトランジスタQ
6の導通にともない抵抗R1に流れる電流が増加
してトランジスタQ2のエミツタ電位が上昇し、
このトランジスタQ2に流れる電流が減少する。
この結果、トランジスタQ3に対する励振電流が
小さくなりそれに伴つてトランジスタQ4,Q5
の励振電流が小さくなる帰還動作が行なわれる。
このためトランジスタQ5の電流は減少し更にト
ランジスタQ6の電流が減少し、その結果、トラ
ンジスタQ2の電流がほぼ一定に保たれ、負荷L
に供給される電力もほぼ一定になる。このように
負荷Lに流れる電流は、トランジスタQ4を流れ
る電流が最大許容電流I1になつたときに、上記し
たようにトランジスタQ5、抵抗R3、トランジ
スタQ6による帰還動作によつて制限される。
I 2 = S 2 /S 1・I 1・α …(1) α: Constant As shown in this formula (1), transistors Q4, Q
Since the base voltages of the transistors 5 and 5 are equal, when two transistors having different emitter areas are connected in parallel, the ratio of currents flowing through each transistor becomes equal to the emitter area ratio. In the above formula (1), transistor Q
If the current densities of Q4 and Q5 are the same, α will be 1.
However, when transistors Q4 and Q5 are formed in the same chip, the area ratio of both transistors can be easily set, so that α≠1. As shown in equation (1) above, during normal operation, the transistor Q5 to which the overcurrent detection resistor R3 is connected has a current I 2
The following current flows. When the current flowing through transistor Q5 increases abnormally due to a short circuit in the load, and the voltage I 2 · R3 generated across resistor R3 between the base and emitter of transistor Q6 becomes sufficient to make transistor Q6 conductive. , this transistor Q6 becomes conductive. This transistor Q
As Q6 becomes conductive, the current flowing through resistor R1 increases, and the emitter potential of transistor Q2 rises.
The current flowing through this transistor Q2 decreases.
As a result, the excitation current for transistor Q3 becomes smaller, and accordingly transistors Q4 and Q5
A feedback operation is performed in which the excitation current becomes smaller.
Therefore, the current of transistor Q5 decreases, and the current of transistor Q6 decreases, and as a result, the current of transistor Q2 is kept almost constant, and the load L
The power supplied to the system also remains almost constant. In this way, the current flowing through the load L is limited by the feedback operation by the transistor Q5, resistor R3, and transistor Q6 as described above when the current flowing through the transistor Q4 reaches the maximum allowable current I1 .

このように負荷Lに流れる電流値は、トランジ
スタQ4,Q5の夫々に対する許容電流I1,I2
和、即ち(I1+I2)電流に制限される。
In this way, the current value flowing through the load L is limited to the sum of allowable currents I 1 and I 2 for transistors Q4 and Q5, respectively, ie (I 1 +I 2 ) current.

第2図は、上述した過電流制限回路の負荷電
圧・電流特性を示す特性図であり、図中の破線は
本願発明に係る過電流制御回路を設けない場合の
負荷電圧・電流特性を示す。この特性図からも判
るように、トランジスタQ4に最大許容電流I1
流れるとともにトランジスタQ5にトランジスタ
Q6を導通させるに足りる電流I2が流れると、ト
ランジスタQ6の導通によりトランジスタQ2の
エミツタ電位が上昇するので、負荷電流は(I1
I2)に制限される。この場合、上記電流値(I1
I2)を負荷Lに対する許容電流値に設定すれば、
負荷に過電流が流れるのを制限できるものであ
る。
FIG. 2 is a characteristic diagram showing the load voltage and current characteristics of the overcurrent limiting circuit described above, and the broken line in the figure shows the load voltage and current characteristics when the overcurrent control circuit according to the present invention is not provided. As can be seen from this characteristic diagram, when maximum allowable current I 1 flows through transistor Q4 and current I 2 sufficient to make transistor Q6 conductive flows through transistor Q5, the emitter potential of transistor Q2 increases due to conduction of transistor Q6. Therefore, the load current is (I 1 +
I2 ). In this case, the above current value (I 1 +
I 2 ) is set to the allowable current value for the load L, then
It can limit the flow of overcurrent to the load.

第3図はこの発明の他の実施例を示し、この第
3図の実施例では過電流検出用トランジスタQ6
のコレクタがトランジスタQ7のベースに接続さ
れ、このトランジスタQ7のコレクタは電源VCC
に接続され、またエミツタはトランジスタQ2の
エミツタに接続されている。
FIG. 3 shows another embodiment of the present invention, and in the embodiment of FIG. 3, the overcurrent detection transistor Q6
The collector of transistor Q7 is connected to the base of transistor Q7, and the collector of this transistor Q7 is connected to the power supply V CC
, and its emitter is connected to the emitter of transistor Q2.

第3図に示した実施例は、トランジスタQ2の
コレクタ側に接続した抵抗R2に流れる電流を、
トランジスタQ2と差動対をなすトランジスタQ
7のベース電位に応じて制御する。即ち、トラン
ジスタQ5に許容電流I2が流れると、トランジス
タQ6が導通するが、この導通によりトランジス
タQ7のベース電位が上がる。この結果、トラン
ジスタQ7と差動対をなすトランジスタQ2に流
れる電流は減少して、トランジスタQ5のコレク
タ電流が減少しトランジスタQ6がオフとなる。
このとき、トランジスタQ6がオフになるととも
にトランジスタQ7もオフになり、負荷Lに流れ
る電流を(I1+I2)に制限できる。従つて負荷が
短絡したような場合においても、負荷に過大電流
が流れるのを防止し得る。
In the embodiment shown in FIG. 3, the current flowing through the resistor R2 connected to the collector side of the transistor Q2 is
Transistor Q forming a differential pair with transistor Q2
It is controlled according to the base potential of 7. That is, when the allowable current I 2 flows through the transistor Q5, the transistor Q6 becomes conductive, and this conduction raises the base potential of the transistor Q7. As a result, the current flowing through the transistor Q2 forming a differential pair with the transistor Q7 decreases, the collector current of the transistor Q5 decreases, and the transistor Q6 turns off.
At this time, the transistor Q6 is turned off and the transistor Q7 is also turned off, so that the current flowing through the load L can be limited to (I 1 +I 2 ). Therefore, even if the load is short-circuited, excessive current can be prevented from flowing through the load.

以上述べたようにこの発明によれば出力トラン
ジスタに過大電流が流れた場合、この過大電流を
検出しこの過大電流を制限することを簡単な回路
構成によつて実現できかつIC化に適した過電流
制限回路が提供される。
As described above, according to the present invention, when an excessive current flows through the output transistor, it is possible to detect this excessive current and limit this excessive current with a simple circuit configuration, and the overcurrent is suitable for IC implementation. A current limiting circuit is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に従つた過電流制
限回路付電圧供給回路の回路図、第2図は電圧供
給回路の電圧・電流特性図そして第3図は他の実
施例に従つた過電流制限回路付電圧供給回路を示
す。 Q1乃至Q7……トランジスタ、R1乃至R3
……抵抗、L……負荷、Vcc……電源、E……基
準電圧源。
Fig. 1 is a circuit diagram of a voltage supply circuit with an overcurrent limiting circuit according to one embodiment of the present invention, Fig. 2 is a voltage/current characteristic diagram of the voltage supply circuit, and Fig. 3 is a diagram according to another embodiment. A voltage supply circuit with an overcurrent limiting circuit is shown. Q1 to Q7...transistor, R1 to R3
...Resistance, L...Load, Vcc ...Power supply, E...Reference voltage source.

Claims (1)

【特許請求の範囲】 1 入力信号が印加される入力トランジスタQ1
とこの入力トランジスタQ1のコレクタ側に直列
に接続した第1の抵抗R1とを含んで成る直列回
路と、 前記直列回路にコレクタ・エミツタ電流路を直
列に接続し、通常動作時に定電流を出力する第1
のトランジスタQ2と、 前記第1のトランジスタQ2のコレクタ電流の
変化を電圧に変換し、この電圧に応じた第1の電
流を出力する第1の手段R2,Q3と、 コレクタ・エミツタ電流路を有し、前記第1の
電流がベースに供給され、そのコレクタ・エミツ
タ電流路に第2の電流を流す第3のトランジスタ
Q4と、 コレクタ・エミツタ電流路を有し、前記第1の
電流がベースに供給され、そのコレクタ・エミツ
タ電流路に第3の電流を流す第3のトランジスタ
Q5と、 前記第2、第3の電流が共に供給される負荷L
と、 前記第3の電流の変化を電圧に変換し、この第
3の電流が所定値を越えたときに動作して、その
変換された電圧に応じた第4の電流を出力する第
2の手段R3,Q6と、 前記第3の電流が所定値を越えたときに生じる
前記第4の電流を前記直列回路を通して流し、前
記第1のトランジスタのエミツタを逆バイアスし
てこの第1のトランジスタの出力電流を減少する
手段と、 を具備する過電流制限回路。
[Claims] 1. Input transistor Q1 to which an input signal is applied
and a first resistor R1 connected in series to the collector side of the input transistor Q1, and a collector-emitter current path is connected in series to the series circuit to output a constant current during normal operation. 1st
a transistor Q2, first means R2, Q3 for converting a change in the collector current of the first transistor Q2 into a voltage and outputting a first current according to the voltage, and a collector-emitter current path. a third transistor Q4 having a collector-emitter current path, the first current being supplied to the base and a second current flowing through the collector-emitter current path; a third transistor Q5 that is supplied with a third current and causes a third current to flow through its collector-emitter current path; and a load L that is supplied with both the second and third currents.
and a second circuit that converts the change in the third current into a voltage, operates when the third current exceeds a predetermined value, and outputs a fourth current corresponding to the converted voltage. means R3, Q6; and the fourth current generated when the third current exceeds a predetermined value is caused to flow through the series circuit, and the emitter of the first transistor is reverse biased so that the first transistor An overcurrent limiting circuit comprising: means for reducing output current;
JP7898581A 1981-05-25 1981-05-25 Overcurrent limiting circuit Granted JPS5717034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7898581A JPS5717034A (en) 1981-05-25 1981-05-25 Overcurrent limiting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7898581A JPS5717034A (en) 1981-05-25 1981-05-25 Overcurrent limiting circuit

Publications (2)

Publication Number Publication Date
JPS5717034A JPS5717034A (en) 1982-01-28
JPH0316644B2 true JPH0316644B2 (en) 1991-03-06

Family

ID=13677180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7898581A Granted JPS5717034A (en) 1981-05-25 1981-05-25 Overcurrent limiting circuit

Country Status (1)

Country Link
JP (1) JPS5717034A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117362A (en) * 1997-11-07 2000-09-12 University Of Georgia Research Foundation, Inc. Long-persistence blue phosphors
US6953536B2 (en) 2003-02-25 2005-10-11 University Of Georgia Research Foundation, Inc. Long persistent phosphors and persistent energy transfer technique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678986A (en) * 1979-12-03 1981-06-29 Nippon Steel Corp Press-marking method and device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678986A (en) * 1979-12-03 1981-06-29 Nippon Steel Corp Press-marking method and device thereof

Also Published As

Publication number Publication date
JPS5717034A (en) 1982-01-28

Similar Documents

Publication Publication Date Title
JPS61230411A (en) Electric circuit
US3717821A (en) Circuit for minimizing the signal currents drawn by the input stage of an amplifier
JPS60501035A (en) Comparator circuit with reduced input bias current
JPH0316644B2 (en)
JPS5928287B2 (en) push pull amplifier circuit
US4758773A (en) Switching device
JPH0516691B2 (en)
JPH04295222A (en) Stabilized power supply circuit
JPH0255963B2 (en)
JP2972245B2 (en) Reference voltage output circuit with voltage detection function
JPS6218979Y2 (en)
JPH0210664Y2 (en)
JPH0575418A (en) Overcurrent detecting circuit
JPS61117613A (en) Constant voltage power supply circuit with current limit
JP2902277B2 (en) Emitter follower output current limiting circuit
JP2600430Y2 (en) Voltage detection circuit
JPS6119536Y2 (en)
JPH0513064Y2 (en)
JPH01305609A (en) Output circuit
JPH03746Y2 (en)
JPS6119537Y2 (en)
JP3063345B2 (en) Saturation prevention circuit
US4189738A (en) Semiconductor integrated circuit device
JPH0462206B2 (en)
JP2605803Y2 (en) Overload detection circuit