JPH03164712A - Liquid crystal diaplay device and its production - Google Patents

Liquid crystal diaplay device and its production

Info

Publication number
JPH03164712A
JPH03164712A JP30544289A JP30544289A JPH03164712A JP H03164712 A JPH03164712 A JP H03164712A JP 30544289 A JP30544289 A JP 30544289A JP 30544289 A JP30544289 A JP 30544289A JP H03164712 A JPH03164712 A JP H03164712A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
transparent insulating
insulating substrate
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30544289A
Other languages
Japanese (ja)
Inventor
Kidai Nochi
能智 紀台
Kaji Maezawa
前沢 可治
Shinji Hisamitsu
久光 伸二
Teruhisa Ishihara
照久 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30544289A priority Critical patent/JPH03164712A/en
Publication of JPH03164712A publication Critical patent/JPH03164712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the thickness of a film in a substrate and to improve defect problems by orienting an Si-Cx-Oy film formed by oblique vapor deposition while controlling x and y to 0.02 < x < 0.4 and 1 <= y < 2. CONSTITUTION:A reaction vessel 4 having an open window 4a on the transparent insulating substrate 6 side is set at the lower part in a vacuum device 2, a vaporization source and a gas injection port 21 for injecting a gas consisting essentially of oxygen into the vessel 4 are provided in the vessel 4, Si and C are packed in the vaporization source, the Si and C are heated and vaporized, and Si is allowed to react with C at 0.02 < x < 0.4 and 1 <= y < 2 to form Si-Cx-Oy. The vapor of the Si-Cx-Oy is discharged from the window 4 in the vessel 4, and exposed on the surface of the substrate 6 inclined at an incident angle different from that of the vapor of Si-Cx-Oy by angle other than 0 deg. to form an Si-Cx-Oy film. The oriented film thus formed is applied to a liq. crystal display device, and the defect problem and the problem related to the mechanical adhesion are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(表 液晶表示素子用の透明絶縁基板の表面に斜
方蒸着により積層される液晶配向膜を用いた液晶表示装
置及びその製造法に関すも従来の技術 液晶配向処理法にはいくつかあり、その中で傾斜配向処
理に関しては斜方蒸着法が知られている。
[Detailed Description of the Invention] Industrial Field of Application The present invention (Table 1) relates to a liquid crystal display device using a liquid crystal alignment film laminated by oblique vapor deposition on the surface of a transparent insulating substrate for a liquid crystal display element, and a method for manufacturing the same. There are several conventional liquid crystal alignment processing methods, and among them, oblique evaporation is known as an oblique alignment processing.

この斜方蒸着法(友 液晶分子の傾斜角度を設定出来る
唯一のものである。即5  SiOを被蒸発物質として
選び、基板面に該蒸発物質の蒸気流を斜めの角度から導
きいれるものである。該斜方蒸着法でζ友 入射角θを
大きく (一般的にはθ>70度であることが知られて
いる。)すると傾斜したコラムが形成され 液晶分子の
長軸が該コラム方向に沿しく ある一定の傾斜角をもっ
て液晶分子は傾斜配向す4 そして該SiOの蒸気流を得る方法として、SiOを石
英ルツペ タンタルルツボ等の蒸発源内に充填させ適当
な加熱手段を使って該SiOの蒸気流を得てい九 発明が解決しようとする課題 しかLSiOが被蒸発物質として選択され このSiO
に適当な加熱手段を使ってSiOの蒸気流を得ようとし
だへ 次の様な問題が生じてい九被蒸発物質としのSi
Oの形態が粉末もしくは塊状であり、しかもSiOが昇
華性の性質を呈しているために バルクの状態で該Si
Oが突沸する現象が発生し 被蒸発物質としのSiOが
真空装置内に飛散してその一部が基板上に直撃するケー
スがあった さらに 基板上に積層される薄膜はSiO
z (但L1≦2≦ 2)で表示されるものであり、酸
素の数は不定であり九 これらの問題の発生にともなt\ 基板内での均一な膜
厚制御ならびに欠陥がなくしかも再現性のある傾斜配向
膜を得ることができなかっ九さら&へ 従来の方法によ
る傾斜配向SiO+膜は基板に対する付着強度が弱かっ
たために 液晶パネルを組み立てる時に機械的な衝撃が
加わった際該傾斜配向SiO−膜の一部が破壊された配
向膜でありへ しかk 複数枚の基板や大面積の基板上に該傾斜配向層
を処理しようとした際 上記の問題がより顕著に発生す
るためく 従来の方法では生産性及び実用性にそして信
頼性にとぼしかった本発明は上記した事情に鑑へ 斜方
蒸着法による傾斜配向処理において、基板内での均一な
膜厚制御並びに欠陥問題が大幅に改善され再現性のある
傾斜配向層を形成させることにより生産性そして実用性
を向上させ、基板に対する付着強度を強くすることによ
り信頼性を改善した液晶配向膜を用いた液晶表示装置及
びその製造法を提供するのを目的とする。
This oblique evaporation method is the only method that can set the tilt angle of the liquid crystal molecules.SiO is selected as the material to be evaporated, and the vapor flow of the evaporation material is introduced onto the substrate surface from an oblique angle. In the oblique evaporation method, when the incident angle θ is increased (it is generally known that θ>70 degrees), an inclined column is formed, and the long axis of the liquid crystal molecules is aligned in the direction of the column. Accordingly, liquid crystal molecules are oriented obliquely at a certain inclination angle4.As a method for obtaining the SiO vapor flow, SiO is filled into an evaporation source such as a quartz crucible or tantalum crucible, and an appropriate heating means is used to generate the SiO vapor. LSiO was selected as the material to be evaporated, and this SiO
Attempts to obtain a vapor flow of SiO using an appropriate heating means have resulted in the following problems:
Since O is in the form of powder or lumps, and SiO exhibits sublimation properties, the Si
There were cases where O bumping occurred, and SiO as a substance to be evaporated was scattered into the vacuum equipment, and some of it directly hit the substrate.Furthermore, the thin film deposited on the substrate was SiO.
z (however, L1≦2≦2), and the number of oxygen atoms is undefined. It was not possible to obtain a tilted alignment film with good properties due to the weak adhesion strength of the tilted alignment SiO+ film to the substrate by the conventional method. - This is an alignment film with a part of the film destroyed. When attempting to process the tilted alignment layer on multiple substrates or large-area substrates, the above-mentioned problems occur more conspicuously than in the conventional method. In view of the above-mentioned circumstances, the present invention has been developed in view of the above-mentioned circumstances, where the productivity, practicality, and reliability of the method were poor.In the oblique alignment treatment using the oblique evaporation method, it is possible to control the uniform film thickness within the substrate and significantly reduce the problem of defects. A liquid crystal display device using a liquid crystal alignment film, which improves productivity and practicality by forming a tilted alignment layer with improved reproducibility, and improves reliability by strengthening adhesive strength to a substrate, and a method for manufacturing the same. The purpose is to provide.

課題を解決するための手段 上記目的を達成するために 本発明ではX及びyを0.
02<x<0.4、l≦y<2として斜方蒸着により形
成したSi−Cx−Oy膜を配向膜としている。そして
この配向膜の製造法として、透明絶縁基板側に少なくと
も開口窓を有した反応槽を真空装置内の下部に配設させ
、該反応槽内に蒸発源並びに酸素を主成分としたガスを
噴出させるガス噴出口を設jす、前記蒸発源内にSiと
Cを充填させて咳SiとCを加熱蒸発させ、前記反応槽
内でSiとCとを酸素と反応させ、 0.02<x<0
.4.  l≦yく2としてSi−Cx−Oyを生成さ
せ、前記反応槽中の開口窓から咳Si−Cx−Oyの蒸
気流を放出させ、該Si−Cx−Oyの蒸気流とは0度
と異なった入射角に傾斜させた透明絶縁基板の表面に咳
Si−Cx−Oy蒸気流を暴露させてSi−CXOy膜
を形成させる製造法を用いている。
Means for Solving the Problems In order to achieve the above objects, in the present invention, X and y are set to 0.
The alignment film is a Si-Cx-Oy film formed by oblique deposition with 02<x<0.4 and l≦y<2. As a manufacturing method for this alignment film, a reaction tank having at least an opening window on the side of the transparent insulating substrate is placed in the lower part of a vacuum device, and an evaporation source and a gas mainly composed of oxygen are ejected into the reaction tank. The evaporation source is filled with Si and C, and the Si and C are heated and evaporated. The Si and C are reacted with oxygen in the reaction tank, and 0.02<x< 0
.. 4. Si-Cx-Oy is generated with l≦y such that 2, and a vapor flow of Si-Cx-Oy is released from an open window in the reaction tank, and the vapor flow of Si-Cx-Oy is different from 0 degrees. A manufacturing method is used in which a Si-Cx-Oy vapor flow is exposed to the surface of a transparent insulating substrate tilted at different incident angles to form a Si-CXOy film.

作   用 上記のようにX及びyが0.02<x<0.4、l≦y
≦2として、酸素雰囲気内での反応生成物を斜方蒸着し
て形成されたSi−Cx−Oy膜ζよ 適度な酸化度及
び分楓 しかも活性な表面性状を呈しているために こ
の配向膜を適用した液晶表示装置では欠陥問題及び機械
的な付着力にかんする問題が改善される。しかも蒸発源
内に充填させたSi元素及びC元素は持続して安定に溶
解することそして反応槽内において、Si及びCに加え
る加熱エネルギーの大きさやガスの流量を制御すること
によって0.02<x<0,4. 1≦y<2であるS
i −Cx−Oyを生成させ、前記反応槽中の開口窓か
ら該Si−Cx−○yの蒸気流を放出させ、咳Si〜C
x −Oyの蒸気流とは0度と異なった入射角に傾斜さ
せ制御された速度で搬送されている透明絶縁基板の表面
に咳Si−Cx−Oy蒸気流を暴露させてSi−Cx−
Oy膜を形成させた製造法であるために 均一な膜厚制
御が可能であり、しかも再現性のある配向膜を得ること
ができる。
Effect As mentioned above, X and y are 0.02<x<0.4, l≦y
≦2, the Si-Cx-Oy film ζ formed by oblique evaporation of reaction products in an oxygen atmosphere has an appropriate degree of oxidation and separation, and has an active surface texture. In a liquid crystal display device to which this method is applied, problems related to defects and mechanical adhesion are improved. Moreover, the Si element and C element filled in the evaporation source can be dissolved continuously and stably, and by controlling the amount of heating energy applied to Si and C and the flow rate of gas in the reaction tank, 0.02<x <0,4. S where 1≦y<2
i -Cx-Oy is produced, and a vapor flow of the Si-Cx-○y is released from an open window in the reaction vessel, and the Si-Cx-Oy is produced.
The Si-Cx-Oy vapor flow is exposed to the surface of a transparent insulating substrate that is tilted at an angle of incidence different from 0 degrees and transported at a controlled speed.
Since this is a manufacturing method that forms an Oy film, it is possible to control a uniform film thickness, and moreover, it is possible to obtain an alignment film with reproducibility.

実施例 以下、本発明の一実施例における液晶表示装置及びその
製造法について、第1図並びに第2図を参照しながら説
明する。第1図は本実施例に用いた製造装置の概要をし
めす平面図であり、第2図は第1図の一部を拡大した斜
視図である。
EXAMPLE Hereinafter, a liquid crystal display device and a method for manufacturing the same according to an example of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view showing an outline of the manufacturing apparatus used in this example, and FIG. 2 is an enlarged perspective view of a part of FIG. 1.

高真空ポンプlを備えた真空装置2が設けられ高真空ポ
ンプlは真空装置2の上部2aに接続されていa′真空
装置2の下部2bに(よ 透明絶縁基板側に少なくとも
開口窓を有した反応槽4が配設されていも 反応槽4内
に蒸発源3並びに酸素を主成分としたガスを噴出させる
ガス噴出口を設けたガス導入系21が配設されている。
A vacuum device 2 equipped with a high vacuum pump 1 is provided. Although the reaction tank 4 is provided, the reaction tank 4 is provided with an evaporation source 3 and a gas introduction system 21 provided with a gas outlet for ejecting gas containing oxygen as a main component.

ガス導入系21(よ 大気中に配設され酸素を主成分と
したガスを充填しているボンベ21Vと前記真空装置2
とを連結させた外部バイブ系21aと、前記真空装置2
の内部で前記外部パイプ系21aと連結して前記反応槽
4内の前記蒸発源3の近傍に延長されその先端で矢印2
1bの様に前記ガスを噴出させる口を設けた内部パイプ
系21cから構成されている。同図中の21dl友  
バイブ系21内に流れる前記ガスの流量を調整するバル
ブである。
A gas introduction system 21 (a cylinder 21V placed in the atmosphere and filled with a gas mainly composed of oxygen and the vacuum device 2)
an external vibe system 21a connected to the vacuum device 2;
is connected to the external pipe system 21a inside and extended to the vicinity of the evaporation source 3 in the reaction tank 4, and the tip thereof is connected to the external pipe system 21a and is connected to the external pipe system 21a.
It is composed of an internal pipe system 21c provided with an opening for ejecting the gas as shown in 1b. 21dl friend in the same picture
This is a valve that adjusts the flow rate of the gas flowing into the vibe system 21.

前記蒸発源3内にはSi元素及びC元素3aが充填され
も 該SL及びC元素3aに加えられる加熱エネルギー
を持続的に制御できる電子ビームもしくはレーザーから
なる加熱手段によって前記Si及びCの蒸気流が得られ
るのが望ましし−矢印3bは偏向タイプの電子ビーム蒸
発源に於ける電子の軌跡を示している。
The evaporation source 3 is filled with Si element and C element 3a, and the vapor flow of Si and C is performed by heating means consisting of an electron beam or laser that can continuously control the heating energy applied to the SL and C element 3a. It is desirable to obtain - Arrow 3b shows the trajectory of electrons in a deflection type electron beam evaporation source.

Si及びCに加える加熱エネルギーの大きさやガスの流
量を制御することによって反応槽4内でSi及びCの蒸
気流と酸素ガスとの反応で生成され 0゜02<x<0
.4. 1≦yく2としてSi−Cx−Oyを生成させ
、前記反応槽4中の開口窓4aから該Si−Cx−Oy
の蒸気流が放出されも 5(よ 前記反応槽4の上部に
配設されたシャッターであり、前記反応槽4の開口窓4
aから放出されるSi−Cx−Oyの蒸気流を随時遮断
するのに用いられる。
By controlling the amount of heating energy applied to Si and C and the flow rate of gas, it is generated by the reaction between the vapor flow of Si and C and oxygen gas in the reaction tank 4.0゜02<x<0
.. 4. Si-Cx-Oy is generated with 1≦y
A vapor stream of
It is used to interrupt the flow of Si-Cx-Oy vapor released from a at any time.

そして前記シャッター5が開いている時鳳 前記Si−
Cx−Oyの蒸気流に対して0度と異なる入射角θ(一
般的にはθ〉70度であることが知られている。)に傾
斜された透明絶縁基板6力丈咳シャッター5の上部に配
設され 該透明絶縁基板6の表面に該Si−Cx−Oy
の蒸気流が曝されことによってSi−Cx−Oy傾斜配
向層が形成される。
When the shutter 5 is open, the Si-
Transparent insulating substrate 6 tilted at an incident angle θ different from 0 degrees (generally known to be θ>70 degrees) with respect to the vapor flow of Cx-Oy 6 The upper part of the cough shutter 5 The Si-Cx-Oy is disposed on the surface of the transparent insulating substrate 6.
A Si-Cx-Oy gradient orientation layer is formed by exposure to a vapor flow of .

同図では詳細に記載されていないが本実施例で(表 前
記透明絶縁基板6を連続的もしくは間欠的に移動させる
手段を具備していも 基板供給場所6aに位置した透明
絶縁基板6は所定の速度で所定の角度に傾けられ 基板
置き場所6bまで移動する間(矢印6dは移動する方向
の一例を示していも)前記Si−Cx−Oyの蒸気流に
曝されも 同図中の6cf&  該透明絶縁基板6が前
記Si−Cx−Oyの蒸気流に曝される場所を限定する
のに用いられる暴露限定窓である。な抵 咳暴露限定窓
6cと前記シャッター5の間には絞り窓5bが配設され
前記反応槽4の開口窓4aから放出されかつ前記透明絶
縁基板6に入射するSi−Cx−Oyの蒸気流を限定す
るのに用いられている。
Although not described in detail in the figure, in this embodiment (Table 1), even if a means for moving the transparent insulating substrate 6 continuously or intermittently is provided, the transparent insulating substrate 6 located at the substrate supply location 6a is moved to a predetermined position. While the substrate is tilted at a predetermined angle at a speed and moved to the substrate storage location 6b (although the arrow 6d indicates an example of the moving direction), it is exposed to the vapor flow of the Si-Cx-Oy. This is an exposure limiting window used to limit the location where the insulating substrate 6 is exposed to the Si-Cx-Oy vapor flow.A diaphragm window 5b is provided between the exposure limiting window 6c and the shutter 5. It is used to limit the flow of Si-Cx-Oy vapor that is disposed and discharged from the open window 4a of the reaction tank 4 and enters the transparent insulating substrate 6.

同図中の20は保持板であり、前記蒸発源3、反応槽4
、シャッター5、絞り窓5′o、透明絶縁基板6等を真
空装置2内で保持並びに移動させるのに用いられも 真
空計器2d及び2eは各々真空装置2内の上部2a並び
に下部2bに於ける真空度を測定するのに用いられも 前記蒸発源3内に充填されるSi及びC元素は予めSi
−Cxのような化合物として構成させ該化合物と酸素ガ
スとの反応生成物を傾斜配向層として処理することが出
来る。また 複数の蒸発源を構成させて、個々の蒸発源
に各々Si、 Cを充填させ、Si及びCに加える加熱
エネルギーの大きさを個々に制御することによって反応
槽4内でSi及びCの蒸気流と酸素ガスとの反応で生成
させることができる。
20 in the figure is a holding plate, which includes the evaporation source 3 and the reaction tank 4.
, the shutter 5, the aperture window 5'o, the transparent insulating substrate 6, etc., within the vacuum apparatus 2. The Si and C elements filled in the evaporation source 3 are used to measure the degree of vacuum.
It is possible to form a compound such as -Cx and treat the reaction product of the compound and oxygen gas as a tilted alignment layer. In addition, by configuring a plurality of evaporation sources, filling each evaporation source with Si and C, and individually controlling the amount of heating energy applied to Si and C, Si and C vapor can be generated in the reaction tank 4. It can be produced by the reaction between oxygen gas and oxygen gas.

第3図は上記の方法で成膜されたSi−Cx−Oy傾斜
配向膜を透明絶縁基板の表面に形成させた液晶表示装置
の欠陥発生に関するデータの一例である。y=t、sの
場合の例であり、横軸にC量が示され 縦軸に欠陥発生
率Rが示されていも ここで使用されている欠陥発生率
Rと(よ パネル全体の面積にしめる欠陥を含む部分の
面積比率αをまず求Ax=Oの場合の光値α(0)で規
格したものを表している。Cの添加とともに欠陥発生率
Rは減少しはじWl  x=0.02付近で欠陥発生率
Rは約0.5となる。その後も減少を示したあと、 x
 = 、0 、1−0 。
FIG. 3 shows an example of data regarding the occurrence of defects in a liquid crystal display device in which a Si-Cx-Oy tilted alignment film formed by the above method is formed on the surface of a transparent insulating substrate. This is an example where y=t, s, and even though the horizontal axis shows the amount of C and the vertical axis shows the defect incidence rate R, the defect incidence rate R used here is The area ratio α of the part containing defects is first normalized by the light value α(0) when the desired Ax=O.The defect occurrence rate R decreases with the addition of C.Wl x=0.02 The defect occurrence rate R becomes approximately 0.5 near x.
= ,0,1-0.

3の範囲では一定値0.1をしめす。その後C量の増加
とともに欠陥発生率Rはゆるやかに増加を示しx=0.
4付近では欠陥発生率R(ヨ  約0.5をしめしたあ
と急激に増加すも 1≦y≦2の範囲にある他のy値に
ついても上記と概ね同一の傾向が見られ九 上記に示したCの役割について今のとこへ 実験的には
明確に判明していな(〜 しかU 次のような推測は可
能であ7. Si−0の結合はイオン結合性が強(〜 
しかも上記の様に酸素ガス雰囲気内による反応性蒸着法
で成膜されたSi−0系薄膜は活性であるためく 耕法
蒸着法を適用して積層されたSi−〇系薄膜の傾斜コラ
ムの表面では液晶分子と強い相互作用を行う。一方Si
−Cの結合は共有結合性の強い結合であるためく 上述
の液晶分子との相互作用を緩和させる作用が予測される
。しかし膜中に於けるSi−Cの結合が多くなると、逆
にSi −0結合による作用が弱まも 従って、上記の製法で構成されたSi−Cx−Oy系薄
膜の傾斜コラムの表面ではX及びyを選択してやれば適
度なイオン結合性及び共有結合性を有した表面が構成さ
れム 即板 適度な酸化度及び分極及び活性状態を呈し
た表面となるためへ 該表面における液晶分子との相互
作用にL 適度な相互作用が行われも このような微視的な挙動が上記の欠陥と関わっているも
のと予想される。
In the range of 3, it shows a constant value of 0.1. After that, the defect occurrence rate R gradually increased as the amount of C increased, and x=0.
Around 4, the defect incidence rate R (Y) increases rapidly after reaching approximately 0.5.Almost the same trend as above can be observed for other y values in the range of 1≦y≦2; As of now, the role of C has not been clearly clarified experimentally (~U), but the following speculation is possible7. The bond in Si-0 is a strong ionic bond (~
Moreover, as mentioned above, the Si-0 thin film formed by reactive vapor deposition in an oxygen gas atmosphere is active. On the surface, it interacts strongly with liquid crystal molecules. On the other hand, Si
Since the -C bond is a strong covalent bond, it is expected to have the effect of relaxing the interaction with the liquid crystal molecules described above. However, as the number of Si-C bonds in the film increases, the effect of Si-0 bonds becomes weaker, and therefore, on the surface of the inclined column of the Si-Cx-Oy thin film constructed by the above method, If y and y are selected, a surface with appropriate ionic and covalent bonding properties will be formed. It is expected that such microscopic behavior is related to the above-mentioned defects even if a moderate interaction occurs.

な飄 上記の説明では傾斜配向される基板として透明絶
縁基板を例にしているがプラスティックの様なフレキシ
ブルな透明絶縁基板k 本発明の主旨を十分活かすこと
ができも 発明の効果 本発明は以上説明した様に構成されているので以下に記
載される様な効果を奏すも 上記のようにX及びyを0
.02<x<0.4、l≦y≦2として、酸素雰囲気内
での反応生成物を斜方蒸着して形成されたSi−Cx−
Oy膜ζよ 適度な酸化度及び分極しかも活性な表面性
状を呈しているために 当配向膜を適用した液晶表示装
置では欠陥問題及び機械的な付着力に関する問題が改善
される。
In the above explanation, a transparent insulating substrate is used as an example of a substrate to be oriented at an angle, but a flexible transparent insulating substrate such as plastic can also be used to fully utilize the gist of the present invention. Since it is configured as shown above, it produces the effects described below.
.. Si-Cx- formed by oblique evaporation of the reaction product in an oxygen atmosphere with 02<x<0.4 and l≦y≦2.
Since the Oy film ζ has an appropriate degree of oxidation, polarization, and active surface properties, defects and mechanical adhesion problems can be improved in liquid crystal display devices to which this alignment film is applied.

しかも蒸発源内に充填させたSL元素及びC元素は持続
して安定に溶解することそして反応槽内において、Si
及びCに加える加熱エネルギーの大きさやガスの流量を
制御することによって0.02<x<0.4. 1≦y
く2であるSi−CxOyを生成させ、前記反応槽中の
開口窓から該Si −Cx −Oyの蒸気流を放出させ
、該Si−Cx−Oyの蒸気流とは0度と異なった入射
角に傾斜させ制御された速度で搬送されている透明絶縁
基板の表面に咳Si−Cx−Oy蒸気流を暴露させてS
i −Cx −Oy膜を形成させた製造法であるため圏
 均一な膜厚制御が可能であa そして、上記の製法に適用される成膜条件は制御が十分
可能であるために再現性のある配向膜を得ることができ
る。従って、本発明cヨ  複数枚の基板や大面積の基
板上に該傾斜配向層を処理できる生産性及び実用性を改
善させ、そして傾斜配向層の信頼性を改善した液晶表示
装置及びその製造法といえる。
Moreover, the SL element and C element filled in the evaporation source must be dissolved stably for a long time, and the Si
and 0.02<x<0.4 by controlling the magnitude of heating energy applied to C and the flow rate of gas. 1≦y
2, a vapor flow of the Si-Cx-Oy is released from an open window in the reaction tank, and an incident angle different from 0 degrees from the vapor flow of the Si-Cx-Oy is generated. S
Since this is a manufacturing method that forms an i-Cx-Oy film, it is possible to control the uniform film thicknessa.The film-forming conditions applied to the above manufacturing method are also fully controllable, making it possible to improve reproducibility. A certain alignment film can be obtained. Therefore, the present invention provides a liquid crystal display device and its manufacturing method that improves the productivity and practicality of processing the tilted alignment layer on a plurality of substrates or large area substrates, and improves the reliability of the tilted alignment layer. It can be said.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)一対の電極部を含む透明絶縁基板と該透明絶縁基
板の表面に形成された配向膜と前記透明絶縁基板に挟持
された液晶とを備えた液晶表示装置に於て、x及びyを
0.02<X<0.4、1≦y≦2として、酸素ガス雰
囲気内での反応生成物を斜方蒸着して形成されたSi−
Cx−Oy膜を配向膜としたことを特徴とする液晶表示
装置。
(1) In a liquid crystal display device including a transparent insulating substrate including a pair of electrode parts, an alignment film formed on the surface of the transparent insulating substrate, and a liquid crystal sandwiched between the transparent insulating substrates, Si-
A liquid crystal display device characterized in that a Cx-Oy film is used as an alignment film.
(2)電極部を含む透明絶縁基板側に少なくとも開口窓
を有した反応槽を真空装置内の下部に配設させ、該反応
槽内に蒸発源並びに酸素を主成分としたガスを噴出させ
るガス噴出口を設置け、前記蒸発源内にSiとCを充填
して加熱蒸発させ、前記反応槽内でSiとCとを酸素と
反応させて0.02<x<0.4、1≦y≦2としてS
i−Cx−Oyを生成させ、前記反応槽中の開口窓から
Si−Cx−Oyの蒸気流を放出させ、Si−Cx−O
yの蒸気流とは0度と異なった入射角に傾斜させた透明
絶縁基板の表面にSi−Cx−Oy蒸気流を暴露させて
Si−Cx−Oy膜を形成させ、液晶配向膜とすること
を特徴とする液晶表示装置の製造法。
(2) A reaction tank having at least an opening window on the side of the transparent insulating substrate including the electrode part is arranged in the lower part of the vacuum apparatus, and an evaporation source and a gas mainly composed of oxygen are spouted into the reaction tank. Install a spout, fill the evaporation source with Si and C, heat and evaporate it, and react the Si and C with oxygen in the reaction tank to produce 0.02<x<0.4, 1≦y≦ S as 2
i-Cx-Oy is produced, and a vapor flow of Si-Cx-Oy is released from an open window in the reaction vessel to produce Si-Cx-Oy.
A Si-Cx-Oy vapor flow is exposed to the surface of a transparent insulating substrate tilted at an incident angle different from 0 degrees to the y vapor flow to form a Si-Cx-Oy film, thereby forming a liquid crystal alignment film. A method for manufacturing a liquid crystal display device characterized by:
JP30544289A 1989-11-24 1989-11-24 Liquid crystal diaplay device and its production Pending JPH03164712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30544289A JPH03164712A (en) 1989-11-24 1989-11-24 Liquid crystal diaplay device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30544289A JPH03164712A (en) 1989-11-24 1989-11-24 Liquid crystal diaplay device and its production

Publications (1)

Publication Number Publication Date
JPH03164712A true JPH03164712A (en) 1991-07-16

Family

ID=17945190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30544289A Pending JPH03164712A (en) 1989-11-24 1989-11-24 Liquid crystal diaplay device and its production

Country Status (1)

Country Link
JP (1) JPH03164712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330656A (en) * 2005-04-25 2006-12-07 Showa Shinku:Kk Vacuum deposition device for liquid crystal alignment layer and deposition method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330656A (en) * 2005-04-25 2006-12-07 Showa Shinku:Kk Vacuum deposition device for liquid crystal alignment layer and deposition method thereof

Similar Documents

Publication Publication Date Title
WO1999047726A1 (en) Process for depositing atomic to nanometer particle coatings on host particles
JP4113547B2 (en) Alignment layer forming apparatus and alignment layer forming method
US20090109387A1 (en) Liquid crystal optical device manufacturing process
US5658439A (en) Process and apparatus for applying orienting layers to a substrate for alignment of liquid crystal molecules
JPH08234207A (en) Orientation treatment of orienting film and device therefor
US20090142490A1 (en) Film forming method and film forming apparatus
JPH03164712A (en) Liquid crystal diaplay device and its production
US20110111131A1 (en) Method for producing a multicomponent, polymer- and metal-containing layer system, device and coated article
US20060270243A1 (en) Alignment shield for evaporator used in thin film deposition
JP2001108832A5 (en)
BRPI0505264B1 (en) Process for applying particular optical coatings and apparatus for carrying out this process.
JP2548373B2 (en) Liquid crystal alignment film manufacturing method and manufacturing apparatus
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
JPH0151814B2 (en)
JPH0451118A (en) Production of liquid crystal oriented film and apparatus for producing this film
JP4775968B2 (en) Alignment film forming apparatus and method
JPS63313123A (en) Manufacture of liquid crystal display element
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JP2008031501A (en) Film deposition apparatus, and method of manufacturing vapor-deposited thin film
JPH0792569B2 (en) Liquid crystal alignment layer deposition method and apparatus
JP4963371B2 (en) Vapor deposition apparatus, vapor deposition method, and inorganic alignment film forming method
US20100219064A1 (en) Film forming method
JPS6326620A (en) Manufacture of liquid crystal element
JPS5847685B2 (en) Ekishiyouno Bunshihaikono Tamenosouno Seiseihouhouou Oyobisouchi
JP2004062098A (en) Device and method for forming alignment layer