JPH03166382A - Method and device for forming thin film - Google Patents

Method and device for forming thin film

Info

Publication number
JPH03166382A
JPH03166382A JP30561189A JP30561189A JPH03166382A JP H03166382 A JPH03166382 A JP H03166382A JP 30561189 A JP30561189 A JP 30561189A JP 30561189 A JP30561189 A JP 30561189A JP H03166382 A JPH03166382 A JP H03166382A
Authority
JP
Japan
Prior art keywords
substrate
raw material
solvent
solid raw
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30561189A
Other languages
Japanese (ja)
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30561189A priority Critical patent/JPH03166382A/en
Publication of JPH03166382A publication Critical patent/JPH03166382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To form a thin film pattern excellent in quality and controllability and with the impurities reduced by spraying a soln. of a solid material in a solvent to vaporize the solvent and depositing the obtained tine powder on a substrate. CONSTITUTION:The substrate 3 is mounted on the bottom of a deposition chamber 2. The soln. of the solid material in a solvent is sprayed from a protruding nozzle 4. The solvent in the spray is vaporized, and the fine particles of the material are deposited on the substrate 3. The process is repeated to obtain a deposited film. The substrate 3 is moved to a patterning chamber 11. An X-Y stage 10 is scanned, and the film in the specified pattern is formed by the irradiation with a laser beam. The undecomposed material fine powder is dissolved in a solvent to recover the solid material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造分野に関するもので、特に、基板
上に固体原料を堆積させ、この固体原料をレーザ光で分
解して、パターン化した薄膜を得る方法及び装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the field of semiconductor manufacturing, and in particular, a method of depositing a solid raw material on a substrate, decomposing this solid raw material with laser light, and patterning it. The present invention relates to a method and apparatus for obtaining a thin film.

〔従来の技術〕[Conventional technology]

固体原料を、基板に薄く形成した後、集光したレーザ光
を照射しながら基板を走査して、原料を分解して、金属
等の薄膜パターンを形成する手法が知られている。例え
ば、A.Gupta等により、1987年のアブライド
 フィジックス レター( Applied Phys
ics Letter)誌 第51巻 2254頁にこ
の手法による銅薄膜の形成例が示されている。この論文
では、基板上に固体原料を堆積させる方法としては、溶
媒に固体原料を溶媒に溶かしたまま基板に塗布する、も
しくは、スプレー法で基板に溶媒ごとつけた後、加熱乾
燥して、固体原料を基板上に析出させて、後段のレーザ
照射工程を行っていた。この論文を含む従来の方法及び
装置では、基板表面に固体原料を薄くつける方法として
、溶媒に溶かした状態で基板に塗った後、溶媒を除去し
て固体原料を基板上に析出させていた. 〔発明が解決しようとする課題〕 上述した従来の方法及び装置には、以下に示す欠点があ
った。固体原料が結晶性の強い材料であると、基板から
溶媒を除去するときに、固体原料の偏析が起こりやすく
、溶液としては、均一に基板上に塗ることができても、
乾いた段階で不均一になったり、表面に微結晶の固まり
が生じたりして、レーザ照射による工程後に形成した薄
膜の膜厚や線幅にバラつきが生じる問題を起こす。この
問題を解決するには、結晶性を弱めるためにポリマーな
どの分散剤を溶液中に混合させることが有効であるが、
そのために後段のレーザによる分解時に不純物が取り込
まれ易くなったり、分解時に生じる揮発成分の量が増え
たりして、パターン薄膜の緻密さや、空間分解能の劣化
や、膜質の低下のどの問題を新たに生じる。
A known method is to form a thin solid material on a substrate and then scan the substrate while irradiating it with focused laser light to decompose the material and form a thin film pattern of metal or the like. For example, A. In the 1987 Applied Phys Letters (Applied Phys.
ics Letter, Vol. 51, page 2254, shows an example of forming a copper thin film using this method. In this paper, methods for depositing solid raw materials on a substrate include coating the solid raw material dissolved in a solvent on the substrate, or applying the solvent together with the solvent to the substrate using a spray method, and then heating and drying it to solidify it. The raw material was deposited on the substrate and the subsequent laser irradiation process was performed. In conventional methods and apparatuses, including those in this paper, a thin layer of solid raw material is applied to the substrate surface by applying it to the substrate in a state dissolved in a solvent, and then removing the solvent to deposit the solid raw material onto the substrate. [Problems to be Solved by the Invention] The conventional methods and devices described above had the following drawbacks. If the solid raw material is a material with strong crystallinity, segregation of the solid raw material is likely to occur when removing the solvent from the substrate, and even if the solid raw material can be applied uniformly on the substrate as a solution,
It becomes non-uniform during the drying stage, or agglomerates of microcrystals form on the surface, causing problems such as variations in the thickness and line width of the thin film formed after the laser irradiation process. To solve this problem, it is effective to mix a dispersant such as a polymer into the solution to weaken the crystallinity.
As a result, impurities are more likely to be taken in during decomposition by the laser in the subsequent stage, and the amount of volatile components generated during decomposition increases, creating new problems such as the density of patterned thin films, deterioration of spatial resolution, and deterioration of film quality. arise.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の方法は、固体原料を堆積させた基板上を、集光
したレーザ光を照射しながら走査して、固体原料を分解
して選択的な薄膜のパターンを形成する薄膜形成方法に
おいて、溶媒に溶かした固体原料を、溶媒と一緒に霧状
に吹き出す工程と、この霧から溶媒を蒸発させて、固体
原料の微粉末を形成する工程と、この微粉末を基板上に
降り積もらせて堆積させる工程とを有することを特徴と
する。
The method of the present invention is a thin film forming method in which a substrate on which a solid raw material is deposited is scanned while irradiating a focused laser beam to decompose the solid raw material and form a selective thin film pattern. A process of blowing out a solid raw material dissolved in a liquid together with a solvent in the form of a mist, a process of evaporating the solvent from this mist to form a fine powder of the solid raw material, and a process of depositing this fine powder on a substrate. It is characterized by having a step of causing.

本発明の装置は、固体原料を溶かした溶液を入れる原料
容器と、原料容器に接続したノズルが接続されて基板に
固体原料を堆積させる堆積室と、レーザ光源と、堆積室
に接続したバターニング室と、バターニング室に置かれ
た基板を観察しながら、基板上の固体原料を局所的に分
解させるための集光したレーザ光を照射する照射観察光
学系と、基板を走査するX−Yステージと、堆積室とパ
ターンニング室の間で基板を搬送する移動機構とを少く
とも備え、さらに、下部に基板を保持する堆積室は、ノ
ズルから出た霧状の溶媒成分を気相中で蒸発させる空間
を設けたことを特徴とする横或になっている。
The apparatus of the present invention includes a raw material container containing a solution containing a solid raw material, a deposition chamber to which a nozzle connected to the raw material container is connected to deposit the solid raw material on a substrate, a laser light source, and a buttering chamber connected to the deposition chamber. while observing the substrate placed in the buttering chamber, an irradiation observation optical system that irradiates a focused laser beam to locally decompose the solid material on the substrate, and an X-Y that scans the substrate. The deposition chamber, which includes at least a stage and a movement mechanism for transporting the substrate between the deposition chamber and the patterning chamber, and which holds the substrate at the bottom, transports the atomized solvent component emitted from the nozzle in a gas phase. It is horizontal and features a space for evaporation.

また、別の本発明の装置は、上記楕或に加えて堆積室中
の溶媒成分を蒸発させる空間に、メッシュ状のヒータを
配置することを特徴とする構戒になっている。
Another apparatus of the present invention is characterized in that, in addition to the above-mentioned oval, a mesh-like heater is disposed in a space in which the solvent component in the deposition chamber is evaporated.

〔作用〕[Effect]

本発明では、固体原料を、微粒子状にして、基板に降り
積もらせることにより、基板上に結晶化を起こすことな
く、均一に、基板上に固体原料を堆積させる点が従来方
法及び装置と異なっている。つまり、固体原料は、微粒
子となって基板上に供給されるために、基板にこの微粒
子が付着した後には、溶液中のように原料分子が基板上
で移動して結晶化が進むようなことがなく、そのまま、
基板上に降り積もることを利用して、固体原料の偏折な
どの問題の発生を避けている。
The present invention differs from conventional methods and devices in that the solid raw material is made into fine particles and deposited on the substrate, thereby uniformly depositing the solid raw material on the substrate without causing crystallization on the substrate. ing. In other words, since the solid raw material is supplied onto the substrate in the form of fine particles, after the fine particles adhere to the substrate, the raw material molecules move on the substrate like in a solution and crystallization progresses. There is no, just as it is,
By taking advantage of the fact that it accumulates on the substrate, problems such as polarization of the solid raw material are avoided.

微粒子の形成は、溶液に溶かした固体原料をノズルから
吹き出し、霧状になった溶液の粒から、溶媒成分を蒸発
させることによって、ノズルから吹き出した空間中に固
体原料の微粒子を形成する。生じた微粒子は、自然に沈
降するので、下側に基板を置けば、基板上に微粒子を堆
積させることができる。生或する微粒子の大きさは、ノ
ズルの形状と吹き出し圧および、溶液中の固体原料の溶
解率に依存して変化するので、これらの量2を適当に選
択することにより、生成する微粒子の太きさを制御でき
る。例えば、吹き出し圧を高くすれば、霧状の溶液流の
大きさが小さくなり、生戒される固体原料の微粒子の径
は小さくなるし、また固体原料の溶液への溶解率を低く
すれば、生成される固体原料の微粒子の径も小さくでき
る。
Formation of fine particles involves blowing out a solid raw material dissolved in a solution from a nozzle, and evaporating the solvent component from particles of the atomized solution, thereby forming fine particles of the solid raw material in the space blown out from the nozzle. The generated fine particles naturally settle, so if a substrate is placed underneath, the fine particles can be deposited on the substrate. The size of the fine particles produced changes depending on the shape of the nozzle, the blowing pressure, and the dissolution rate of the solid raw material in the solution. You can control the sharpness. For example, if the blowing pressure is increased, the size of the atomized solution flow becomes smaller, and the diameter of the fine particles of the solid raw material to be treated becomes smaller, and if the dissolution rate of the solid raw material in the solution is lowered, The diameter of the fine particles of the solid raw material produced can also be reduced.

以上の説明から、本発明において使用可能な固体原料は
、溶媒に溶かすことさえできれば、固体原料の結晶性の
大きさに関係なく、基板上に均一に固体原料を堆積させ
ることができることがわかる。このため、レーザ照射に
より高純度のパターン薄膜を得ることができるにもかか
わらず、従来の溶液を塗布して乾燥する方法では、均一
に固体原料を堆積させることが困難であった結晶性の高
い材料も利用可能になる。
From the above explanation, it can be seen that the solid raw material that can be used in the present invention can be uniformly deposited on the substrate regardless of the crystallinity of the solid raw material as long as it can be dissolved in a solvent. For this reason, although it is possible to obtain highly pure patterned thin films by laser irradiation, it is difficult to uniformly deposit solid raw materials using the conventional method of coating and drying a solution. Materials will also be available.

〔実施例〕〔Example〕

本発明について図面を参照して説明する。第1図は本発
明の一実施例の構成図である。この装置は、固体原料を
降り積もらせるための堆積室2と固体原料を分解してパ
ターンニングした薄膜を得るためのパターンニング室1
1と、レーザ光源7と、レーザ光源7からの出射光をパ
ターンニング室11の中の基板3に集光して照射しなが
ら、基板の照射位置を観察できる照射観察光学系から成
る。照射観察光学系は、照射するレーザ光とモニタ光を
分離するビームスプリッタ6と、モニタテレビ5とレー
ザ光を集光するレンズ8からなり、レンズ8を出たレー
ザ光は、パターンニング室11の上部に設けられた窓9
を通して、基板3の位置に集光照射される.両室の間は
、基板3を保持するX−Yステージ10で相互に基板3
を移動できる構成となっている。基板3は、堆積室2の
底部もしくは、パターンニング室11に配置される。溶
媒に溶かした固体原料を入れた原料容器1は、ノズル4
を通して、堆積室2の上部につながっている。また、堆
積室2には、蒸発した溶媒や、残留空気を除去するため
の排気ボンブ12が接続されている。以下に示す動作の
説明では、固体原料として三塩化金(^ucI3)、溶
媒にはエーテルを用いた場合について説明する。この固
体原料は、針状の結晶を析出し易い結晶性の固体である
が、可視光の照射により純度の高い金を析出する特徴が
ある。ノズル4から出る霧が基板3に到達するまでに溶
媒を蒸発させるため、ノズル4と基板位置との距離は、
70cmと十分に離した。この距離は、実験的に基板上
に液滴が観測されなくなる距離から決めた。レーザ光源
7には、Arレーザを用い、基板3上の照射ビーム径は
、2μmとした。
The present invention will be explained with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. This device consists of a deposition chamber 2 for depositing a solid raw material and a patterning chamber 1 for decomposing the solid raw material to obtain a patterned thin film.
1, a laser light source 7, and an irradiation/observation optical system that can observe the irradiation position of the substrate while focusing and irradiating the light emitted from the laser light source 7 onto the substrate 3 in the patterning chamber 11. The irradiation observation optical system consists of a beam splitter 6 that separates the irradiating laser light and monitor light, a monitor television 5 and a lens 8 that focuses the laser light. Window 9 installed at the top
Through this, the position of the substrate 3 is focused and irradiated. Between the two chambers, an X-Y stage 10 that holds the substrates 3 is placed between the two chambers.
It is configured so that it can be moved. The substrate 3 is placed at the bottom of the deposition chamber 2 or in the patterning chamber 11 . A raw material container 1 containing a solid raw material dissolved in a solvent is connected to a nozzle 4
It is connected to the upper part of the deposition chamber 2 through it. Furthermore, an exhaust bomb 12 is connected to the deposition chamber 2 for removing evaporated solvent and residual air. In the explanation of the operation shown below, a case will be explained in which gold trichloride (^ucI3) is used as a solid raw material and ether is used as a solvent. This solid raw material is a crystalline solid that tends to precipitate needle-shaped crystals, but it has the characteristic of precipitating highly pure gold when irradiated with visible light. In order to evaporate the solvent before the mist emitted from the nozzle 4 reaches the substrate 3, the distance between the nozzle 4 and the substrate position is
It was placed at a sufficient distance of 70 cm. This distance was experimentally determined from the distance at which no droplets were observed on the substrate. An Ar laser was used as the laser light source 7, and the diameter of the irradiation beam on the substrate 3 was 2 μm.

次に、第1図に示す装置の動作を順を追って説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained step by step.

まず基板3を堆積室2の底部にマウントした後、空気中
の水分の除去とエーテルの蒸発を促進するために、排気
ボンプエ2を動作させて、堆積室2の圧力をlTorr
4′:−まで減圧する。次に原料容器1とノズル4の間
のバルブを短時間開けて、7′ズルから霧を吹き出す。
First, after mounting the substrate 3 on the bottom of the deposition chamber 2, the exhaust pump 2 is operated to reduce the pressure in the deposition chamber 2 to lTorr in order to remove moisture from the air and promote evaporation of ether.
4': Reduce pressure to -. Next, the valve between the raw material container 1 and the nozzle 4 is opened for a short time, and the mist is blown out from the nozzle 7'.

霧の中のエーテルはすぐに蒸発するので、三塩化金の微
粒子が生成され、基板上に均一に降り積もる。この降り
積もり工程を30回程度繰り返して、基板3上に三塩化
金の堆積膜を得る。固体原料の堆積状況は、2000人
程度の粒状の固体が、均一に降り積もっており、溶媒ご
と塗布して乾燥したときのように針状結晶が析出する等
の問題は起こらなかった。次にX−Yステージ10を動
かして、基板3をパターンニング室l1に移動する。モ
ニタテレビ5で、金のパターンを描画する開始点に基板
3の位置を合わせ、レーザ光照射と同時に描画パターン
通りにX−Yステージ10を走査して、所定のパターン
の金薄膜を形成した。この後、基板3を取りだして、エ
ーテルで未分解の三塩化金を溶かして、固体原料を回収
して、一連の作業を終える。この結果、基板3上の全面
について線幅2μm、厚み5000人の、断面形状の一
様な所望のパターンの金の堆積を得ることができた。膜
の比抵抗は3μΩ印とバルク値の2倍以下の良好な値が
得られ、形成した金薄膜の純度が非常に良いことを示唆
する結果が得られた。
The ether in the fog quickly evaporates, creating fine particles of gold trichloride that are evenly deposited on the substrate. This deposition step is repeated about 30 times to obtain a deposited film of gold trichloride on the substrate 3. Regarding the deposition of the solid raw material, approximately 2,000 granular solids were deposited uniformly, and problems such as precipitation of needle-shaped crystals did not occur, unlike when coating with a solvent and drying it. Next, the X-Y stage 10 is moved to move the substrate 3 to the patterning chamber l1. The position of the substrate 3 was adjusted to the starting point for drawing a gold pattern on the monitor television 5, and the XY stage 10 was scanned according to the drawing pattern at the same time as laser beam irradiation to form a gold thin film in a predetermined pattern. Thereafter, the substrate 3 is taken out, undecomposed gold trichloride is dissolved in ether, and the solid raw material is recovered, completing the series of operations. As a result, it was possible to deposit gold in a desired pattern with a line width of 2 μm and a thickness of 5000 mm over the entire surface of the substrate 3 and having a uniform cross-sectional shape. The specific resistance of the film was 3 μΩ, a good value less than twice the bulk value, and results suggesting that the purity of the formed gold thin film was very good.

以上の例では、固体原料を含む溶液の霧から溶媒を除去
する方法として、蒸発空間を大きくとる方法を述べた゛
が、他の手法として、基板とノズルの間にメッシュ上の
ヒータを張って、このメッシュを霧が通過する時に蒸発
を促進することも有効である。こうすれば、蒸発空間を
小さくすることができ、装置をコンパクトにできる利点
がある。
In the above example, a method was described in which a large evaporation space was used to remove the solvent from a solution mist containing solid raw materials. However, another method is to use a mesh heater placed between the substrate and the nozzle to remove the solvent from the solution mist containing solid raw materials. It is also effective to promote evaporation when the mist passes through the mesh. This has the advantage that the evaporation space can be made smaller and the apparatus can be made more compact.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、固体原料を微粒子にし
て、基板上に堆積させることによって、固体原料の選択
に関する制限を大幅にゆるめられることが特徴である。
As explained above, the present invention is characterized in that the restrictions on the selection of solid raw materials can be significantly relaxed by making the solid raw materials into fine particles and depositing them on the substrate.

その結果、レーザ照射による分解時に発生する揮発成分
が少なく、容易に分解し、高純度の薄膜を析出するなど
、レーザを用いるパターン薄膜に適した固体原料を選択
することが可能となり、基板上での固体原料の偏析や、
結晶化に伴う、凹凸の発生等を起こす事なく、均一にか
つ、一様に固体原料を基板上に堆積させることが可能と
なる。このことにより、膜厚及び線幅の制御性に優れ、
不純物の少ない良質な薄膜パターンを形成することが可
能となる。
As a result, it has become possible to select a solid raw material suitable for patterned thin films using lasers, which produces fewer volatile components when decomposed by laser irradiation, easily decomposes, and deposits high-purity thin films. segregation of solid raw materials,
It becomes possible to uniformly and evenly deposit the solid raw material on the substrate without causing unevenness due to crystallization. This provides excellent controllability of film thickness and line width.
It becomes possible to form a high-quality thin film pattern with few impurities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法及び装置の一実施例の構成図で
ある。 1・・・原料容器、2・・・堆積室、3・・・基板、4
・・・ノズル、5・・・モニタテレビ、6・・・ビーム
スプリツタ、7・・・レーザ光源、8・・・レンズ、9
・・・窓、10・・・X−Yステージ、工1・・・パタ
ーンニング室、12・・・排気ポンプ。
FIG. 1 is a block diagram of one embodiment of the method and apparatus of the present invention. 1... Raw material container, 2... Deposition chamber, 3... Substrate, 4
...Nozzle, 5...Monitor TV, 6...Beam splitter, 7...Laser light source, 8...Lens, 9
...Window, 10...X-Y stage, Engineering 1...Patterning room, 12...Exhaust pump.

Claims (3)

【特許請求の範囲】[Claims] 1.固体原料を堆積させた基板上を、集光したレーザ光
を照射しながら走査して、固体原料を分解して選択的な
薄膜のパターンを形成する薄膜形成方法において、溶媒
に溶かした固体原料を、溶媒と一緒に霧状に吹き出す工
程と、この霧から溶媒を蒸発させて、固体原料の微粉末
を形成する工程と、この微粉末を基板上に降り積もらせ
て堆積させる工程とを有することを特徴とする薄膜形成
方法。
1. In a thin film forming method in which a substrate on which a solid raw material has been deposited is scanned while irradiating a focused laser beam to decompose the solid raw material and form a selective thin film pattern, the solid raw material dissolved in a solvent is , a step of blowing out a mist together with a solvent, a step of evaporating the solvent from this mist to form a fine powder of a solid raw material, and a step of depositing this fine powder on a substrate. A thin film forming method characterized by:
2.固体原料を溶媒に溶かした溶液を入れる原料容器と
、原料容器につないだ吹出しノズルに接続され、さらに
ノズルから出た霧状の溶媒成分を気相中で蒸発させる空
間を備え、下部に基板保持する堆積室と、レーザ光源と
、堆積室に接続しているパターニング室と、パターニン
グ室に置かれた基板を観察しながら、基板上の固体原料
を局所的に分解させるための集光したレーザ光を照射す
る照射観察光学系と、基板を走査するX−Yステージと
、堆積室とパターンニング室の間で基板を搬送する移動
機構とを少くとも備えていることを特徴とする薄膜形成
装置。
2. It is connected to a raw material container containing a solution of a solid raw material dissolved in a solvent, a blowout nozzle connected to the raw material container, and a space for evaporating the atomized solvent component emitted from the nozzle in the gas phase, and the substrate is held at the bottom. a deposition chamber, a laser light source, a patterning chamber connected to the deposition chamber, and a focused laser beam for locally decomposing the solid material on the substrate while observing the substrate placed in the patterning chamber. 1. A thin film forming apparatus comprising at least an irradiation observation optical system that irradiates the substrate, an XY stage that scans the substrate, and a movement mechanism that transports the substrate between a deposition chamber and a patterning chamber.
3.請求項2に記載の薄膜形成装置において、堆積室中
の溶媒成分を蒸発させる空間に、メッシュ状のヒータを
配置することを特徴とする薄膜形成装置。
3. 3. The thin film forming apparatus according to claim 2, wherein a mesh heater is disposed in a space in the deposition chamber in which a solvent component is evaporated.
JP30561189A 1989-11-24 1989-11-24 Method and device for forming thin film Pending JPH03166382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30561189A JPH03166382A (en) 1989-11-24 1989-11-24 Method and device for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30561189A JPH03166382A (en) 1989-11-24 1989-11-24 Method and device for forming thin film

Publications (1)

Publication Number Publication Date
JPH03166382A true JPH03166382A (en) 1991-07-18

Family

ID=17947227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30561189A Pending JPH03166382A (en) 1989-11-24 1989-11-24 Method and device for forming thin film

Country Status (1)

Country Link
JP (1) JPH03166382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071257A (en) * 2010-09-29 2012-04-12 Elpida Memory Inc Film forming method and film forming device
JP2019508589A (en) * 2015-12-17 2019-03-28 ユニヴェルシテ トゥールーズ トレジエム,ポール サバティエ Process for the production of parts or supported microstructures by laser irradiation of metal oxalate layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071257A (en) * 2010-09-29 2012-04-12 Elpida Memory Inc Film forming method and film forming device
JP2019508589A (en) * 2015-12-17 2019-03-28 ユニヴェルシテ トゥールーズ トレジエム,ポール サバティエ Process for the production of parts or supported microstructures by laser irradiation of metal oxalate layers

Similar Documents

Publication Publication Date Title
US7592043B2 (en) Method and apparatus for coating a patterned thin film on a substrate from a fluid source with continuous feed capability
EP0442163B1 (en) Method for production of ultrafine particles and their use
DE19641058C2 (en) Method of forming a ferroelectric thin film and device therefor
US5540772A (en) Misted deposition apparatus for fabricating an integrated circuit
JP2001503567A (en) Mist-like precursor deposition apparatus and method with improved mist and mist flow
US8221595B2 (en) Lift-off patterning processes employing energetically-stimulated local removal of solid-condensed-gas layers
JP2002522902A (en) Mist-like precursor deposition apparatus and method using improved mist and mist flow
KR100799014B1 (en) Method and apparatus for manufacturing ultra fine three-dimensional structure
JPS60236219A (en) Depositing method and device using plasma produced source gas
JP2001328900A (en) Method for forming thin film
JPH07252670A (en) Apparatus for producing thin film
JPH03166382A (en) Method and device for forming thin film
KR100326498B1 (en) Material deposition method and apparatus using a primer
EP1558782A2 (en) Device and method for the evaporative deposition of a high-temperature superconductor in a vacuum with continuous material introduction
DE3925085C1 (en)
JP2858440B2 (en) Porous ceramic material impregnated and solidified with an organic film-forming substance that can be vaporized in a vacuum, and a method for forming an organic substance-based deposited film using the same
JPH0982803A (en) Method and device for formation of via hole
JP3319522B2 (en) Laser deposition system
JPH04362178A (en) Manufacture of completely or patially coated gold layer
US6803075B2 (en) Method employing plurality of particles and pressure differentials to deposit film
JPH04311561A (en) Method and device for forming thin film
JP3938990B2 (en) Solution vaporizer and film forming apparatus
JPH05175134A (en) Vapor-phase epitaxy method and apparatus
JPS62277147A (en) Production of thin film
Levin et al. Model for focused ion beam deposition