JPH03164176A - Production of carrier for immobilizing biologically active substance - Google Patents

Production of carrier for immobilizing biologically active substance

Info

Publication number
JPH03164176A
JPH03164176A JP30319589A JP30319589A JPH03164176A JP H03164176 A JPH03164176 A JP H03164176A JP 30319589 A JP30319589 A JP 30319589A JP 30319589 A JP30319589 A JP 30319589A JP H03164176 A JPH03164176 A JP H03164176A
Authority
JP
Japan
Prior art keywords
carrier
primary amino
amino group
biologically active
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30319589A
Other languages
Japanese (ja)
Inventor
Toshitsugu Matsuki
寿嗣 松木
Noritsugu Saiki
斎木 紀次
Shingo Emi
江見 慎悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30319589A priority Critical patent/JPH03164176A/en
Priority to EP19900311653 priority patent/EP0425268A3/en
Priority to US07/603,500 priority patent/US5268287A/en
Publication of JPH03164176A publication Critical patent/JPH03164176A/en
Priority to US08/121,909 priority patent/US5380658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the title carrier free from absorption of excessive protein by non-specific absorption without lowering of activity by reacting a functional aldehyde compound with a formed article under condition of pH being in a specific range and subjecting the reaction product to diazotization treatment and then decomposing the diazotized product. CONSTITUTION:(A) A formed article composed of a polymer having a primary amino group at least surface layer part is reacted with (B) a bifunctional aldehyde compound and then when residual primary amino group is subjected to diazotization treatment and then decomposed to convert the amino group into OH group, the ingredient B is reacted therewith in pH 1.5-5 to provide the aimed carrier. Furthermore, the ingredient A is preferably polyphosphazene having primary amino group on the side chain and the ingredient B is preferably glutaric aldehyde.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、生物学的活性物質固定用担体の製造方法に関
する。更に詳しくは、該固定用担体の少なくとも表層部
が親水性側鎖を有するポリマーから構或される生物学的
活性物質固定用担体の製造方法に間する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a carrier for immobilizing a biologically active substance.More specifically, at least the surface layer of the carrier for immobilization has a hydrophilic side chain. A method for producing a carrier for immobilizing a biologically active substance composed of a polymer is provided.

(従来技術〉 近年、生物学的活性物質を用いた化学工業プロセス、臨
床化学用材料などの研究開発が盛んに行われている。
(Prior Art) In recent years, research and development of chemical industrial processes using biologically active substances, materials for clinical chemistry, etc. has been actively conducted.

生物学的活性物質の1つである生物内の種々の反応を触
媒する酵素が司どる生化学反応は、有機化学反応と比べ
て (1)常温、常圧下で反応が進行するので所要エネルギ
ーが大幅に節減できる。
Compared to organic chemical reactions, biochemical reactions controlled by enzymes, which are one of the biologically active substances that catalyze various reactions within living organisms, require less energy because they proceed at room temperature and pressure. Significant savings can be made.

(2)特定の構成の特定の位置に特異的に反応が起こる
ので副生戒物が少なく収率の向上が可能であり、精製も
容易である。
(2) Since the reaction occurs specifically at a specific position of a specific structure, there are few by-products and the yield can be improved, and purification is easy.

(3)基質特異的が厳密なため、種々の化合物の混在下
でも特定の物質のみ選択的に変化させうる。
(3) Since substrate specificity is strict, only a specific substance can be selectively changed even in the presence of a mixture of various compounds.

などの利点を有している。It has the following advantages.

しかしながら、水溶性の球状蛋白質である酵素は熱,有
機溶媒,酸性やアルカリ性溶液に対して不安定であり容
易にその活性を失う。また、これまで酵素は水溶液中に
溶解して用いられその回収は困難であったので、通常1
回の反応ごとに捨てられてしまいきわめて不経済であっ
た。
However, enzymes, which are water-soluble globular proteins, are unstable to heat, organic solvents, acidic and alkaline solutions, and easily lose their activity. In addition, until now, enzymes have been used dissolved in aqueous solutions and it has been difficult to recover them.
This was extremely wasteful as it was discarded after each reaction.

酵素の固定化は、このような酵素のもつ欠点を除いて長
所を利用するための技術である。
Enzyme immobilization is a technique for utilizing the advantages of such enzymes while eliminating their disadvantages.

酵素の固定化方法としては({)担体結合法、(2)架
橋法、(3)包括法やそれらを組み合わせた複合法など
がある。これらの技術を利用して酵素を利用した化学工
業プロセスの開発が行なわれている。さらに近年、酵素
のみならず、NAD(P)/NAD (P)HやATP
のような補因子、細胞内オルガネラ、微生物菌体、動植
物細胞なども固定化して利用する技術が報告されている
。これらの技術において酵素等を用いた生化学反応を行
なうためには機能を発現できる酵素等が数多く存在して
いることが望ましい。
Enzyme immobilization methods include ({) carrier binding method, (2) crosslinking method, (3) entrapping method, and a composite method that combines these methods. Using these techniques, chemical industrial processes using enzymes are being developed. Furthermore, in recent years, not only enzymes but also NAD(P)/NAD(P)H and ATP
Techniques have been reported to immobilize and utilize cofactors such as , intracellular organelles, microbial cells, animal and plant cells, etc. In order to carry out biochemical reactions using enzymes and the like in these technologies, it is desirable to have a large number of enzymes and the like capable of expressing their functions.

また、臨床検査分野においても、抗原,抗体などの生物
学的活性物質をポリスチレン系ラテックス等の固体担体
に固定化して診断に用いられている。これらの固定化法
は吸着型と化学結合型に分けられる。現在実用化されて
いるものは、ほとんどが吸着型と思われるが、これらは
生物学的活性物質(抗体タンパク等〉とラテックスの疎
水性相互作用にもとづく物理吸着を主とするため、生物
学的活性物質の脱離や診断における免疫化学的反応に好
ましくないタンパクが吸着するという可能性がある。従
って表面に反応性が高くがっ安定な官能基を高濃度にか
つ定量的に有し水系での反応で容易にタンパクなどを化
学結合的に固定できる担体があれば上記不都合な点を解
決することができる。
Furthermore, in the field of clinical testing, biologically active substances such as antigens and antibodies are immobilized on solid carriers such as polystyrene latex and used for diagnosis. These immobilization methods can be divided into adsorption type and chemical bond type. Most of the products currently in practical use seem to be adsorption types, but these mainly use physical adsorption based on the hydrophobic interaction between biologically active substances (antibodies, proteins, etc.) and latex. There is a possibility that proteins that are undesirable for desorption of active substances and immunochemical reactions in diagnosis may be adsorbed.Therefore, it is possible that proteins with high reactivity and stable functional groups on the surface are present in a high concentration and quantitatively and are not suitable for aqueous systems. The above-mentioned disadvantages can be solved if there is a carrier that can easily immobilize proteins and the like through chemical bonding.

さらにアフィニティー夕口マトグラフィーのような生物
学的親和性を利用した分離精製技術にも担体への生物学
的活性物質の固定化が必要となる。
Furthermore, separation and purification techniques that utilize biological affinity, such as affinity chromatography, also require the immobilization of biologically active substances onto a carrier.

この技術においても精製しようとする物質と生物学的親
和性を有する生物学的活性物質を数多く固定化している
ことが望ましく、かつ、精製しようとする物質が担体へ
非特異的に吸着しないことが必要とされる。
In this technique as well, it is desirable to immobilize a large number of biologically active substances that have biological affinity with the substance to be purified, and to ensure that the substance to be purified does not non-specifically adsorb to the carrier. Needed.

先に、本発明者らは、ポリホスファゼンからなる戒形物
の表面を処理して、該表層部に生物学的活性物質(以下
リガンドと言うことがある)を固定化できる官能基(更
に反応させて固定化できる官能基に変換し得るものも含
む)を導入した生物学的活性物質固定用担木を提案した
が(特開平1−30650号公報)、このものはリガン
ドと親和性のある物質以外の物質を疎水結合等により吸
着する(非特異吸着と称する)場合があり、アフイニテ
ィクロマトグラフィーあるいは診断薬に応用した場合、
分離精度あるいは診断精度が低下するといった問題点が
あった。
First, the present inventors treated the surface of a compound made of polyphosphazene to add functional groups (further reactive proposed a carrier for immobilizing biologically active substances (including those that can be converted into functional groups that can be immobilized by Substances other than substances may be adsorbed by hydrophobic bonds (referred to as non-specific adsorption), and when applied to affinity chromatography or diagnostic reagents,
There was a problem that separation accuracy or diagnostic accuracy decreased.

かかる問題点を解決するために、本発明者らは、さらに
、ポリホスファゼンより構戒された担体であって、該担
体の少なくとも表層部のポリホスファゼンは、その側鎖
がリガンドを結合し得る官能基を有する有機基と、リガ
ンドと非反応性でがつ親水性の有機基とを有する担体を
提案したく特願平1一22/ノ,5’婦).このものは
、リガンドと親和性を有しない物質(例えば蛋白質)の
非特異吸着が極めて低減されたものであった。
In order to solve this problem, the present inventors further developed a carrier that is more structured than polyphosphazene, in which the polyphosphazene in at least the surface layer of the carrier has a functional group whose side chain can bind a ligand. (Japanese Patent Application No. 1122/2003, 5'). In this product, nonspecific adsorption of substances (eg, proteins) that have no affinity with the ligand was extremely reduced.

く発明の目的〉 本発明の目的は、上述の如き、担体を構戒する少なくと
も表層部のポリマーが、リガンドと結合可能な官能基を
有する側鎖およびリガンドと非反応性でかつ親水性を有
する側鎖とを含有する、非特異吸着等の少ない生物学的
活性物質固定用担体を製造する新規な方法を提供するこ
とにある。
OBJECT OF THE INVENTION The object of the present invention is, as described above, that the polymer of at least the surface layer of the carrier has a side chain having a functional group capable of binding to a ligand, is non-reactive with the ligand, and is hydrophilic. It is an object of the present invention to provide a novel method for producing a support for immobilizing a biologically active substance containing a side chain and having less non-specific adsorption.

(発明の構戒) 本発明者らは、前記目的を達戒するため鋭意検討した結
果、少なくとも表層部が第1級アミノ基を有するポリマ
ーから構成される成形物に、特定の条件下で2官能性ア
ルデヒドを反応せしめた後、残存したアミ7基を水酸基
に転換せしめる方法が、極めて簡便でかつ得られる担体
の非特異吸着も少ないことを知り本発明に到達した。
(Construction of the Invention) As a result of intensive studies to achieve the above-mentioned object, the present inventors have discovered that, under specific conditions, a molded article composed of a polymer having at least a surface layer having a primary amino group has a The present invention was achieved by discovering that a method of reacting a functional aldehyde and then converting the remaining amide 7 groups into hydroxyl groups is extremely simple and causes less non-specific adsorption of the resulting carrier.

即ち本発明は、少なくとも表層部が第1級アミノ基を有
するポリマーからなる成形物に、2官能性アルデヒド化
合物を反応せしめ、次いで残存した第1級アミノ基をジ
アゾ化処理した後分解して水酸基に転換せしめて生物学
的活性物質固定用担体を製造するに際し、前記2官能性
アルデヒド化合物をpH1.5〜5の下に反応せしめる
ことを特徴とする生物学的活性物質固定用担体の製造方
法である。
That is, the present invention involves reacting a bifunctional aldehyde compound with a molded article made of a polymer having at least a surface layer having primary amino groups, and then diazotizing the remaining primary amino groups and decomposing them to form hydroxyl groups. A method for producing a carrier for immobilizing a biologically active substance, which comprises reacting the bifunctional aldehyde compound at a pH of 1.5 to 5. It is.

本発明でいう生物学的活性物質とは、生体内にある物質
と相互作用を示す物質を示し、酵素,抗体,核酸などの
高分子であってもよいし、捕酵素,ハブテンなどの低分
子であってもよい。
The biologically active substance as used in the present invention refers to a substance that interacts with a substance in the living body, and may be a polymer such as an enzyme, an antibody, or a nucleic acid, or a low molecule such as an enzyme-capturing enzyme or a habten. It may be.

本発明においては、少なくとも成形物の表層部が第1級
アミノ基を側鎖に有するポリマーから構或される成形物
を用いる必要があるが、かかるポリマーとしては、例え
ば、キトサン,第t級アミノ基を有するポリホスファゼ
ン,ニトロ化ポリスチレンを還元処理して得られるポリ
アミノスチレン,ポリアクリロニトリルを部分還元もし
くは全還元して得られるポリアミノ等をあげることがで
きる。また、これらは一部架橋処理を施して不溶化した
ものであってもよい。ながでも側鎖に第1級アミノ基を
有するポリホスファゼンポリマーが好適であり、かかる
側鎖としては、例えば下記のものを例示することができ
る。
In the present invention, it is necessary to use a molded article in which at least the surface layer of the molded article is composed of a polymer having a primary amino group in its side chain. Examples of such a polymer include chitosan, t-class amino Examples include polyphosphazene having a group, polyaminostyrene obtained by reducing nitrated polystyrene, and polyamino obtained by partially or completely reducing polyacrylonitrile. Further, these may be partially crosslinked to make them insolubilized. Polyphosphazene polymers having primary amino groups in their side chains are suitable, and examples of such side chains include the following.

−OCH2CH2NH2 OH −OCH2CH20CH2CH2NH2−NH (CH2) NH2 −NHNHC○(CHz)a CONHNH2かかる側
鎖は通常次のようにして導入される。
-OCH2CH2NH2 OH -OCH2CH20CH2CH2NH2-NH (CH2) NH2 -NHNHC○(CHz)a CONHNH2 Such a side chain is usually introduced as follows.

まず、公知の方法によりポリジク口口ホスファゼンを得
、次いで適当なアルコール類またはフェノール類あるい
はそれらの金属塩を反応せしめて、ポリジアルコキシホ
スファゼン又はボリアリーロキシホスファゼンを得る。
First, a polydialkoxyphosphazene is obtained by a known method, and then a suitable alcohol or phenol or a metal salt thereof is reacted to obtain a polydialkoxyphosphazene or a polyaryloxyphosphazene.

この際、アミノアルコキシド又はアミノアリーロキシド
を用いるとアミノアルコキシ基又はアミノアリーロキシ
基として選択的に導入され、目的の側鎖をもったものが
得られる。
In this case, if an aminoalkoxide or aminoaryloxide is used, it can be selectively introduced as an aminoalkoxy group or aminoaryloxy group, and a product having the desired side chain can be obtained.

また、ポリジクロロホスファゼンに対し、アルコキシ基
あるいはヒドロキシ基あるいはアミノ基などの反応性の
官能基と、ポリジクロロホスファゼンに対し不活性であ
るが後処理によりアミノ基に変換できる、例えばニトロ
基のような官能基を有する有機化合物を用いて、ポリジ
クロ口ホスファゼンと該有機化合物とを反応せしめ、次
いで然るべき後処理を施して得ることもできる。
In addition, reactive functional groups such as alkoxy groups, hydroxyl groups, or amino groups can be added to polydichlorophosphazene, and reactive functional groups such as nitro groups, which are inert to polydichlorophosphazene but can be converted into amino groups by post-treatment, can be used. It can also be obtained by using an organic compound having a functional group, reacting polydichlorophosphazene with the organic compound, and then subjecting it to an appropriate post-treatment.

本発明においては、成形物の少なくとも表層部が上記第
1級アミノ基を有するポリマーから横或されていれば、
いかなる形状のものを用いてもよく、またその製造方法
も特定する必要はない。すなわち、形状としては、微粒
子状,繊維状,フィルム状,その他最終的な使用方法に
あわせて任意のものを採用することができる。またその
製造方法も任意であって、あらかじめポリマーに第1級
アミノ基を導入したものを成形してもよく、またポリマ
ー戒形物を処理してその少なくとも表層部のポリマーに
第1級アミノ基を有する側鎖を導入したものであっても
よい。さらには、他種ポリマーからなる成形物の表面に
第1級アミノ基を有するポリマーを積層被覆したもので
あってもよい。
In the present invention, if at least the surface layer portion of the molded product is made of the polymer having the above-mentioned primary amino group,
Any shape may be used, and there is no need to specify the manufacturing method. That is, the shape may be particulate, fibrous, film, or any other shape depending on the final usage. The manufacturing method is also arbitrary, and it is possible to mold a polymer into which primary amino groups have been introduced in advance, or to process a polymer molded product so that at least the surface layer of the polymer has primary amino groups. It may also be one in which a side chain having the following is introduced. Furthermore, the surface of a molded article made of another type of polymer may be laminated and coated with a polymer having a primary amino group.

本発明においては、少なくとも表層部がこれら第1級ア
ミノ基を有するポリマーから構成された成形物を、2官
能性アルデヒド化合物を反応せしめて、リガンド固定点
を導入せしめる。この際、処理液はPHを1.5〜5、
好ましくは1.7〜3.5にコントロールした水溶液を
用いることが必要である.pHが1.5未満になると、
第1級アミノ基とアルデヒド基との反応性が極めて低く
なり、所望のリガンド固定点を導入することができなく
なる。
In the present invention, a molded article having at least a surface layer made of a polymer having these primary amino groups is reacted with a bifunctional aldehyde compound to introduce ligand fixing points. At this time, the pH of the treatment liquid is 1.5 to 5,
Preferably, it is necessary to use an aqueous solution controlled at 1.7 to 3.5. When the pH becomes less than 1.5,
The reactivity between the primary amino group and the aldehyde group becomes extremely low, making it impossible to introduce a desired ligand fixation point.

一方、pHが5を越える場合にあっては、第1級アミノ
基とアルデヒド基との反応性が高くなりすぎ、2官能性
アルデヒド化合物の両アルデヒド基が反応して架橋が起
るため好ましくない。
On the other hand, if the pH exceeds 5, the reactivity between the primary amino group and the aldehyde group becomes too high, which is undesirable because both aldehyde groups of the bifunctional aldehyde compound react and crosslinking occurs. .

処理液のpHは酸の水溶液でコントロールすればよいが
、酸としては、塩酸,硫酸,リン酸等の無機酸及び酢酸
等の有機酸いずれをも用いることができる。中でも、塩
酸.硫酸が好ましい。なお、上記無機酸には、有機酸ま
たは塩類等を混合してもよい。
The pH of the treatment liquid may be controlled with an aqueous acid solution, and as the acid, any of inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid can be used. Among them, hydrochloric acid. Sulfuric acid is preferred. Note that an organic acid, salts, or the like may be mixed with the above-mentioned inorganic acid.

本発明で用いる2官能性アルデヒド化合物は水溶性であ
ることが望ましく、特にグルタルアルデヒドが好ましい
。また、2官能性アルデヒド化合物を含有する処理液の
濃度は特に限定する必要もないが、あまりに潰すざると
架橋反応が起き易くなるし、あまりに薄いと十分な量の
リガンド固定点を導入することができなくなるので、通
常は0.01〜15%程度、好ましくは0,02〜3%
程度の濃度のものが用いられる。なお、2官能性アルデ
ヒド化合物と少なくとも表層部が第1級アミノ基を有す
るポリマーから構戒される戒形体との比も任意であるが
、通常は成形物の重量に対して、0.1〜100倍量の
2官能性アルデヒド化合物が用いられる。
The bifunctional aldehyde compound used in the present invention is preferably water-soluble, and glutaraldehyde is particularly preferred. In addition, there is no need to particularly limit the concentration of the treatment solution containing the bifunctional aldehyde compound, but if it is not crushed too much, a crosslinking reaction will easily occur, and if it is too thin, it will be difficult to introduce a sufficient amount of ligand fixation points. Usually about 0.01 to 15%, preferably 0.02 to 3%.
A concentration of about 100% is used. Note that the ratio of the bifunctional aldehyde compound to the polymer formed of a polymer having at least a surface layer portion having a primary amino group is arbitrary, but it is usually 0.1 to 0.1 to the weight of the molded product. 100 times the amount of bifunctional aldehyde compound is used.

本発明においては、次いで残存した第1級アミノ基をジ
アゾニウム塩とした後分解して水酸基に転換せしめるの
であるが、該反応は強酸性条件下で進行せしめるため、
上記アルデヒド化合物を反応せしめて生成したイミン結
合が加水分解する傾向がある。したがって、該ジアゾ反
応に先立って、生成したイミン結合は還元処理するのが
好ましい。
In the present invention, the remaining primary amino group is then converted into a diazonium salt and then decomposed and converted into a hydroxyl group, but since the reaction proceeds under strongly acidic conditions,
The imine bonds produced by reacting the above aldehyde compounds tend to be hydrolyzed. Therefore, it is preferable to reduce the generated imine bond prior to the diazo reaction.

還元剤としては、ジメチルアミノボラン,ホウ水素化シ
アノナトリウム,ホウ水素化ナトリウム,トリメチルア
ミノボラン,テトラメチルアンモニウムヒドリド等が好
ましく用いられる。
As the reducing agent, dimethylaminoborane, sodium cyanoborohydride, sodium borohydride, trimethylaminoborane, tetramethylammonium hydride, etc. are preferably used.

かくしてリガンド固定点が導入された戒形物は、通常は
水洗後酸中に浸漬せしめて残存アミノ基を全てプロトン
化した後、反応系が酸性の状態の下で亜硝酸ナトリウム
の水溶液を反応せしめてジアゾニウム塩を生威し、次い
で水と反応せしめることにより水酸基を導入する。この
際、酸の濃度は、ポリマー内部のアミノ基のプロトン化
を早くするために、なるべく高い方が好ましい。通常は
1規定塩酸が好んで使用される。ここで用いられる酸の
量は、酸の濃度にもよるが通常成形物の重量に対して1
倍以上、好ましくは20倍以上である。
The compound into which the ligand fixation point has been introduced is usually washed with water and immersed in acid to protonate all remaining amino groups, and then reacted with an aqueous solution of sodium nitrite in an acidic reaction system. The diazonium salt is produced using a diazonium salt, and then a hydroxyl group is introduced by reacting it with water. At this time, the acid concentration is preferably as high as possible in order to speed up the protonation of amino groups inside the polymer. Usually, 1N hydrochloric acid is preferably used. The amount of acid used here depends on the concentration of the acid, but is usually 1 % of the weight of the molded product.
It is at least twice as large, preferably at least 20 times.

亜硝酸ナトリウムの濃度は、ポリマー内部への浸透性の
ことを考えなるべく濃い濃度のものを用いることが望ま
しい。通常は0.1M以上2M以下、好ましくは0.3
M以上1.5M以下の濃度が好ましい。
It is desirable that the concentration of sodium nitrite be as high as possible in consideration of its permeability into the interior of the polymer. Usually 0.1M or more and 2M or less, preferably 0.3M
A concentration of M or more and 1.5M or less is preferable.

亜硝酸ナトリウムの添加量は、ポリマー全体の第1級ア
ミノ基のモル数以上である必要がある。
The amount of sodium nitrite added needs to be equal to or greater than the number of moles of primary amino groups in the entire polymer.

なお、ジアゾ化反応の際には発生する亜硝酸が第1級ア
ミノ基と反応せずに系外へ出てゆくこともある上、最初
の架橋反応やリガンド固定点導入反応でどの程度第1級
アミノ基が残っているかが不明瞭なこともあるので、最
初に使用する少なくとも一部に第1級アミノ基を有する
ポリマーの第1級アミノ基のモル数の一割増以上の亜硝
酸ナトリウムを用いることが好ましい。これ未満にあっ
ては、未反応第1級アミノ基が残る可能性があり、非特
異吸着発生の要因ともなるため望ましくない。
In addition, during the diazotization reaction, the nitrous acid generated may exit the system without reacting with the primary amino group, and to what extent the initial crosslinking reaction or ligand fixation point introduction reaction Since it may be unclear whether there are any primary amino groups left, it is necessary to add sodium nitrite in an amount that is at least 10% more than the number of moles of primary amino groups in the polymer that has at least a portion of primary amino groups initially used. It is preferable to use If it is less than this, unreacted primary amino groups may remain, which is undesirable because it may cause non-specific adsorption.

かかる第1級アミノ基を水酸基に転換する反応は、室温
でも極めて容易に進行するものであって、窒素の発生が
おさまればほとんど反応は完結している。しかし、引き
続いてアルカリで処理したり、加熱して反応を完結させ
てもよい。
The reaction of converting a primary amino group into a hydroxyl group proceeds extremely easily even at room temperature, and the reaction is almost complete once the generation of nitrogen has stopped. However, the reaction may be completed by subsequent treatment with an alkali or by heating.

この第1級アミノ基の水酸基への変換反応は炭素陽イオ
ンを経由する反応なので、転位反応を伴う場合が多い。
This reaction of converting a primary amino group into a hydroxyl group is a reaction via a carbon cation, and therefore often involves a rearrangement reaction.

転位反応はより安定な炭素陽イオンを形成するように起
こるが、複雑で生成物を特定するのが難しい。しかし、
転位反応が起きても水酸基が導入されることが多いので
、親水性であり、かつ架橋反応が起きていなければ特に
問題はない。なお、第1級アミノ基を有するポリマーが
ポリホスファゼンである場合には、側鎖を下記構造を含
むものにすれば転位を防ぐことができる。
Rearrangement reactions occur to form more stable carbon cations, but are complex and the products difficult to identify. but,
Even if a rearrangement reaction occurs, a hydroxyl group is often introduced, so there is no particular problem as long as it is hydrophilic and no crosslinking reaction occurs. In addition, when the polymer having a primary amino group is polyphosphazene, rearrangement can be prevented by making the side chain contain the following structure.

−○CH2CH2NH2 −NHCH2CH2NH2 −SCH2CH2NH2 (発明の効果) 以上に詳述した方法により得られる生物学的活性物質固
定用担体は、非特異吸着等による余分な蛋白質を吸着す
ることがなく、かつリガンドが立体構造変化を起してそ
の活性度を低下させることもない。
-○CH2CH2NH2 -NHCH2CH2NH2 -SCH2CH2NH2 (Effect of the invention) The support for immobilizing biologically active substances obtained by the method detailed above does not adsorb excess protein due to non-specific adsorption, and the ligand is It does not cause any structural changes that reduce its activity.

さらには、本発明の製造法において使用される戒形物の
形状は任意であって、粒状のみならず糸,組みひも,編
織布,不織布,紙等各種の繊維製品、さらにはフィルム
,シート等の面状成形物を用いることができる。従って
、アフィニティクロマトグラフィー用担体、固定化酵素
用担体、診断薬用担体等、巾広い分野で利用可能な生物
学的活性物質固定用担体を提供することができる。
Furthermore, the shapes of the precepts used in the manufacturing method of the present invention are arbitrary, and can be not only granular but also various textile products such as threads, braids, knitted fabrics, nonwoven fabrics, and paper, as well as films and sheets. A sheet-like molded product of can be used. Therefore, it is possible to provide a carrier for immobilizing a biologically active substance that can be used in a wide range of fields, such as a carrier for affinity chromatography, a carrier for immobilized enzymes, and a carrier for diagnostic agents.

(実施例) 以下実施例により本発明を更に詳しく説明する.実施例
1 2−(2−アミノエトキシ)エタノール105gと金属
ナトリウム2.0gよりナトリウムアルコラートを調製
する。
(Example) The present invention will be explained in more detail with reference to the following example. Example 1 Sodium alcoholate is prepared from 105 g of 2-(2-aminoethoxy)ethanol and 2.0 g of sodium metal.

これに、ボリビス(トリフロロエトキシ〉ホスファゼン
繊維(単糸50de, 20本合糸)を連続的走行させ
て80℃で15分浸漬処理したところ、ポリホスファゼ
ンの側鎖の76%が2−(2−アミノエトキシ〉エトキ
シ基に置換されたことが、後処理により反応系中に遊離
したトリフロロエトキシド由来のトリフロロエタノール
をガスクロマトグラフィーで測定することによりわかっ
た。
When polyphosphazene fibers (50 single fibers, 20 fibers) were run continuously and soaked at 80°C for 15 minutes, 76% of the side chains of polyphosphazene were 2-(2 -Aminoethoxy> It was found by gas chromatography to measure trifluoroethanol derived from trifluoroethoxide liberated into the reaction system by post-treatment that it was substituted with an ethoxy group.

なお、光学顕微鏡でこの繊維を観察したところ、繊維表
面から約273のところまで置換反応が進んでいるよう
であったが境界ははっきりしながった。
When this fiber was observed with an optical microscope, it appeared that the substitution reaction had progressed up to about 273 points from the fiber surface, but the boundary was not clear.

また、赤外吸収スペクトルには第1級アミノ基に由来す
る吸収が見られ、第1級アミノ基がポリホスファゼンの
側鎖に導入されたことがわかった。
In addition, absorption derived from primary amino groups was observed in the infrared absorption spectrum, indicating that primary amino groups were introduced into the side chains of polyphosphazene.

この表面処理済繊維を水中に約10分ゆっくりと走行さ
せて未反応のナトリウムアルコラート等を除去したのち
、該繊維をそのまま水中に巻きとった。この繊維0.3
gを水中よりとり出してグルタルアルデヒド(25%水
溶液)/0.01N塩酸(体積比1/1001の混合液
( pH1. 9)100ml中にO℃で1時間浸漬し
た。この繊維を水100 mlで3回洗浄したあと、I
N塩酸50m1に3時間O℃で浸漬し、さらにこれにO
℃で0. 5M亜硝酸ナトリウム水溶液25mlを徐々
に滴下した。窒素の放出が終わったあと室温で3時間放
置し、水100 mlで3回メタノール100mlで3
回0.1Mリン酸緩衝液( pH7. 6) 100m
lで3回該繊維を洗浄した。
This surface-treated fiber was slowly run in water for about 10 minutes to remove unreacted sodium alcoholate, and then the fiber was wound up in water as it was. This fiber 0.3
g was taken out of water and immersed in 100 ml of glutaraldehyde (25% aqueous solution)/0.01N hydrochloric acid (mixture solution (pH 1.9, volume ratio 1/1001) for 1 hour at 0°C. This fiber was immersed in 100 ml of water. After washing three times with
It was immersed in 50ml of N-hydrochloric acid for 3 hours at O℃, and further soaked in O
0 at °C. 25 ml of 5M sodium nitrite aqueous solution was gradually added dropwise. After nitrogen has been released, leave it at room temperature for 3 hours, and add 100 ml of water 3 times and 100 ml of methanol 3 times.
0.1M phosphate buffer (pH 7.6) 100m
The fibers were washed three times with l.

このようにして調製した担体繊維を、牛血清アルブミン
20mgの20mMリン酸緩衝液(pH7.6) 20
 mlの溶液に浸漬したところ、1時間後該溶液の上清
の280開の吸光度の減少量より該繊維への牛血清アル
ブミンの固定量を求めると18. 5mgであった。
The carrier fiber thus prepared was mixed with 20 mg of bovine serum albumin in 20 mM phosphate buffer (pH 7.6).
ml of the solution, and the amount of bovine serum albumin immobilized on the fiber was determined from the decrease in absorbance of the supernatant of the solution at 280 mm after 1 hour. It was 5 mg.

これに90mMモノエタノールアミノの0.1Mリン酸
緩衝液(pH7.6に調整> 100 mlの溶液に3
時間浸漬して残存アルデヒドを封鎖し、生戒したイミン
結合をシアン化ホウ水素ナトリウムで還元した。
To this, add 90mM monoethanolamine in 0.1M phosphate buffer (adjusted to pH 7.6) to 100ml of solution.
The remaining aldehyde was sequestered by soaking for a period of time, and the recovered imine bonds were reduced with sodium borohydride cyanide.

BSAで免疫したウサギ血清50mlを上記担体に負荷
して通常のアフィニティクロマトグラフィーの一連の吸
着.洗浄.溶離,再生の操作を行った。
50 ml of rabbit serum immunized with BSA was loaded onto the above carrier and subjected to a series of adsorptions using conventional affinity chromatography. Washing. Elution and regeneration operations were performed.

このとき溶離した抗BSA抗体は34. 1mgであり
、電気泳動で単一であった。
The anti-BSA antibody eluted at this time was 34. It was 1 mg, and it was found to be single by electrophoresis.

実施例2 0.2%ジメチルホルムアミド溶液、30℃下で測定し
た対数粘度が10.4のポリアクリロニトリル10gを
ジメチルホルムアミド150 mlに溶解し、これを2
0%ジメチルホルムアミド含有水浴中に糸状に押出し、
或形して多孔質構造を有するフィラメント状のポリアク
リロニトリルを得た。
Example 2 0.2% dimethylformamide solution, 10 g of polyacrylonitrile with a logarithmic viscosity of 10.4 measured at 30°C was dissolved in 150 ml of dimethylformamide,
Extruded into a thread in a water bath containing 0% dimethylformamide,
A filamentary polyacrylonitrile having a porous structure was obtained.

水素化リチウムアルミニウム2.5gを乾燥ジエチルエ
ーテル中に添加,攪拌したものに上記の如くして得た糸
状のポリアクリロニトリル1,2gを加えて16時間加
熱還流し、反応後水冷下に水を滴下して未反応の水素化
リチウムアルミニウムを分解せしめ、さらにINHCI
を滴下して、その分解物を溶解せしめ、次いでアミノ化
された該ポリアクリロニトリル糸状物を回収した。
2.5 g of lithium aluminum hydride was added to dry diethyl ether and stirred, followed by adding 1.2 g of the filamentous polyacrylonitrile obtained above and heating under reflux for 16 hours. After the reaction, water was added dropwise while cooling with water. to decompose unreacted lithium aluminum hydride, and further INHCI
was added dropwise to dissolve the decomposed product, and then the aminated polyacrylonitrile threads were recovered.

この糸状物を、グルタルアルデヒド(25%水溶液) 
/0. 0IN塩酸(体積比1/100)の混合液<p
}l1.9) 100ml中に浸漬した後、以下の還元
反応,ジアゾ化反応等を実施例1と同様に行った。
This filamentous material was mixed with glutaraldehyde (25% aqueous solution).
/0. Mixture of 0IN hydrochloric acid (volume ratio 1/100)<p
}l1.9) After immersing in 100 ml, the following reduction reaction, diazotization reaction, etc. were performed in the same manner as in Example 1.

このようにして得た担体を牛血清アルブミン20mgの
20mMリン酸緩衝液(pH7.6) 2o mlの溶
液に浸漬し、該担体への牛血清アルブミンの固定量を求
めると17. 6mgであった。
The carrier thus obtained was immersed in a solution of 20 mg of bovine serum albumin in 20 ml of 20 mM phosphate buffer (pH 7.6), and the amount of bovine serum albumin immobilized on the carrier was determined. It was 6 mg.

これに90mMモノエタノールアミノの0.1Mリン酸
緩衝液(pH7.6に調整) 100 mlの溶液に3
時間浸漬して残存アルデヒドを封鎖し、生成したイミン
結合をシアン化ホウ水素ナトリウムで還元した。
To this, add 90mM monoethanolamine in 0.1M phosphate buffer (adjusted to pH 7.6) to 100ml of solution.
The remaining aldehyde was sequestered by soaking for a period of time, and the formed imine bond was reduced with sodium borohydride cyanide.

BSAで免疫したウサギ血清50mlを上記担体に負荷
して通常のアフィニティクロマトグラフィーの一連の吸
着,洗浄,溶離,再生の操作を行った。
50 ml of rabbit serum immunized with BSA was loaded onto the carrier and subjected to a series of conventional affinity chromatography operations including adsorption, washing, elution, and regeneration.

このとき溶離した抗BSA抗体は32. 9mgであり
電気泳動で単一であった。
The anti-BSA antibody eluted at this time was 32. It was 9 mg and was found to be single by electrophoresis.

実施例3,4、比較例1,2 グルタルアルデヒドを反応させる際の条件を変更する以
外は実施例1と同様にして牛血清アルブミンが固定され
た担体を得た。固定された牛血清アルブミンの量を下表
に示す。
Examples 3 and 4, Comparative Examples 1 and 2 A carrier on which bovine serum albumin was immobilized was obtained in the same manner as in Example 1, except that the conditions for reacting glutaraldehyde were changed. The amount of fixed bovine serum albumin is shown in the table below.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも表層部が第1級アミノ基を有するポリ
マーからなる成形物に、2官能性アルデヒド化合物を反
応せしめ、次いで残存した第1級アミノ基をジアゾ化処
理した後分解して水酸基に転換せしめて生物学的活性物
質固定用担体を製造するに際し、前記2官能性アルデヒ
ド化合物をpH1.5〜5の下に反応せしめることを特
徴とする生物学的活性物質固定用担体の製造方法。
(1) A molded article made of a polymer having at least a surface layer having primary amino groups is reacted with a bifunctional aldehyde compound, and then the remaining primary amino groups are diazotized and then decomposed and converted to hydroxyl groups. A method for producing a carrier for immobilizing a biologically active substance, which comprises reacting the bifunctional aldehyde compound at a pH of 1.5 to 5 when producing the carrier for immobilizing a biologically active substance.
(2)第1級アミノ基を有するポリマーが、側鎖に第1
級アミノ基を有するポリホスファゼンである請求項(1
)記載の生物学的活性物質固定用担体の製造方法。
(2) A polymer having a primary amino group has a primary amino group in its side chain.
Claim (1) wherein the polyphosphazene is a polyphosphazene having a class amino group.
) A method for producing a carrier for immobilizing a biologically active substance.
(3)2官能性アルデヒドがグルタルアルデヒドである
請求項(1)記載の生物学的活性物質固定用担体の製造
方法。
(3) The method for producing a carrier for immobilizing a biologically active substance according to claim (1), wherein the bifunctional aldehyde is glutaraldehyde.
JP30319589A 1989-10-27 1989-11-24 Production of carrier for immobilizing biologically active substance Pending JPH03164176A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30319589A JPH03164176A (en) 1989-11-24 1989-11-24 Production of carrier for immobilizing biologically active substance
EP19900311653 EP0425268A3 (en) 1989-10-27 1990-10-24 Phosphazene polymer carrier for biologically active substance
US07/603,500 US5268287A (en) 1989-10-27 1990-10-26 Phosphazene polymer for immobilizing biologically active substances
US08/121,909 US5380658A (en) 1989-10-27 1993-09-16 Immobilization of biologically active substances with a polyphosphazene carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30319589A JPH03164176A (en) 1989-11-24 1989-11-24 Production of carrier for immobilizing biologically active substance

Publications (1)

Publication Number Publication Date
JPH03164176A true JPH03164176A (en) 1991-07-16

Family

ID=17918024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30319589A Pending JPH03164176A (en) 1989-10-27 1989-11-24 Production of carrier for immobilizing biologically active substance

Country Status (1)

Country Link
JP (1) JPH03164176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514817A (en) * 2011-12-22 2012-06-27 内蒙古伊利实业集团股份有限公司 Packing material capable of improving humidity resistance of frozen drinks and production method of packing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514817A (en) * 2011-12-22 2012-06-27 内蒙古伊利实业集团股份有限公司 Packing material capable of improving humidity resistance of frozen drinks and production method of packing material

Similar Documents

Publication Publication Date Title
US4822681A (en) Activated polymer solid bodies and processes for the production thereof
US4071409A (en) Immobilization of proteins on inorganic support materials
JPS6029474B2 (en) Fixed protein and its production method
US4169014A (en) Method of immobilizing proteinaceous substances
US4839419A (en) Method for immobilizing dissolved proteins
JPH051714B2 (en)
JPS61272202A (en) Production of material for affinity chromatography
EP0154315B1 (en) Improved diazonium affinity matrixes
JPS5846317B2 (en) I&#39;m going to have a good time.
JPH03164176A (en) Production of carrier for immobilizing biologically active substance
US5268287A (en) Phosphazene polymer for immobilizing biologically active substances
US4218363A (en) Preparation of support matrices for immobilized enzymes
JPH02242833A (en) Porous polyacrylonitrile composition and its preparation and application
JPH03285927A (en) Production of carrier for immobilization of biologically active substance
JPH03164175A (en) Production of carrier for immobilizing biologically active substance
JPH03275733A (en) Production of carrier for immobilizing biologically active substance
JPH03167234A (en) Production of carrier for immobilizing biologically active substance
JPH03140330A (en) Immobilized substance having biological activity, its production, carrier for the same and its use
Müller-Schulte Novel media for chromatography and immobilization using a radiation grafting technique
US4250080A (en) Preparation of support matrices for immobilized enzymes
EP1608972B1 (en) Method for preparing photoreactive polymers for immobilizing biomolecules thereon
JPS61181376A (en) Production of immobilized biologically active compound
RU2138813C1 (en) Method of immunosorbent producing (variants)
WO1990001167A1 (en) Porous support system for the immobilization of immunoassay components and assays performed therewith
JPH04183392A (en) Production of membrane immobilizing physiologically active substance