JPH04183392A - Production of membrane immobilizing physiologically active substance - Google Patents

Production of membrane immobilizing physiologically active substance

Info

Publication number
JPH04183392A
JPH04183392A JP31339890A JP31339890A JPH04183392A JP H04183392 A JPH04183392 A JP H04183392A JP 31339890 A JP31339890 A JP 31339890A JP 31339890 A JP31339890 A JP 31339890A JP H04183392 A JPH04183392 A JP H04183392A
Authority
JP
Japan
Prior art keywords
membrane
physiologically active
active substance
immobilized
cellulosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31339890A
Other languages
Japanese (ja)
Inventor
Yoshihisa Tsukada
芳久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP31339890A priority Critical patent/JPH04183392A/en
Publication of JPH04183392A publication Critical patent/JPH04183392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a membrane containing a physiologically active substance immobilized therein by reacting a cellulosic asymmetric membrane with a compound expressed by a specific formula, activating the aforementioned membrane and then immobilizing the physiologically active substance therein through chemical bonds. CONSTITUTION:A cellulosic asymmetric membrane is reacted with a compound expressed by formula I (R denotes formula II, III, TV or V) and activated and a physiologically active substance is then immobilized through chemical bonds to produce the objective membrane containing the physiologically active substance immobilized therein. The cellulosic membrane used in the aforementioned method is an asymmetric membrane in the form of a flat membrane or hollow fiber having a dense surface layer on one side or one membrane and a relatively coarse cellular layer on the surface on the opposite side. Fine agarose or cellulosic particles are reacted with 1,1'-carbonyldiimidazole, etc., in order to react and activate the cellulosic membrane with the compound expressed by formula I. The physiologically active substance to be immobilized is an enzyme, a coenzyme, an antibody, a hormone, etc.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明jよ、生理活性物質を固定化した膜の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention j relates to a method for producing a membrane on which a physiologically active substance is immobilized.

(従来の技術) 酵素、補酵素、ホルモン、レセプター、阻害剤等の生理
活性物質を不溶性担体に固定化して得た固定化生理活性
物質は、バイオリアクター、バイオセンサー、アフィニ
ティークロマトグラフィー用材料などとして化学薬品・
食品・医薬品の製造、臨床診断、治療等に広く用いるれ
ている。これろの場合に於て、用いられている固定化生
理活性物質の形態としては粒子状のものと膜状のものと
があり、両者とも種々のグループによって研究されてい
る。
(Prior art) Immobilized physiologically active substances obtained by immobilizing physiologically active substances such as enzymes, coenzymes, hormones, receptors, and inhibitors on insoluble carriers can be used as materials for bioreactors, biosensors, affinity chromatography, etc. chemicals·
It is widely used in food and pharmaceutical manufacturing, clinical diagnosis, treatment, etc. In these cases, the forms of the immobilized physiologically active substances used include particulates and membranes, both of which are being studied by various groups.

多孔質の粒子状の担体を用いた固定化生理活性物質につ
いては最も良く研究されているが、粒子内および粒子周
囲の非撹拌層に基く拡散制限により固定化生理活性物質
の効率が低下し、場合によって;よ、潜在活性のごく一
部しか利用されないことが指摘されている(例えば特公
昭5g−3D6T3号)。
Immobilized bioactive substances using porous particulate carriers are the most well-studied, but the efficiency of immobilized bioactive substances is reduced due to diffusion limitations based on unstirred layers within and around the particles. It has been pointed out that in some cases, only a small portion of the latent activity is utilized (for example, Japanese Patent Publication No. 5G-3D6T3).

この問題点に対する対策として微孔性の膜jこ例えば酵
素を固定化し、基質水溶液を圧力を用□、)で膜中に透
過させる反応方法が開発されて−)る。
As a countermeasure to this problem, a reaction method has been developed in which, for example, an enzyme is immobilized on a microporous membrane and an aqueous substrate solution is permeated through the membrane using pressure.

この1mな嘆固定住生理活性物質をバイオリアクター、
バイオセンサー、アフィニティー分離用材料、臨床診断
等に巾広く応用するためには、摸担体は蛋白質との非特
異的相互作用が極力小さ□、ハことが重要で、そのため
には親水性が高く、荷電を持たないセルロース等の多糖
類が材質として好ましい。
This 1m bioactive substance is transferred to a bioreactor.
In order to be widely applied to biosensors, affinity separation materials, clinical diagnosis, etc., it is important that the sample carrier has as little nonspecific interaction with proteins as possible, and for this purpose, it must be highly hydrophilic. An uncharged polysaccharide such as cellulose is preferable as the material.

多孔質セルロース膜に酵素その他の生理活性物質を化学
結合により固定化する方法については既にいくつかの方
法が知られている。例えば特開昭56−97235号、
特公昭58−44357号、特公昭62−32919号
にはセルロース膜に酸化剤を作用させて活性化した後に
酵素を固定化する方法が開示されている。
Several methods are already known for immobilizing enzymes and other physiologically active substances on porous cellulose membranes through chemical bonds. For example, JP-A No. 56-97235,
Japanese Patent Publication Nos. 58-44357 and 62-32919 disclose a method in which an oxidizing agent is applied to a cellulose membrane to activate it and then an enzyme is immobilized thereon.

又、英国特許第1.183.261)号にはセルロース
等の膜にトリアジン誘導体を作用させて活性化した後に
酵素を固定化する方法が開示されている。
Furthermore, British Patent No. 1.183.261) discloses a method in which a triazine derivative is applied to a membrane of cellulose or the like to activate it and then an enzyme is immobilized thereon.

これろの既知の方法jこよって生理1舌1生物質を固定
化したセルロース膜を得ることができるが、これるの方
法に:ままだ問題点があり、実用的jこ;よ満足できる
ものて;まな′、)。すなわち、酸化剤を用し)る活性
化法では、担体上に生成したアルデヒド基が生理活性物
質中の主にアミ7基と反応してンッフベースを形成する
ことにより固定化されると考えちれてtハるが、ンッフ
ベースは不安定であるため:二面定住生理活性物質O脱
離がと1つやす:18又、脱離を防くために\a3H,
恒NaBH郵\等て還元する方法を、用゛、)ると、そ
の処理j二より更j:主理后牛が低下する。生理−百性
物質を!定住したあとて還元のような二段階目の反応を
要し−一し1方法としてトリアジン誘導体による生理活
性物質の固定化法が開発されたが、この方法で:ま!走
化反応の速度が遅いた於に固定化に比較的長′71特開
を必要とし、不安定な生理活性物質の場合にはその開の
失活が問題となることがあるっ 又、英国特許第1.183.260号に;まトリアジン
誘導体による膜の活性化に際して膜(濾紙やコブトン布
)をアルカリに浸漬することが示されて□、)るが、セ
ルロース製の非対称膜(例えばミクロフィルター)の様
に細′、1繊維かみ成る非対称膜′こ二の方法を応用す
るとセルロースの加水分解OたYか膜がかなり変形し、
又強度も劣化すると′、1う問題点がある。
These known methods make it possible to obtain cellulose membranes with immobilized biomaterials, but these methods still have some problems and are not practical. te;mana′,). In other words, in the activation method using an oxidizing agent, it is thought that the aldehyde groups generated on the carrier are immobilized by reacting mainly with the amide 7 group in the physiologically active substance to form a buffer base. However, since Nuffbase is unstable, it is easy to desorb the two-sided physiologically active substance O.18 Also, in order to prevent desorption, \a3H,
If you use a method of reducing constant NaBH mail, etc., the processing value will be lower than that of the second method. Physiology-Hundred substances! A method for immobilizing physiologically active substances using triazine derivatives was developed as a method that requires a second-step reaction such as reduction after settling, but with this method: Well! Because the rate of chemotactic reaction is slow, immobilization requires a relatively long period of time, and in the case of unstable physiologically active substances, deactivation of the chemotactic reaction may become a problem. Patent No. 1,183,260 shows that immersing a membrane (filter paper or Cobuton cloth) in an alkali upon activation of the membrane with a triazine derivative; When this method is applied to an asymmetric membrane consisting of a single thin fiber like a filter), the membrane is considerably deformed due to the hydrolysis of cellulose.
Furthermore, there is another problem when the strength deteriorates.

そこで、活性化によってセルロース非対称膜の膜物性を
悪くすることなしに、しかも蛋白質に対して高い反応性
を持つ活性化手段を用−)だ固定化方法の開発が望まれ
ていた。
Therefore, it has been desired to develop an immobilization method that does not impair the physical properties of cellulose asymmetric membranes due to activation and that uses activation means that are highly reactive to proteins.

〈発明が解決しようとする課題) 本発明の目的は、流体に対する特性の優れたセルロース
製の非対称膜に対し、生理活性を極力維持したままで安
定な化学結合により生理活性物質を固定化する方法を提
供することにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to provide a method for immobilizing physiologically active substances through stable chemical bonds while maintaining physiological activity as much as possible on an asymmetric membrane made of cellulose that has excellent properties against fluids. Our goal is to provide the following.

(課題を解決するための手段)          (
本発明の目的;まセルロース製非対称膜を下記−般式(
I)で表される化合物と反応させて活性化した後、生理
活性物質を化学結合により固定化することによって達成
された。
(Means to solve the problem) (
The purpose of the present invention is to produce an asymmetric cellulose membrane with the following general formula (
This was achieved by reacting with the compound represented by I) to activate it, and then immobilizing the physiologically active substance through chemical bonding.

一般式(1) 本発明方法のプロセスは、次のスキームによりセルロー
ス> −[]H−R−c−R→(セルロース)−且−R
口 (セルロース> −0−口−R−112N −(生理活
性物質)□ (セルロース)−〇−ローNH−(生理活
性物質)本発明で用いられるセルロース膜;ま膜の一方
S側に緻密な表面層を持ち、反対側の表面に比較的粗な
多孔質層を持つ、平膜または中空糸の形状の非対称膜で
ある。孔径が0.1μ〜10μの範囲にある多孔質膜(
例えばミクロフィルター)や、更に孔径が小さく、分画
分子量で表わして1.000〜1、000.000であ
る一ハわゆる眼外濾過膜が好ましく使用できる。これる
の膜の製造法については例えば特公昭45−4633号
、特公昭62−15642号、特公昭62−34343
号に開示されている。、膵の草さ(中空糸の場合は壁部
分の厚さ)として;tioμ以上のものが好ましく使用
できるが、10μ〜300μが更に好ましい。
General formula (1) The process of the method of the present invention is carried out according to the following scheme in which cellulose> -[]H-R-c-R→(cellulose)- and -R
Mouth (cellulose> -0-mouth-R-112N - (physiologically active substance) □ (cellulose) -〇-lowNH- (physiologically active substance) Cellulose membrane used in the present invention; dense membrane on one S side of the membrane It is an asymmetric membrane in the shape of a flat membrane or hollow fiber, which has a surface layer and a relatively rough porous layer on the opposite surface.Porous membranes with pore diameters in the range of 0.1μ to 10μ
For example, a microfilter) or an extraocular filtration membrane having a smaller pore size and a molecular weight cut-off of 1.000 to 1,000.000 can be preferably used. Regarding the manufacturing method of this membrane, for example, Japanese Patent Publication No. 45-4633, Japanese Patent Publication No. 15642-1982, Japanese Patent Publication No. 34343-1983.
Disclosed in the issue. , pancreatic grass (thickness of the wall portion in the case of hollow fibers); tioμ or more can be preferably used, and 10μ to 300μ is more preferred.

次に、セルロース膜を前記一般式(I>で表わされる化
合物と反応させて活性化する方法jこつし)で述べる。
Next, a method of activating a cellulose membrane by reacting it with a compound represented by the general formula (I>) will be described.

粒子に対して同様な@構に基づく活性化反応を行うこと
は公知(St、 T、 W、 Heavn : !Je
thods inEnzymology vol、 1
35.102〜11−.(1987))であり、その内
容:ま微小なアガロースまた:まセルロース粒子に1,
1′ −カルボニルイミダソール、L+1′−カルボニ
ル−1,2,4−1−リアソール等を作用させて活性化
するものである。その標準的な活性化法1才、微小−;
アガロースまたはセルロース粒子0.3gに対して1,
1′−カルボニルイミダソールQ、 74mmolおよ
びジオキサン20m1を加え、室温で15分間程度反応
させるものである。
It is known that an activation reaction based on a similar @ structure is performed on particles (St, T, W, Heavn: !Je
thods inEnzymology vol, 1
35.102-11-. (1987)), and its contents: microscopic agarose and cellulose particles with 1,
It is activated by the action of 1'-carbonylimidasole, L+1'-carbonyl-1,2,4-1-lyasole, etc. Its standard activation method is 1 year old, micro-;
1 for 0.3 g of agarose or cellulose particles,
74 mmol of 1'-carbonylimidasole Q and 20 ml of dioxane were added and reacted at room temperature for about 15 minutes.

しかし、膜につし)での活性化法は知ろれてLハな―)
However, the activation method for membranes is unknown.
.

セルロース製非対称膜j=対して本発明者、1上記文献
jこ記載の反応条件で活性化を試みたがはAとど活性化
されなかった。そこで反応条件を種々探索した結果、次
の条件でセルロース膜を活性化できることを見出した。
The present inventor attempted to activate the asymmetric cellulose membrane j= under the reaction conditions described in the above-mentioned document J, but A was not activated. As a result of searching for various reaction conditions, we found that cellulose membranes could be activated under the following conditions.

すなわち、セルロース膜0.3gに対して前言己一般式
(I)で表される化合物を5〜80ITIITloβ、
好ましくは20〜4QmmoAおよび溶媒10〜100
−1好ましくは50mI!を加え、室温で5〜15分間
反応させることにより活性化が行われた。ここで用いる
溶媒としては、アセトン、ジオキサン、ピリジン、アセ
トニトリル、トルエン、酢酸エチル、クロロホルム等ヲ
挙げる二とができる。ユニで見出した反応方法:ま、一
般式(I)で表わされる化合物の1文が極めて高″、)
点て公知の方法と大きく異なる。
That is, 5 to 80 ITIITloβ,
Preferably 20-4QmmoA and solvent 10-100
-1 preferably 50 mI! Activation was performed by adding and reacting at room temperature for 5 to 15 minutes. Examples of the solvent used here include acetone, dioxane, pyridine, acetonitrile, toluene, ethyl acetate, and chloroform. Reaction method discovered at Uni: Well, one sentence of the compound represented by general formula (I) is extremely high.'')
This method is significantly different from known methods.

活性化反応により導入された活性基の量は、下a己のス
キーム::示したようjこエチレンジアミンを作用させ
ててミノ基を導入し、文B (、Anal、[him。
The amount of the active group introduced by the activation reaction is determined by the following scheme: As shown, a mino group is introduced by reacting with ethylenediamine, and the following formula is used:

1へ:ta、58巻 248頁、1972年)に記載の
方法にしたがってピクリン酸とアミン基のイオン結合量
を測ることにより定量できる。
1: Ta, Vol. 58, p. 248, 1972), it can be quantified by measuring the amount of ionic bond between picric acid and amine group.

(セルo−ス)−0−[ニーR=lh[’LCLNL−
(セルD −ス) −0CNHCH2CH2NH2また
、セルロース膜を構成する全グルコースに対して、0.
1〜lQmoβ%、より好ましくは0.5〜3.5mo
f%導入されていることが生理活性物質の固定化には望
ましい。
(cell o-s)-0-[knee R=lh['LCLNL-
(Cell D-su) -0CNHCH2CH2NH2 Also, 0.0.
1-1Qmoβ%, more preferably 0.5-3.5mo
f% is preferably introduced for immobilization of physiologically active substances.

次に活性化されたセルロース膜への生理活性物質の固定
化法につし)で述べる。まずpH7〜9.5の範囲のバ
ッファーに画定化されるべき生理活(fi:物質を溶解
する。この時用□、)るバッファーはリン酸バッファー
、ホウ酸ハンファ−、モルフォリノエタンスルホンil
(MES>バッファー、ヒト°ロキンエチルピペラジン
エタンスルポン ッファ−など1級アミン基を有しな一ハものが好ましヒ
1:又、必要により生理活性物質の安定化剤をさろに加
えてもよし1。圧力j二よってセルロース膜中に二の溶
液を送り込み、4〜40℃で1〜12時間循謹させ反応
させる。固定化反応終了後、膜中にバッファー液を通過
させ、膜を洗浄する。さらにアルカリ又はエタノールア
ミン等のアミンの水溶液を通過させる二とにより、膜に
残存する活性基と反応させて不活性化し、最後:=再び
バッファー液で洗浄する。
Next, we will describe a method for immobilizing physiologically active substances on activated cellulose membranes. First, the physiological activity (fi: dissolves the substance) to be defined in a buffer in the pH range of 7 to 9.5.
(MES>Buffer, one that does not have a primary amine group, such as human ethyl piperazine ethane sulponfer, is preferable.) Also, if necessary, a stabilizer for the physiologically active substance may be added to the container. Moyoshi 1. Pour the second solution into the cellulose membrane under pressure and let it circulate and react at 4 to 40°C for 1 to 12 hours. After the immobilization reaction, pass the buffer solution through the membrane and remove the membrane. Further, by passing an aqueous solution of an alkali or an amine such as ethanolamine, the active groups remaining on the membrane are reacted with and inactivated, and finally, the membrane is washed again with a buffer solution.

以上に述べた方法により、生理活性物質を非対称セルロ
ース膜に固定化することができる。
By the method described above, a physiologically active substance can be immobilized on an asymmetric cellulose membrane.

本発明によって固定化される生理活性物質は、酵素、補
酵素、抗体、ホルモン、レセプター、レクチン、阻害剤
等である。酵素としで;ま、例え;ビトリプンン、キモ
トリブンン、サーモライシン、パパイン、アスパラギナ
ーゼ、リバーセ、アミラーセ、セルラーセ、リソチーム
、ウレアーゼなとの加水分解酵素、アルコールデヒドロ
ゲナーゼ、乳酸デヒドロゲナーゼ、グルコース万キンダ
ーセ、アルデヒドデヒドロゲナーゼ、D−アミノ酸オキ
ンターセ、ベルオキシダーセ、カタラーゼ、スーパーオ
キントデイスムターゼなどの酸化還元酵素、ヘキソキナ
ーゼ、タレアチンキナーゼ、アラニントランスアミナー
ゼなどの転移酵素、フマラーゼ、アスパルテートアンモ
ニアリアーゼ、スレオニンアルドラーゼ、ピルビン酸デ
カルボキンラーゼなどのリアーゼ、グルコースリン酸イ
ソメラーセ、メチルマロニルCO^ムスターゼなどの異
性化酵素、グルタミンンンセターゼ、アセチルCoAカ
ルボキシラーゼ、D N 、A IJガーゼなどのりガ
ーゼ等をあげることができる。その他の生理活性物質と
してはNg−(6−アミノヘキシル)−A〜fpなどの
補酵S誘導体、免疫グロブリンおよびそのFabフラグ
メント、プロティンA等のハクテリアルFcレセプター
、コンカナバリンAや小麦胚芽アグルチニンなどのレク
チン、大豆トリブンン、インヒビターなとの阻害剤、フ
ェニルアラニン、トリアドファンなどのアミノ酸、フィ
ブロネクチン及びその部分配列などがあげられる。
Physiologically active substances immobilized according to the present invention include enzymes, coenzymes, antibodies, hormones, receptors, lectins, inhibitors, and the like. Enzymes; for example, hydrolytic enzymes such as vitripsyne, chymotrybun, thermolysin, papain, asparaginase, reversese, amylase, cellulase, lysozyme, urease, alcohol dehydrogenase, lactate dehydrogenase, glucose dehydrogenase, aldehyde dehydrogenase, D-amino acid oxidoreductases such as ocintase, peroxidase, catalase, and super occhintodismutase; transferases such as hexokinase, taleatin kinase, and alanine transaminase; lyases such as fumarase, aspartate ammonia lyase, threonine aldolase, and pyruvate decarboxylase; Examples include isomerases such as glucose phosphate isomerase and methylmalonyl CO^mustase, glutamine ncetase, acetyl CoA carboxylase, and glue gauze such as D N and A IJ gauze. Other physiologically active substances include cofermented S derivatives such as Ng-(6-aminohexyl)-A~fp, immunoglobulins and their Fab fragments, lacteal Fc receptors such as protein A, and lectins such as concanavalin A and wheat germ agglutinin. , soybean tribone, inhibitors, amino acids such as phenylalanine and triadophane, and fibronectin and its partial sequences.

(発明の効果) 活性化した担体に生理活性物質を固定化する段階て失活
が少なく、又、経時で生理活性物質が脱離しな□、)こ
と:ま固定化生理活性物質にとって極めて重要である。
(Effects of the invention) There is little deactivation during the immobilization of physiologically active substances on activated carriers, and the physiologically active substances do not desorb over time (): This is extremely important for immobilized physiologically active substances. be.

この点:こ於てセルロース膜に関して公知の方法、即ち
、酸化剤による;活性化法およびトリアジン誘導体によ
る1活性化法にはまだ改良がなされなければなろなし)
。本発明に従って活性化されたセルロース膜:ま生理活
性物質との反応性が高く、又、ポンプを用いて生理活性
物質を膜内に送り込むため拡散に要する時間も必要な′
、)。その結果多くの生理活性物質の場合、4℃で1〜
数時間で固定化が完了し、安定な化学結合が構成される
。これ:ま前記の公知の方法での固定化が4℃で12時
間かろ40℃で一昼夜の条件で行なわれるの:二対して
、短時間で済むため生理活性の低下が少な′−)C また、セルロース膜および生理活性物質との結合部位が
親木的かつ非イオン性であるため、蛋白質等の非特異吸
着が無く、センサーやアフィニティ分離用材料への応用
にも適して5)る。
In this respect, the known methods for cellulose membranes, namely the activation method with oxidizing agents and the activation method with triazine derivatives, still have to be improved.
. The cellulose membrane activated according to the present invention has high reactivity with physiologically active substances, and also requires time for diffusion because a pump is used to send the physiologically active substances into the membrane.
,). As a result, in the case of many physiologically active substances, the
Immobilization is completed in a few hours, forming a stable chemical bond. This: In contrast to the above-mentioned known methods in which immobilization is carried out at 4°C for 12 hours or at 40°C for one day and night, it only takes a short time, so there is little decrease in physiological activity'-)C Since the bonding site with the cellulose membrane and physiologically active substances is phylic and nonionic, there is no non-specific adsorption of proteins, etc., making it suitable for applications in sensors and affinity separation materials 5).

さる:=、セルロース膜はほとんどのを殿溶媒にも耐え
るため、有機溶媒系で本発明の固定化生理活性物質を使
用することもできる。
Since cellulose membranes can withstand most solvents, the immobilized physiologically active substances of the present invention can also be used in organic solvent systems.

(実施例) 次に実施例をあげて本発明を更に詳細:=説胡するが、
本発駅はこれろに限定されるもので:よな−)。
(Example) Next, the present invention will be explained in further detail by giving examples.
The main departure station is limited to this one: Yona-).

実施例1.活性化膜の製造 セルロース製ミクロフィルターFR−4o (x±写真
フィルム■製、孔径0.4μ)0.3gに1゜1′−カ
ルボニルジイミダゾール4 g (25mmol)と無
水ジオキサン50−を加えた。室温で15分間振とうし
て活性化した後に、膜をメタノールおよびアセトンでよ
く洗浄した。これを乾燥して3.2mol %の活性基
を導入した活性化セルロース膜を得た。
Example 1. Production of activated membrane 4 g (25 mmol) of 1゜1'-carbonyldiimidazole and 50 mmol of anhydrous dioxane were added to 0.3 g of cellulose microfilter FR-4o (made by x±photographic film ■, pore size 0.4 μ). . After activation by shaking for 15 minutes at room temperature, the membrane was thoroughly washed with methanol and acetone. This was dried to obtain an activated cellulose membrane into which 3.2 mol % of active groups were introduced.

同様?;方法でミクロフィルターFR−40(0,3g
)を室温で活性化したときの反応条件および活性化量を
表1:こ示す。また、粒子を活性化する場合の標準的−
一活性化法を膜に適用した比較例を表1に示す。
Similar? ; Microfilter FR-40 (0,3g
) is activated at room temperature and the reaction conditions and activation amount are shown in Table 1. In addition, the standard for activating particles -
Table 1 shows comparative examples in which one activation method was applied to membranes.

表1 実施例5 トリプシン固定化膜の製造 実施例1に示した活性化嘆を用′、1て、トリプシンの
固定化を行った。
Table 1 Example 5 Preparation of trypsin-immobilized membrane Trypsin was immobilized using the activation procedure shown in Example 1.

トリプシン50mgを、50m〜ACaCR,を含む、
pH7,3のHEPESハソファ−50社に溶解した。
50 mg of trypsin, containing 50 m~ACaCR,
It was dissolved in HEPES Hasofa-50 at pH 7.3.

濾過用のフィルターホルダーにセットした;活性化セル
ロース膜にトリプシン溶液をポンプを用、)で4℃で透
過させ、5時間循環させることによ:つ固定化した。次
に、トリプシンと反応しなかった活性基を除くために0
. I Mエタノールアミン水溶液を4℃で5時間@環
させエタノールアミンと反応させた。最後;こへソファ
ー液を透過させて十分に膜を洗浄した。酵素の固定化量
は溶液中に残った酵素をニンヒドリン反応により定量し
た。
The trypsin solution was permeated through the activated cellulose membrane set in a filter holder for filtration at 4° C. using a pump, and the membrane was immobilized by circulation for 5 hours. Next, in order to remove active groups that did not react with trypsin, 0
.. An IM ethanolamine aqueous solution was stirred at 4° C. for 5 hours to react with ethanolamine. Finally, the membrane was thoroughly washed by passing the sofa solution. The amount of immobilized enzyme was determined by quantifying the amount of enzyme remaining in the solution by ninhydrin reaction.

このトリプシン固定化膜の活性測定を行った。The activity of this trypsin-immobilized membrane was measured.

基質としてはL−ベンゾイルアルギニン−パラニトロア
ニリド(L−BAPA)を10−’Mの濃度で、10m
MのCaCR2を含むpf18.2の0.05 N・丁
トリスハンファーに溶解したものを用−)だ。トリプシ
ン固定化膜を′a通用フィルターホルダーにセットL2
5℃で基質溶液を透過させて透過液出の生成物濃度を定
量した。結果を表2に示すっ比較例2. 酸化剤を用し
)だ活性化法によるトリプシン固定化膜の構造 FR40膜を0.5 Mのメタ過ヨウ素酸ナトリウムに
浸漬し40℃で5時間反応させた。この膜を純水で洗浄
した後、実施例1と同様のトリプシン溶液を4℃で5時
間循環させることにより固定化した。
As a substrate, L-benzoylarginine-paranitroanilide (L-BAPA) was used at a concentration of 10-'M.
A solution of pf 18.2 containing M. CaCR2 dissolved in 0.05 N. Trishampher was used. Set the trypsin-immobilized membrane in the 'a universal filter holder L2
The substrate solution was permeated at 5°C, and the product concentration in the permeate was determined. The results are shown in Table 2. Comparative Example 2. Structure of trypsin-immobilized membrane by activation method (using oxidizing agent) FR40 membrane was immersed in 0.5 M sodium metaperiodate and reacted at 40°C for 5 hours. After washing this membrane with pure water, it was immobilized by circulating the same trypsin solution as in Example 1 at 4° C. for 5 hours.

次jこその酵素溶液に1■/mlの濃度の水素化ホウ素
す) IJウムを加え4℃で2時間@環した。その後、
実施例1と同様に活性測定を行った。結果を表2に示す
Next, borohydride (IJ) at a concentration of 1/ml was added to the enzyme solution and stirred at 4°C for 2 hours. after that,
Activity measurement was carried out in the same manner as in Example 1. The results are shown in Table 2.

m−りm-ri

Claims (1)

【特許請求の範囲】 セルロース製非対称膜を下記一般式( I )で表される
化合物と反応させて活性化した後、生理活性物質を化学
結合により固定化することを特徴とする、生理活性物質
を固定化した膜の製造方法。 一般式( I ) ▲数式、化学式、表等があります▼ 式中、Rは▲数式、化学式、表等があります▼、▲数式
、化学式、表等があります▼、▲数式、化学式、表等が
あります▼ または▲数式、化学式、表等があります▼を表す。
[Claims] A physiologically active substance, characterized in that the asymmetric membrane made of cellulose is activated by reacting with a compound represented by the following general formula (I), and then the physiologically active substance is immobilized by chemical bonding. A method for producing a membrane with immobilized. General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ In the formula, R is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. Represents ▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP31339890A 1990-11-19 1990-11-19 Production of membrane immobilizing physiologically active substance Pending JPH04183392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31339890A JPH04183392A (en) 1990-11-19 1990-11-19 Production of membrane immobilizing physiologically active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31339890A JPH04183392A (en) 1990-11-19 1990-11-19 Production of membrane immobilizing physiologically active substance

Publications (1)

Publication Number Publication Date
JPH04183392A true JPH04183392A (en) 1992-06-30

Family

ID=18040791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31339890A Pending JPH04183392A (en) 1990-11-19 1990-11-19 Production of membrane immobilizing physiologically active substance

Country Status (1)

Country Link
JP (1) JPH04183392A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012246A1 (en) * 1996-09-18 1998-03-26 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Shaping object with reactive functions
WO1998002189A3 (en) * 1996-07-14 1998-05-07 Univ Bar Ilan Method for preparing bioactive polymers
CN1059355C (en) * 1995-01-24 2000-12-13 中国科学院大连化学物理研究所 Membrane stack medium and casing of microporous affinity membrane separator for biological macromolecule purifying
CN1059354C (en) * 1994-12-28 2000-12-13 中国科学院大连化学物理研究所 Cellulose microporosity filter membrane and its preparation and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059354C (en) * 1994-12-28 2000-12-13 中国科学院大连化学物理研究所 Cellulose microporosity filter membrane and its preparation and application
CN1059355C (en) * 1995-01-24 2000-12-13 中国科学院大连化学物理研究所 Membrane stack medium and casing of microporous affinity membrane separator for biological macromolecule purifying
WO1998002189A3 (en) * 1996-07-14 1998-05-07 Univ Bar Ilan Method for preparing bioactive polymers
WO1998012246A1 (en) * 1996-09-18 1998-03-26 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Shaping object with reactive functions

Similar Documents

Publication Publication Date Title
KR101953865B1 (en) Cross-linked poly-e-lysine particles
JPS59225064A (en) Carrier for immobilizing physiologically active substance
CN102068965B (en) Method for preparing chitosan separation medium suitable for protein purification
Ulbricht et al. Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
US3985617A (en) Immobilization of biologically active proteins with a polypeptide azide
Winterton et al. Heparin interaction with protein-adsorbed surfaces
JPH04183392A (en) Production of membrane immobilizing physiologically active substance
AU1426300A (en) Squaric acid activated carrier usable for immobilisation of compounds containingamine groups
US5015387A (en) Method for activating cellulosic membrane, activated cellulosic membrane, method of fixing physiologically active substance on the activated cellulosic membrane and physiologically active substance-fixed membrane
JPS6190672A (en) Treatment of fluids using porous hollow fiber having physiologically active substance fixed thereto
JPS5835679B2 (en) Kosohannouno Jitsushihouhou
Guo et al. Crosslinked mercerized cellulose membranes for the affinity chromatography of papain inhibitors
US20120208256A1 (en) Enzyme-functionalized supports
EP0596315B1 (en) A method of attaching dialdehyde starch to a surface and products produced by that method
JPH02129236A (en) Activation of cellulosic membrane, immobilization of activated cellulosic membrane and physiologically active substance, and membrane containing immobilized physiologically active substance
JPS63304000A (en) Method for immobilizing substance derived from living body
JPH02195882A (en) Production of membrane immobilizing bioactive substance and membrane obtained thereby
JPH02504282A (en) Method of depositing or immobilizing molecules or substances on a carrier
Onodera et al. Terminus‐Selective Covalent Immobilization of Heparin on a Thermoresponsive Surface Using Click Chemistry for Efficient Binding of Basic Fibroblast Growth Factor
JPH05261281A (en) Carrier for immobilizing bioactive substance and its production
Keyes et al. Immobilized enzymes
JP3890625B2 (en) Super antigen adsorption material
JPH03140330A (en) Immobilized substance having biological activity, its production, carrier for the same and its use
Lozano et al. Enzyme immobilization on nylon
JPS6115900A (en) Porous membrane of modified cellulose