JPH03164581A - Evacuation apparatus - Google Patents

Evacuation apparatus

Info

Publication number
JPH03164581A
JPH03164581A JP30375989A JP30375989A JPH03164581A JP H03164581 A JPH03164581 A JP H03164581A JP 30375989 A JP30375989 A JP 30375989A JP 30375989 A JP30375989 A JP 30375989A JP H03164581 A JPH03164581 A JP H03164581A
Authority
JP
Japan
Prior art keywords
pressure
exhaust
evacuation
line
bypass line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30375989A
Other languages
Japanese (ja)
Other versions
JP2881154B2 (en
Inventor
Genichi Kanazawa
金沢 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP30375989A priority Critical patent/JP2881154B2/en
Publication of JPH03164581A publication Critical patent/JPH03164581A/en
Application granted granted Critical
Publication of JP2881154B2 publication Critical patent/JP2881154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To securely prevent a turbulent flow from occurring in an early stage of evacuation by providing a main evacuating line and a bypass line to be used when a pressure on a vacuum chamber is larger than a specific value and providing the bypass line with a pressure-sensitive flow control valve. CONSTITUTION:When a vacuum chamber 1 is to be evacuated, a main solenoid valve 4 is first closed, a sub-electromagnetic valve 8 is opened, and a rotary vacuum pump 6 is driven to evacuate the chamber 1 through a bypass line 7 of a small capacity at a relatively slow evacuating speed. When a pressure detector 7 detects a specific evacuating pressure reached, the main solenoid valve 4 is opened, the sub-electromagnetic valve 8 is closed and further a turbine vacuum pump 5 is driven to rapidly evacuate the chamber 1 through a main evacuation line 2 of a large capacity. In such an evacuation apparatus, a pressure-sensitive flow control valve 10 whose opening degree increases as a negative pressure of evacuation increases is provided on an upstream side of the sub-electromagnetic valve 8 of the bypass line 7 so as to securely prevent a turbulent flow from occurring at an early stage of evacuation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体製造装置、分析機等、真空且高清浄雰
囲気が要求される装置の真空排気装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum evacuation device for equipment that requires a vacuum and highly clean atmosphere, such as semiconductor manufacturing equipment and analyzers.

[従来の技11f] 半導体製造装置、分析機等、真空且高清浄雰囲気で各種
処理を行う装置にあっては、排気時間の長短は生産性、
稼動率を向上させる大きな要因となっている。又、真空
室内部のR塵の無有は製品品質、処理精度に大きく影響
を与える。
[Conventional Technique 11f] In equipment that performs various processes in a vacuum and highly clean atmosphere, such as semiconductor manufacturing equipment and analyzers, the length of evacuation time affects productivity,
This is a major factor in improving operating rates. Furthermore, the presence or absence of R dust inside the vacuum chamber greatly affects product quality and processing accuracy.

ところが、排気時間の短縮は、急激な排気につながり、
排気の過程で活流を生じる。この乱流により、真空室内
壁に付着した物質を剥取り微塵の発生を招いていた。
However, shortening the exhaust time leads to rapid exhaust,
Active current is generated during the exhaust process. This turbulent flow caused substances adhering to the walls of the vacuum chamber to be peeled off, resulting in the generation of fine dust.

従って、従来排気の初期は排気流量を少くし、所要の圧
力より下ったところで排気流量を大きくするという方法
をとっていた。
Therefore, the conventional method has been to reduce the exhaust flow rate at the beginning of exhaustion, and increase the exhaust flow rate when the pressure drops below the required level.

第2図に於いて、従来の真空排気装置を説明する。Referring to FIG. 2, a conventional vacuum evacuation device will be explained.

図中1は真空室であり、該真空室1に主排気ライン2が
接続され、該主排気ライン2の上流側より、圧力検出器
3、主電磁弁4、タービン真空ポンプ5、ロータリ真空
ポンプ6が順次設けられている。又、圧力検出器3と主
電磁弁4との間とタービン真空ポンプ5の下流側とが主
排気ライン2に比べ小口径、小容量のバイパスライン7
で接続され、該バイパスライン7に副電磁弁8が設けら
れている。
1 in the figure is a vacuum chamber, and a main exhaust line 2 is connected to the vacuum chamber 1, and from the upstream side of the main exhaust line 2, a pressure detector 3, a main solenoid valve 4, a turbine vacuum pump 5, a rotary vacuum pump 6 are provided in sequence. Furthermore, a bypass line 7 with a smaller diameter and smaller capacity than the main exhaust line 2 is connected between the pressure detector 3 and the main solenoid valve 4 and downstream of the turbine vacuum pump 5.
A sub-electromagnetic valve 8 is provided in the bypass line 7.

又、9は制御器であって、圧力検出器3からの信号を基
に前記主電磁弁4、副電磁弁8及び前記再真空ポンプ5
.6を動作させる様になっている。
Further, 9 is a controller which controls the main solenoid valve 4, the sub solenoid valve 8 and the re-vacuum pump 5 based on the signal from the pressure detector 3.
.. It is designed to operate 6.

斯かる真空排気装置で真空室1の排気を行う場合、先ず
主電磁弁4を閉じ、副電磁弁8を開いて、ロータリ真空
ポンプ6でバイパスライン7による排気を行う、前記し
た様に、バイパスライン7は、主排気ライン2よりも小
容量であり、真空ポンプもロータリ真空ポンプ6のみで
あるので排気速度は遅い、圧力検出器3の検出圧力が3
000Paとなったところで、主電磁弁4を開き、副電
磁弁8を閉じ、更にタービン真空ポンプ5を駆動する。
When the vacuum chamber 1 is evacuated using such a vacuum evacuation device, first the main solenoid valve 4 is closed, the sub solenoid valve 8 is opened, and the rotary vacuum pump 6 is used to evacuate the vacuum chamber 1 through the bypass line 7. The line 7 has a smaller capacity than the main exhaust line 2, and the only vacuum pump is the rotary vacuum pump 6, so the pumping speed is slow, and the pressure detected by the pressure detector 3 is 3.
000 Pa, the main solenoid valve 4 is opened, the sub solenoid valve 8 is closed, and the turbine vacuum pump 5 is further driven.

大口径、大容量の主排気ライン2で而もタービン真空ポ
ンプ5とロータリ真空ポンプ6との2段引により排気は
急速に行われる。
The main exhaust line 2 has a large diameter and a large capacity, and the exhaust is rapidly carried out by the two-stage pumping of the turbine vacuum pump 5 and the rotary vacuum pump 6.

斯かる排気による圧力の減少の様子は第3図の曲線■に
よって示される。
The manner in which the pressure decreases due to such evacuation is shown by curve 3 in FIG.

[発明が解決しようとする課題] 上記した従来の真空排気装置では乱流による発塵を考慮
して、初期の排気はバイパスラインで行っているが、そ
れでも排気を始めた極初期は、時間に対する圧力降下は
極めて大きく、本発明者は第3図中人の範囲で乱流が生
じることを確認している。この為、排気初期の乱流を防
止する為バスパスラインの口径を更に小さくしてバイパ
スラインでの排気速度を制限すると、第3図曲線■の様
になり、実用代な排気時間とすることができない。
[Problem to be solved by the invention] In the conventional vacuum evacuation equipment described above, initial evacuation is performed using a bypass line in consideration of dust generation due to turbulence. The pressure drop is extremely large, and the present inventor has confirmed that turbulence occurs in the area shown in Figure 3. For this reason, if the diameter of the bus pass line is further reduced to limit the exhaust speed in the bypass line in order to prevent turbulence at the initial stage of exhaust, the result will be as shown in curve (■) in Figure 3, making it possible to achieve a practical exhaust time. Can not.

本発明は、斯かる実情に鑑みなされたものであり、排気
初期で乱流が生じるのを完全に防止し、更に排気時間の
短縮を図ろうとするものである。
The present invention has been developed in view of the above circumstances, and aims to completely prevent turbulence from occurring in the initial stage of exhaust, and further shorten the exhaust time.

[課題を解決するための手段] 本発明は、主排気ラインと該主排気ラインに対して排気
容量の小さいバイパスラインを有し、真空室側の圧力が
所定の値よりも大きい時にはバイパスラインで排気し、
真空室側の圧力が所定の値よりも小さくなった時には主
排気ラインで排気する様にし、前記バイパスラインに排
気の負圧が大きくなるにしたがい開度が増大する圧力感
応型流量調整弁を設けたことを特徴とするものである。
[Means for Solving the Problems] The present invention has a main exhaust line and a bypass line with a small exhaust capacity for the main exhaust line, and when the pressure on the vacuum chamber side is higher than a predetermined value, the bypass line is operated. exhaust,
When the pressure on the vacuum chamber side becomes lower than a predetermined value, the main exhaust line is used to exhaust the air, and the bypass line is provided with a pressure-sensitive flow rate regulating valve whose opening degree increases as the negative pressure of the exhaust increases. It is characterized by:

〔作  用] 排気の初期はバイパスラインによる排気であり、排気の
極初期は、流量調整弁はれ大に絞られており、排気速度
は遅い、排気が進み排気の負圧が大きくなると流量調整
弁の開度が大きくなって、排気速度は早くなる。排気が
所定の圧力に達すると主排気ラインによる主排気が行わ
れる。
[Function] At the beginning of exhaust, exhaust is carried out by the bypass line, and at the very beginning of exhaust, the flow rate adjustment valve is greatly restricted, and the exhaust speed is slow.As the exhaust progresses and the negative pressure of the exhaust increases, the flow rate is adjusted. The valve opening becomes larger and the exhaust speed becomes faster. When the exhaust reaches a predetermined pressure, main exhaust is performed through the main exhaust line.

[実 施 例] 以下、図面を参照しつつ本発明の一実施例を説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図中、第2図中で示したものと同一のものには同符
号を付しである。
Components in FIG. 1 that are the same as those shown in FIG. 2 are given the same reference numerals.

真空室1に接続した主排気ライン2に、その上流側より
、圧力検出器3、主電磁弁4、タービン真空ポンプ5、
ロータリ真空ポンプ6を順次設ける。又、圧力検出器3
と主電磁弁4との間とタービン真空ポンプ5の下流側と
を主排気ライン2に比べ小容量のバイパスライン7で接
続し、該バイパスライン7に上流側より、圧力感応型流
Jl調整弁10、副電磁弁8を設ける。
A pressure detector 3, a main solenoid valve 4, a turbine vacuum pump 5,
Rotary vacuum pumps 6 are installed one after another. Also, pressure detector 3
A bypass line 7 having a smaller capacity than the main exhaust line 2 connects between the main solenoid valve 4 and the downstream side of the turbine vacuum pump 5, and a pressure-sensitive flow Jl regulating valve is connected to the bypass line 7 from the upstream side. 10. A sub solenoid valve 8 is provided.

制御器9は圧力検出器3からの信号に基づき、前記主電
磁弁4、副電磁弁8及び前記再真空ポンプ5,6を動作
させる様になっている。
The controller 9 operates the main solenoid valve 4, the sub solenoid valve 8, and the revacuum pumps 5 and 6 based on the signal from the pressure detector 3.

以下、作動を説明する。The operation will be explained below.

主電磁弁4を閉じ、副電磁弁8を開いて、ロータリ真空
ポンプ6を駆動してバイパスライン7による排気を行う
The main solenoid valve 4 is closed, the sub solenoid valve 8 is opened, and the rotary vacuum pump 6 is driven to perform exhaust through the bypass line 7.

前記圧力感応型流量調整弁10はスプリング11により
閉方向に付勢され、更に上流側の負圧力を該スプリング
11に抗する様に作用させる。従って、該流量調整弁1
0の上流側の負圧力が小さい(圧力カ?大きい)時は、
流量は最小に絞られる様になっている。
The pressure sensitive flow rate regulating valve 10 is biased in the closing direction by a spring 11, and negative pressure on the upstream side is further applied against the spring 11. Therefore, the flow rate regulating valve 1
When the negative pressure upstream of 0 is small (pressure force is large),
The flow rate is reduced to a minimum.

排気が進み負圧が大きくなるにつれ流量調整弁10の開
度が大きくなり、排気流量も大きくなる。更にミ排気ラ
イン自体の口径を前記した従来の排気ラインの口径より
も大きくしておけば、排気初期、即ち3000Paに達
する迄の排気時間を短くできる。
As the exhaust progresses and the negative pressure increases, the opening degree of the flow rate regulating valve 10 increases, and the exhaust flow rate also increases. Furthermore, if the diameter of the exhaust line itself is made larger than the diameter of the conventional exhaust line described above, the initial stage of exhaustion, that is, the time required for exhaustion to reach 3000 Pa can be shortened.

圧力検出器3の検出圧力が3000Paとなったところ
で、主電磁弁4を開き、副電磁弁8を閉じ、更にタービ
ン真空ポンプ5を駆動する。
When the pressure detected by the pressure detector 3 reaches 3000 Pa, the main solenoid valve 4 is opened, the sub solenoid valve 8 is closed, and the turbine vacuum pump 5 is further driven.

大経口径、大容量の主排気ライン2により、タービン真
空ポンプ5、ロータリ真空ポンプ6で主排気を行う。
Main exhaust is performed by a turbine vacuum pump 5 and a rotary vacuum pump 6 through a main exhaust line 2 with a large opening diameter and a large capacity.

斯かる排気の様子は、第3図の曲線■に示される。The state of such exhaust is shown by the curve (2) in FIG.

曲線■に示される様に、排気を始めな極初期では、時間
に対する圧力降下は著しく緩かであって、Aの範囲を充
分に越えたところで、圧力降下は大きくなる。而して、
排気の総時間を従来の曲線■に比べると短縮されている
のが分る。
As shown by curve (2), in the very early stages such as exhaustion, the pressure drop with respect to time is extremely slow, and when the range A is sufficiently exceeded, the pressure drop becomes large. Then,
It can be seen that the total exhaust time is shortened compared to the conventional curve (■).

[発明の効果コ 以上述べた如く本発明よれば、真空排気に於いて、排気
初期には乱流を生じない様に充分緩やかに、乱流の生じ
る範囲を越えたところでは速く排気する様にし、発塵を
防止すると共に排気時間の短縮もなし得るという優れた
効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, during vacuum evacuation, the evacuation is performed slowly enough so as not to cause turbulence at the initial stage of evacuation, and quickly after the range where turbulence occurs. This has the excellent effect of preventing dust generation and shortening the exhaust time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す説明図、第2図は従
来例の説明図、第3図は排気状態を示す線図である。 1は真空室、2は主排気ライン、3は圧力検出器、7は
バイパスライン、10は圧力感応型流量調整弁を示す。 特許出即人 国際電気株式会社 特許出顧人代理人 三  好   祥  二 第2 図 第3 図
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of a conventional example, and FIG. 3 is a diagram showing an exhaust state. 1 is a vacuum chamber, 2 is a main exhaust line, 3 is a pressure detector, 7 is a bypass line, and 10 is a pressure-sensitive flow rate regulating valve. Patent issuer Kokusai Denki Co., Ltd. Patent agent Sho Miyoshi Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)主排気ラインと該主排気ラインに対して排気容量の
小さいバイパスラインを有し、真空室側の圧力が所定の
値よりも大きい時にはバイパスラインで排気し、真空室
側の圧力が所定の値よりも小さくなった時には主排気ラ
インで排気する様にし、前記バイパスラインに排気の負
圧が大きくなるにしたがい開度が増大する圧力感応型流
量調整弁を設けたことを特徴とする真空排気装置。
1) A main exhaust line and a bypass line with a small exhaust capacity are provided for the main exhaust line, and when the pressure on the vacuum chamber side is greater than a predetermined value, the bypass line is used to exhaust the air, and the pressure on the vacuum chamber side is maintained at the predetermined value. When the vacuum becomes smaller than the above value, the main exhaust line is used to exhaust the air, and the bypass line is provided with a pressure-sensitive flow rate regulating valve whose opening degree increases as the negative pressure of the exhaust increases. Device.
JP30375989A 1989-11-22 1989-11-22 Vacuum exhaust device Expired - Fee Related JP2881154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30375989A JP2881154B2 (en) 1989-11-22 1989-11-22 Vacuum exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30375989A JP2881154B2 (en) 1989-11-22 1989-11-22 Vacuum exhaust device

Publications (2)

Publication Number Publication Date
JPH03164581A true JPH03164581A (en) 1991-07-16
JP2881154B2 JP2881154B2 (en) 1999-04-12

Family

ID=17924933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30375989A Expired - Fee Related JP2881154B2 (en) 1989-11-22 1989-11-22 Vacuum exhaust device

Country Status (1)

Country Link
JP (1) JP2881154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025417A (en) * 2019-07-31 2021-02-22 大学共同利用機関法人 高エネルギー加速器研究機構 Evacuation method and device
WO2022075230A1 (en) * 2020-10-06 2022-04-14 エドワーズ株式会社 Vacuum exhaust system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025417A (en) * 2019-07-31 2021-02-22 大学共同利用機関法人 高エネルギー加速器研究機構 Evacuation method and device
WO2022075230A1 (en) * 2020-10-06 2022-04-14 エドワーズ株式会社 Vacuum exhaust system

Also Published As

Publication number Publication date
JP2881154B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
KR100271758B1 (en) Semiconductor manufacturing equipment and driving method thereof
US4850806A (en) Controlled by-pass for a booster pump
JP2009252953A (en) Vacuum processing apparatus
US20100163181A1 (en) Vacuum processing apparatus
JPH03164581A (en) Evacuation apparatus
JP4521889B2 (en) Substrate processing equipment
JPS59133365A (en) Vacuum device
KR100676197B1 (en) Air Flow Control Apparatus for Load Lock Chamber
JP3347794B2 (en) Semiconductor manufacturing equipment
JP3173681B2 (en) Evacuation apparatus and method
JPH06256948A (en) Vacuum treating device
JP2826479B2 (en) Gas supply device and operation method thereof
JP3037173B2 (en) Decompression processing equipment
JPH0466120A (en) Venting method for vacuum vessel
JPS6024017A (en) Adjustment of processing gas pressure
JPS61167197A (en) Vacuum disposer device
JPH0250422A (en) Semiconductor manufacturing apparatus
JP2664216B2 (en) Control method of vacuum processing equipment
TWI240947B (en) Pumping system of load lock chamber and operating method thereof
JPH07328410A (en) Evacuating device
JPH0517287A (en) Discharging method and device for reaction tube for semiconductor wafer treatment
JPH022613A (en) Manufacture of semiconductor
JPS5881975A (en) Gas line exhaust system of plasma etching apparatus and similar apparatus
JPH01237366A (en) Vacuum device
JPH05346182A (en) Suction and exhaust method of load lock chamber and device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees