JPH03165403A - Dielectric porcelain composition material - Google Patents

Dielectric porcelain composition material

Info

Publication number
JPH03165403A
JPH03165403A JP1305423A JP30542389A JPH03165403A JP H03165403 A JPH03165403 A JP H03165403A JP 1305423 A JP1305423 A JP 1305423A JP 30542389 A JP30542389 A JP 30542389A JP H03165403 A JPH03165403 A JP H03165403A
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
dielectric
composition
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305423A
Other languages
Japanese (ja)
Inventor
Sukinori Kuramitsu
倉光 透紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1305423A priority Critical patent/JPH03165403A/en
Publication of JPH03165403A publication Critical patent/JPH03165403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a high-performance dielectric porcelain by selecting composition ratios x, y, and z within the specific region in a composition range determined by three compounds of BaO, [(TiO2)1-m(SnO2)m)], and [Re1-nMen] (composition ratio m and n), and adding a prescribed sub-component. CONSTITUTION:Formulas of three compounds are as follows: x+y+z=1.00, 0.01<=m<=0.20, and 0.10<=C<=0.20, where Re is one or more kinds of rare earth elements selected from La, Pr, Nd, and Sm, and Me is one or more kinds of rare earth elements selected from rare earth elements except La, Pr, Nd, and Sm. Here two or more selected kinds, composed of Nb2O3, Ta2O3, and V2O3, of 0.001-0.010mol part in total are contained as a sub-component to a main component of 100 weight parts composed of a range of a mol ratio in which composition ratios x, y, and z are surrounded with each point (a), (b), (c), (d), (e), and (f). This increases a dielectric constant, insulation resistance, and dielectric breakdown voltage, sharply improves good Q, and reduce an electrostatic capacity temperature coefficient to permit miniaturization, large capacity, and characteristic improvement of products.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電率、絶縁抵抗、絶縁破壊電圧が高く、良好
度Qを大幅に改善し、静電容量1品度係数が小さく、か
つ密度のより大きな誘電体磁器を得ることができる誘電
体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention has high dielectric constant, insulation resistance, and dielectric breakdown voltage, greatly improves the quality Q, has a small capacitance quality factor, and has a low density. The present invention relates to a dielectric ceramic composition capable of producing large dielectric ceramics.

従来の技術 従来から、誘電率、絶縁抵抗が高く、良好度Qにすぐれ
、静電容量温度係数が小さい誘電体磁器組成物として下
記のような系が知られている。
BACKGROUND OF THE INVENTION Conventionally, the following systems have been known as dielectric ceramic compositions that have high dielectric constant and insulation resistance, excellent quality Q, and small temperature coefficient of capacitance.

・Ba0−T i 02−Nd2O3系・Ba0−Ti
O2−3m203系 発明が解決しようとする課題 しかし、これらの組成は、例えば 0.098aO−0,557i02−〇、36Nd03
72の組成比からなる誘電体材料を使用し、円板形磁器
コンデンサを作製すると、絶縁抵抗の平均値: 8.0X1012Ω、絶縁破壊強度の平均値30kv/
mmであり、満足のできる値ではない。
・Ba0-Ti 02-Nd2O3 system ・Ba0-Ti
Problems to be solved by the O2-3m203-based invention However, these compositions are, for example, 0.098aO-0,557i02-〇, 36Nd03
When a disk-shaped ceramic capacitor is manufactured using a dielectric material with a composition ratio of 72, the average value of insulation resistance: 8.0 x 1012 Ω, and the average value of dielectric breakdown strength: 30 kv/
mm, which is not a satisfactory value.

また、この誘電体磁器の密度は、5.6g/cJである
が、一般に長さ(L)3.2x幅(W)1.6mm以下
の積層セラミックコンデンサのりフローはんだ付け、特
にペーパーリフローはんだ付けでは、チ・ンブ立ち(通
常、ツームストーン現象、マンノトソタン現((と呼ば
れている。)が発生しやすく、このチップ立ちを防ぐた
め、誘電体磁器の密度をより大きくしなければならない
という課題があった。
The density of this dielectric ceramic is 5.6 g/cJ, but it is generally used for glue flow soldering, especially paper reflow soldering, of multilayer ceramic capacitors with a length (L) of 3.2 mm and a width (W) of 1.6 mm or less. In order to prevent this problem, the density of the dielectric porcelain must be increased to prevent chipping (also known as tombstone phenomenon or tombstone phenomenon). was there.

課題を解決するための手段 これらの課題を解決するために本発明は、一般式 %式%) と表しだ時(ただし、X+Y+Z=1.OO。Means to solve problems In order to solve these problems, the present invention develops the general formula %formula%) (However, X+Y+Z=1.OO.

0.01≦m≦0.20,0.01≦C≦0.20゜x
BaO−y[(TiO2)(1−mから選ばれる一種以
上の希土類元素。MeはLa、Pr、Nd、Smを除く
希土類元素から選ばれる一種以上の希土類元素。)、 x、y、zが以下に表す各点a、b、c、d。
0.01≦m≦0.20, 0.01≦C≦0.20゜x
BaO-y [(TiO2) (One or more rare earth elements selected from 1-m. Me is one or more rare earth elements selected from rare earth elements excluding La, Pr, Nd, and Sm.), x, y, and z are Each point a, b, c, d shown below.

e、fて囲まれるモル比の範囲からなる主成分100重
量部に対し、副成分としてNb2O5,Ta205゜v
2o5から選ばれる二種以上を合計で0.001〜0.
010モル部含有したことを特徴とする誘電作用 第1図は本発明にかかる組成物の主成分の組成範囲を示
す三元図であり、主成分の組成、範囲を限定した理由を
第1図を参照しながら説明する。すなわち、へ領域では
焼結が著しく困難である。また、B領域では良好度Qが
低下し実用的でなくなる。さらに、C,D領域では静電
容量温度係数がマイナス側に大きくなりすぎて実用的で
なくなる。そして、E領域では静電容量温度係数がプラ
ス方向に移行するが、誘電率が小さく実用的でなくなる
。また、ReをLa、Pr、Nd、Smから選ぶことに
より、La、Pr、Nd、Smの順で誘電率を大きく下
げることなく、静電容量温度係数をプラス方向に移行す
ることが可能であり、La、Pr、Nd、Smの1種あ
るいはそれらの組合せにより静電容量温度係数の調節が
可能である。さらに、La、Pr、Nd、Smから選ば
れる一種以上の希土類元素の一部を、La、Pr。
Nb2O5, Ta205゜v as subcomponents to 100 parts by weight of the main component consisting of the molar ratio range enclosed by e and f.
Two or more types selected from 2o5 with a total of 0.001 to 0.
Figure 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reasons for limiting the composition and range of the main components are shown in Figure 1. This will be explained with reference to. That is, sintering is extremely difficult in the region. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, in regions C and D, the capacitance temperature coefficient becomes too large on the negative side, making it impractical. In region E, the temperature coefficient of capacitance shifts to a positive direction, but the dielectric constant is too small to be practical. Furthermore, by selecting Re from La, Pr, Nd, and Sm, it is possible to shift the capacitance temperature coefficient in the positive direction without significantly lowering the dielectric constant in the order of La, Pr, Nd, and Sm. , La, Pr, Nd, and Sm, or a combination thereof, the capacitance temperature coefficient can be adjusted. Furthermore, a part of one or more rare earth elements selected from La, Pr, Nd, and Sm is La, Pr.

Nd、Smを除く希土類元素から選ばれる一種以上の希
土類元素で置換することにより、良好度Qを大幅に改善
する効果を有しているが、その置換量が0.01未満で
は置換効果はなく、また一方0.20を越えると誘電率
が低下し実用的でなくなる。
Substitution with one or more rare earth elements selected from rare earth elements other than Nd and Sm has the effect of significantly improving the quality Q, but if the amount of substitution is less than 0.01, there is no substitution effect. On the other hand, if it exceeds 0.20, the dielectric constant decreases and becomes impractical.

また、TlO2を5n02で置換することにより、誘電
率、良好度Q、静電容量温度係数、絶縁抵抗、絶縁破壊
強度の値を大きく変えることなく、誘電体磁器の密度を
大きくする効果を有しているが、その置換率m′b<o
、01未満では置換効果はなく、一方0.20を越える
と誘電率、良好度Qが低下し、静電容量温度係数もマイ
ナス側に大きくなりすぎ実用的でなくなる。
In addition, by replacing TlO2 with 5n02, it has the effect of increasing the density of dielectric ceramic without significantly changing the values of dielectric constant, goodness Q, temperature coefficient of capacitance, insulation resistance, and dielectric breakdown strength. However, the substitution rate m′b<o
, less than 0.01, there is no substitution effect; on the other hand, if it exceeds 0.20, the dielectric constant and goodness Q decrease, and the temperature coefficient of capacitance becomes too large on the negative side, making it impractical.

また、主成分に対し、副成分Nb2O5゜Ta205.
V2O5を含有することにより、絶縁抵抗、絶縁破壊強
度が向上する効果を有しているが、Nb2O5,Ta2
05.V2O5の含有量の合計が主成分100重量部に
対し、0.001モル部未満はそれほど絶縁破壊強度が
大きくなく、この発明の範囲から除外した。一方、Nb
205Ta205.V2O5の含有量の合計が主成分に
対し、0.010モル部を越えると良好度Q、絶縁抵抗
が低下し、静電容量温度係数がマイナス側に大きくなり
、実用的でなくなる。また、Nb2O5゜T a 20
5 、 V 205から選ばれる二種以上を含有するこ
とにより、Nb2O6,Ta205.V2O5から選ば
れる一種を含有するものに比べ、誘電率、絶縁抵抗、絶
縁破壊電圧が高く、良好度Qにすぐれ、静電容量温度係
数を小さ(することができる。
In addition, with respect to the main component, the subcomponent Nb2O5°Ta205.
Containing V2O5 has the effect of improving insulation resistance and dielectric breakdown strength, but Nb2O5, Ta2
05. If the total content of V2O5 is less than 0.001 parts by mole based on 100 parts by weight of the main component, the dielectric breakdown strength is not so high and it is excluded from the scope of the present invention. On the other hand, Nb
205Ta205. If the total content of V2O5 exceeds 0.010 mole part based on the main components, the quality Q and insulation resistance will decrease, and the temperature coefficient of capacitance will become large on the negative side, making it impractical. Also, Nb2O5゜T a 20
5, V205, Nb2O6, Ta205. Compared to those containing one selected from V2O5, the dielectric constant, insulation resistance, and dielectric breakdown voltage are higher, the quality Q is excellent, and the temperature coefficient of capacitance is smaller.

実施例 以下に、本発明を具体的実施例により説明する。Example The present invention will be explained below using specific examples.

(実施例1) 出発原料には比学的に高純度のB a C03゜TiO
2,5n02.La2O3,Pr60Ce○2.Gd2
O3,D V2O3,Nd2O3゜Sm2Ch、Nb2
O5,Ta205およびV2o5粉末を下5已の第1表
に示す組成比になるように秤量し、めのうボールを備え
たゴム内張りのボールミルに純水とともに入れ、湿式混
合後、脱水乾燥した。この乾燥粉末を高アルミナ質のル
ツボに入れ、空気中で1100℃にて2時間仮焼した。
(Example 1) The starting material was B a C03°TiO of relatively high purity.
2,5n02. La2O3, Pr60Ce○2. Gd2
O3, D V2O3, Nd2O3゜Sm2Ch, Nb2
O5, Ta205 and V2o5 powders were weighed to have the composition ratio shown in Table 1 below, placed in a rubber-lined ball mill equipped with an agate ball together with pure water, wet mixed, and then dehydrated and dried. This dry powder was placed in a high alumina crucible and calcined in air at 1100°C for 2 hours.

この仮焼粉末を、めのうボールを備えたゴム内張りのボ
ールミルに純水とともに入れ、湿式粉砕後、脱水乾燥し
た。この粉砕粉末に、有機バインダーを加え、均質とし
た後、32メツシユのふるいを通して整粒し、金型と油
圧プレスを用いて成形圧力1 t o n / cJで
直径15mm、厚み0.4mmに成形した。次いで、こ
の成形円板をジルコニア粉末を敷いたアルミナ質のサヤ
に入れ、空気中にて下記の第1表に示す温度で2時間焼
成し、第1表に示す組成比の誘電体磁器を得た。
This calcined powder was put into a rubber-lined ball mill equipped with agate balls together with pure water, wet-pulverized, and then dehydrated and dried. After adding an organic binder to this pulverized powder and making it homogeneous, it was sized through a 32-mesh sieve, and molded into a diameter of 15 mm and a thickness of 0.4 mm using a mold and a hydraulic press at a molding pressure of 1 ton/cJ. did. Next, this molded disk was placed in an alumina pod covered with zirconia powder and fired in air at the temperature shown in Table 1 below for 2 hours to obtain dielectric porcelain having the composition ratio shown in Table 1. Ta.

このようにして得られた誘電体磁器円板は、厚みと直径
と重量を測定し1重量を厚みと直径より算出した体積で
除算し、誘電体磁器の密度とした。
The thickness, diameter, and weight of the dielectric ceramic disc thus obtained were measured, and one weight was divided by the volume calculated from the thickness and diameter to determine the density of the dielectric ceramic.

また、誘電率、良好度Q、静電容量温度係数測定用試料
は、誘電体磁器円板の両面全体に銀電極を焼き付け、絶
縁抵抗、絶縁破壊強度測定用試料は、誘電体磁器円板の
外周より内側に1 mmの幅で銀電極のない部分を設け
、銀電極を焼き付けた。
In addition, the samples for measuring dielectric constant, quality Q, and capacitance temperature coefficient are made of dielectric ceramic disks with silver electrodes baked on the entire surface of both sides, and the samples for measuring insulation resistance and dielectric breakdown strength are made of dielectric ceramic disks. A 1 mm wide part without a silver electrode was provided inside the outer periphery, and a silver electrode was baked onto it.

そして、誘電率、良好度Q、静電容量温度係数は、YH
P社製デジタルLCRメータのモデル4275Aを使用
し、測定温度20℃、 71111定電圧1 、OV 
r m s 、測定周波数LM)IZでの測定より求め
た。なお、静電容量温度係数は、20℃と85℃の静電
容量を測定し、次式により求めた。
Then, the dielectric constant, goodness Q, and capacitance temperature coefficient are YH
Using a digital LCR meter model 4275A manufactured by Company P, the measurement temperature was 20°C, 71111 constant voltage 1, OV
r m s , measurement frequency LM) was determined by measurement at IZ. The capacitance temperature coefficient was determined by measuring capacitance at 20° C. and 85° C. using the following formula.

TC−(C−Co)/CoX l/65X 106TC
:静電容量温度係数(ppm/’C)CO・20℃での
静電容量(pF) C:85℃での静電容量(pF) また、誘電率は次式より求めた。
TC-(C-Co)/CoX l/65X 106TC
: Temperature coefficient of capacitance (ppm/'C) CO・Capacitance at 20° C. (pF) C: Capacitance at 85° C. (pF) Further, the dielectric constant was determined from the following formula.

K=143.8〆CoXt/D2 K :誘電率 Co : 20℃での静電容M(pF)D =誘電体磁
器の直径(mrn ) し :誘電体磁器の厚み(lTIIll)さらに、絶縁
抵抗は、YHP社製HRメータのモデル4329Aを使
用し、測定電圧50V、D、C,、測定時間1分間によ
る測定より求めた。
K = 143.8 Co , was determined by measurement using HR meter model 4329A manufactured by YHP Co., Ltd. at a measurement voltage of 50V, D, C, and a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業淋)裂高電圧電
源P)(335に一3形を使用し、試料をジノコンオイ
ル中に入れ、昇圧速度50V/seeにより求めた絶縁
破壊電圧を誘電体厚みで除鼻し、l mm当りの絶縁破
壊強度とした。
The dielectric breakdown strength is determined by using the Kikusui Electronics High Voltage Power Supply P) (Type 13 for 335, placing the sample in Ginocon oil, and calculating the dielectric breakdown voltage with a boost rate of 50 V/see. The dielectric breakdown strength was expressed as dielectric breakdown strength per 1 mm.

試験条件を第1表に併せて示し、試験結果を下記の第2
表に示す。
The test conditions are also shown in Table 1, and the test results are shown in Table 2 below.
Shown in the table.

(以  下  余  白  ) なお、実施例における誘電体磁器の作製方法では、Ba
CO3,TiO2,Sn○2. La2O3゜P r 
s O+ + 、 N d 203 、 S m 20
3.CeO2゜Gd2O3,Dy2O3,Nb2O5,
Ta205およびV、、Osを使用したが、この方法に
限定されるものではなく、所望の組成比になるように、
BaTiO3などの化合物、あるいは炭酸塩、水酸化物
など空気中での加熱により、BaO。
(Margins below) In addition, in the method for producing dielectric ceramic in the example, Ba
CO3, TiO2, Sn○2. La2O3゜P r
s O+ + , N d 203 , S m 20
3. CeO2゜Gd2O3, Dy2O3, Nb2O5,
Although Ta205, V, and Os were used, the method is not limited to this method, and so as to obtain a desired composition ratio.
Compounds such as BaTiO3, carbonates, hydroxides, etc. can be converted to BaO by heating in air.

TiO2,5n02.La2O3,Pr(HONdx0
3.Sm2O3,CeO2,Gd2O3゜Dy2O3,
Nb2O5,Ta205およびV2O5となる化合物を
使用しても実施例と同程度の特性を得ることができる。
TiO2,5n02. La2O3,Pr(HONdx0
3. Sm2O3, CeO2, Gd2O3゜Dy2O3,
Even if compounds such as Nb2O5, Ta205 and V2O5 are used, properties comparable to those of the examples can be obtained.

また、主成分をあらかじめ仮焼し、副成分を添加しても
実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponents are added, properties comparable to those of the examples can be obtained.

また、上述の基本組成のほかに、SiO2MnO2,F
e2O3,ZnOなど一般にフラックスと考えられてい
る塩類、酸化物などを、特性を損なわない範囲で加える
こともできる。
In addition to the basic composition mentioned above, SiO2MnO2, F
Salts, oxides, etc. that are generally considered to be fluxes, such as e2O3 and ZnO, can also be added to the extent that they do not impair the properties.

発明の効果 以上のように本発明によれば、誘電率、絶縁抵抗、絶縁
破壊電圧が高く、良好度Qを大幅に改善し、静電容量温
度係数が小さいため、製品の小型化、大容情化、特性向
上が可能である。また、密度のより大きな誘電体磁器で
あるため、この組成物で面実装の小形チップ部品を作製
すると、リフローはんだ付けでのチップ立ちを改善でき
る等、実装性の高い製品を得ることが可能である。
Effects of the Invention As described above, according to the present invention, the dielectric constant, insulation resistance, and dielectric breakdown voltage are high, the quality Q is greatly improved, and the temperature coefficient of capacitance is small, so that the product can be made smaller and have a larger capacity. It is possible to improve emotions and characteristics. In addition, since it is a dielectric porcelain with a higher density, when small surface-mount chip components are made with this composition, it is possible to obtain products with high mounting performance, such as improving chip standing during reflow soldering. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる組成物の主成分の組成範囲を説
明する三元図である。
FIG. 1 is a ternary diagram illustrating the composition range of the main components of the composition according to the present invention.

Claims (1)

【特許請求の範囲】  一般式 xBaO−y[(TiO_2)_(_1_−_m_)(
SnO_2)_m]−z(Re_(_1_−_n_)M
e_n)O_3_/_2と表した時(ただし、x+y+
z=1.00,0.01≦m≦0.20,0.01≦C
≦0.20,ReはLa,Pr,Nd,Smから選ばれ
る一種以上の希土類元素。MeはLa,Pr,Nd,S
mを除く希土類元素から選ばれる一種以上の希土類元素
。)、 x,y,zが以下に表す各点a,b,c,d,e,fで
囲まれるモル比の範囲からなる主成分100重量部に対
し、副成分としてNb_2O_5,Ta_2O_5,V
_2O_5から選ばれる二種以上を合計で0.001〜
0.010モル部含有したことを特徴とする誘電体磁器
組成物。
[Claims] General formula xBaO-y[(TiO_2)_(_1_-_m_)(
SnO_2)_m]-z(Re_(_1_-_n_)M
e_n) When expressed as O_3_/_2 (however, x+y+
z=1.00, 0.01≦m≦0.20, 0.01≦C
≦0.20, Re is one or more rare earth elements selected from La, Pr, Nd, and Sm. Me is La, Pr, Nd, S
One or more rare earth elements selected from rare earth elements excluding m. ), Nb_2O_5, Ta_2O_5, V as subcomponents to 100 parts by weight of the main component consisting of a range of molar ratios where x, y, z are surrounded by each point a, b, c, d, e, f shown below.
Two or more types selected from _2O_5 total of 0.001~
A dielectric ceramic composition characterized in that it contains 0.010 mole part.
JP1305423A 1989-11-24 1989-11-24 Dielectric porcelain composition material Pending JPH03165403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305423A JPH03165403A (en) 1989-11-24 1989-11-24 Dielectric porcelain composition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305423A JPH03165403A (en) 1989-11-24 1989-11-24 Dielectric porcelain composition material

Publications (1)

Publication Number Publication Date
JPH03165403A true JPH03165403A (en) 1991-07-17

Family

ID=17944953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305423A Pending JPH03165403A (en) 1989-11-24 1989-11-24 Dielectric porcelain composition material

Country Status (1)

Country Link
JP (1) JPH03165403A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230207A (en) * 1983-05-09 1984-12-24 沖電気工業株式会社 Microwave dielectric ceramics
JPS61250905A (en) * 1985-04-26 1986-11-08 ティーディーケイ株式会社 Dielectric ceramic composition and manufacture thereof
JPS62243207A (en) * 1986-04-16 1987-10-23 松下電器産業株式会社 Dielectric porcelain compound
JPS62243208A (en) * 1986-04-16 1987-10-23 松下電器産業株式会社 Dielectric porcelain compound
JPS63221505A (en) * 1987-03-09 1988-09-14 ティーディーケイ株式会社 Non-linear dielectric element
JPH01140505A (en) * 1987-08-21 1989-06-01 Narumi China Corp Dielectric porcelain composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230207A (en) * 1983-05-09 1984-12-24 沖電気工業株式会社 Microwave dielectric ceramics
JPS61250905A (en) * 1985-04-26 1986-11-08 ティーディーケイ株式会社 Dielectric ceramic composition and manufacture thereof
JPS62243207A (en) * 1986-04-16 1987-10-23 松下電器産業株式会社 Dielectric porcelain compound
JPS62243208A (en) * 1986-04-16 1987-10-23 松下電器産業株式会社 Dielectric porcelain compound
JPS63221505A (en) * 1987-03-09 1988-09-14 ティーディーケイ株式会社 Non-linear dielectric element
JPH01140505A (en) * 1987-08-21 1989-06-01 Narumi China Corp Dielectric porcelain composition

Similar Documents

Publication Publication Date Title
JPS6229008A (en) Dielectric ceramic composition
JPH03165403A (en) Dielectric porcelain composition material
JPH04188506A (en) Dielectric porcelain composition
JP3008408B2 (en) Dielectric ceramic composition for multilayer ceramic capacitors
JPH0397667A (en) Dielectric porcelain composition
JPH0353406A (en) Dielectric porcelain composite
JPH03134910A (en) Dielectric porcelain composition
JPH0397668A (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JP2931837B2 (en) Dielectric ceramic composition for multilayer ceramic capacitors
JPH04106808A (en) Dielectric ceramic composition
JPH04357612A (en) Dielectric porcelain composition
JPH04357611A (en) Dielectric porcelain composition
JPH04357614A (en) Dielectric porcelain composition
JPH0498709A (en) Dielectric porcelain composition
JPH04357609A (en) Dielectric porcelain composition
JPH0323263A (en) Dielectric porcelain composition
JPH04174908A (en) Dielectric porcelain composition material
JPH04174907A (en) Dielectric porcelain composition material
JPH0451408A (en) Dielectric porcelain composite
JPH04357613A (en) Dielectric porcelain composition
JPH0323264A (en) Dielectric porcelain composition
JPH02242518A (en) Dielectric porcelain composition
JPH03219502A (en) Dielectric porcelain composition
JPH04357618A (en) Dielectric porcelain composition