JPH03163817A - Large scale semiconductor integrated circuit chip - Google Patents

Large scale semiconductor integrated circuit chip

Info

Publication number
JPH03163817A
JPH03163817A JP1304246A JP30424689A JPH03163817A JP H03163817 A JPH03163817 A JP H03163817A JP 1304246 A JP1304246 A JP 1304246A JP 30424689 A JP30424689 A JP 30424689A JP H03163817 A JPH03163817 A JP H03163817A
Authority
JP
Japan
Prior art keywords
chip
integrated circuit
semiconductor integrated
circumference
scale semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304246A
Other languages
Japanese (ja)
Inventor
Koichiro Masuko
益子 耕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1304246A priority Critical patent/JPH03163817A/en
Publication of JPH03163817A publication Critical patent/JPH03163817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To increase the number of logic circuits contained in one chip by using a same aligner, by exposing circuit layout data which are inscribed in a circumference showing a range where optical aberration satisfies a reference value, has six or more vertexes of even number, and is provided with at least two pairs of facing parallel sides. CONSTITUTION:The inside of a circumference 8 is a region capable of assuring that aberration of a wafer stepper is lower than or equal to a reference value. A shaded region 19 is one where circuit elements are formed, i.e., the effective region of a chip. Even in a case where a same optical system of same wafer stepper is used, the effective chip region which can be used for the arrangement of circuit elements can be increased by about 40%, only by tranforming the external shape of a chip from, e.g. a square into an octagon. When the number of corners of the polygon inscribed in the circumference is increased, the area capable of effectively exposing circuit elements can finally be increased by about 60%. Thereby the chip size can be enlarged up to the limit of wafer stepper capability, and a circuit chip on which many logic circuits can be mounted is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大規模半導体集積回路チップに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a large-scale semiconductor integrated circuit chip.

〔従来の技術〕[Conventional technology]

第6図は、例えば昭和57年7月発行ダイヤモ;7 F
 社刊l” @ L S I 技術@集編1 9 8 
2年版」160ページに示された従来の縮小投影型露光
装置(1) の光学系の概略を示す図である。
Figure 6 shows, for example, a diamond issued in July 1982; 7 F
Company publication l” @ L S I Technology @ Collection 1 9 8
FIG. 2 is a diagram schematically showing the optical system of a conventional reduction projection type exposure apparatus (1) shown on page 160 of "2nd Edition."

乙の縮小投影型露光装置は、ウエハサイズの大型化とパ
ターンの微細化要求に伴い、ウェハ全面への一括露光が
不可能となり、ウェ八全面をいくつかに分割して露光す
る方式の露光装置である。
With the increasing size of wafers and the demand for finer patterns, the reduction projection type exposure equipment mentioned above has become impossible to expose the entire wafer at once. It is.

第6図において、1はシリコン結晶などのウエハ、2は
XYステージ、3は縮小投影レンズ、4はコンデノサー
レノズ、5はレチクル、6は照明光学系、7は前記ウエ
八1上にチップデータが縮小露光されたチップである。
In FIG. 6, 1 is a wafer such as a silicon crystal, 2 is an XY stage, 3 is a reduction projection lens, 4 is a condenser lens, 5 is a reticle, 6 is an illumination optical system, and 7 is a chip on the wafer 81. This is a chip with data reduced and exposed.

次に動作について説明する。Next, the operation will be explained.

ウエハ1をXYステージ2上にのせ、一定のピッチでX
Yステージ2をステップ状に移動させ、5分の1から1
0分の1に縮小したレチクル像(チップデータ)を順次
ウエハ1上に露光していく。
Place the wafer 1 on the XY stage 2, and
Move Y stage 2 in steps, from 1/5 to 1
Reticle images (chip data) reduced to 1/0 are sequentially exposed onto the wafer 1.

ウエハ1は露光された後、微細なダイヤモンド・カッタ
等で切り出され、チップ7としてパッケジに収容される
ために、乙のチップ7は加工のしやすさを考慮して長方
形状となっている。一方、第6図に示すウエハステッパ
のような光学システ(2) ムにおいては、結像の歪みを発生する収差が生ずる。通
常、この収差は同心円状に光軸からの距離、が大きくな
ると甚だしくなる。
After the wafer 1 is exposed, it is cut with a fine diamond cutter or the like and housed in a package as a chip 7. Therefore, the chip 7 has a rectangular shape in consideration of ease of processing. On the other hand, in an optical system (2) such as the wafer stepper shown in FIG. 6, aberrations occur that cause image distortion. Normally, this aberration becomes severe as the distance from the optical axis increases in a concentric manner.

そのため、チップサイズは第7図に示すように、一定の
基準値の収差に納まる範囲の円周に内接する長方形を最
大値とするように定められている。
Therefore, as shown in FIG. 7, the chip size is determined so that the maximum value is a rectangle inscribed in the circumference within a range within which the aberration is within a certain reference value.

第7図において、8はウエハステッパの光学系の収差が
一定の基準値以内に納まる範囲を示す円周、9は大規模
半導体集積回路チップ、10はダイシング・ラインであ
る。
In FIG. 7, 8 is a circumference indicating the range within which the aberration of the optical system of the wafer stepper is within a certain reference value, 9 is a large-scale semiconductor integrated circuit chip, and 10 is a dicing line.

ダイシング・ライン10は、第8図に示すように、チッ
プの境界線を表し、半導体基板11上の素子分離用の絶
縁膜12やチップ内配線13やチップ保護膜14のない
領域である。したがって、乙の領域をダイヤモンド・カ
ッタで切断することにより、チップが分離されることに
なる。
As shown in FIG. 8, the dicing line 10 represents the boundary line of the chip, and is an area on the semiconductor substrate 11 where there is no insulating film 12 for element isolation, no intra-chip wiring 13, and no chip protective film 14. Therefore, the chips are separated by cutting the area B with a diamond cutter.

分離されたチップを第9図に示すパッケーシに収容する
。この図において、15はパッケージであり、16はビ
ン、17はチップ上のボンディング・パッドとパッケー
ジ15のインナ・リードを《3》 つなぐワイヤである。チツプ7が長方形であるため、チ
ップ7が収容されるキャビテイも長方形となっている。
The separated chips are housed in a package shown in FIG. In this figure, 15 is a package, 16 is a via, and 17 is a wire that connects the bonding pad on the chip and the inner lead of the package 15 (3). Since the chip 7 is rectangular, the cavity in which the chip 7 is accommodated is also rectangular.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の大規模半導体集積回路チップは、以上のように構
成されているので、チップ7の最大寸法をウエハステ・
ソバの収差で規定される円周8に内接する長方形以下と
しなければならず、ウエノ\ステッパの能力が十分に活
用できず、また、増大する一方の論理回路を搭載するの
にチップサイズが不十分となってきたなどの問題点があ
った。
Since the conventional large-scale semiconductor integrated circuit chip is constructed as described above, the maximum dimension of the chip 7 is determined by the wafer stage.
The size must be smaller than the rectangle inscribed in the circumference 8 defined by Soba's aberration, making it impossible to fully utilize the capabilities of the Ueno stepper, and the chip size becoming insufficient to accommodate the ever-increasing number of logic circuits. There were problems such as not having enough.

この発明は、上記のような問題点を解消するためになさ
れたもので、ウエハステッパの能力いっぱいにチップサ
イズを大きくでき、多数の論理回路を搭載できる大規模
半導体集積回路チップを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a large-scale semiconductor integrated circuit chip that can increase the chip size to the full capacity of a wafer stepper and can mount a large number of logic circuits. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る大規模半導体集積回路チップは、大規模
半導体集積回路チップを露光する光学装置の光学的収差
が基準値を充たす範囲を示す円周に(4) 内接し、6点以上の偶数の頂点を有し、少なくとも2組
の向かい合う辺が互いに平行であり、それら2@の辺の
組が直交する多角形状とし、その内側に大規模半導体集
積回路の有効な回轄レイアウ1・・データを露光したも
のである。
The large-scale semiconductor integrated circuit chip according to the present invention has (4) inscribed in the circumference indicating the range in which the optical aberration of the optical device for exposing the large-scale semiconductor integrated circuit chip satisfies the reference value, and has an even number of six or more points. A polygonal shape having a vertex, at least two pairs of opposing sides being parallel to each other, and two pairs of sides perpendicular to each other, and an effective distribution layout 1 of a large-scale semiconductor integrated circuit inside the polygonal shape. It has been exposed to light.

〔作用〕[Effect]

この発明における大規模半導体集積回路チップは、ウエ
ハステッパの収差が基準値以内の領域の外周円に内接す
る多角形の頂点を6個より大きい偶数個とするとともに
、少なくとも2i11の向かい合う辺を互いに平行とな
るようにした多角形のチップ外形とし、このチップの内
側に回路素子をレイアウ1・することにより、同一のウ
エハステッパを用いても、1チップ内(ど多数の回路素
子を露光することができる。
In the large-scale semiconductor integrated circuit chip of the present invention, the polygon inscribed in the outer circle of the area where the aberration of the wafer stepper is within a reference value has an even number of vertices larger than 6, and at least 2i11 opposite sides are parallel to each other. By using a polygonal chip external shape and laying out circuit elements inside this chip, even if the same wafer stepper is used, it is possible to expose any number of circuit elements within one chip. can.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す大規模半導体集積回
路チップの平面図である。第1図におい(5) ?、円周8の内側はウェ八ステッパの収差が基準値以下
であることを保証できる領域である。斜線領域19は回
路素子が作成きれた領域、jなわちチップの有効領域を
示す。10はダイシング・ラインであり、参■ツブの有
効領域「9と収量の保証できない領域との間の電気的分
離を行う。
FIG. 1 is a plan view of a large-scale semiconductor integrated circuit chip showing one embodiment of the present invention. Figure 1 Smell (5)? , the inside of the circumference 8 is a region where it can be guaranteed that the aberration of the wafer stepper is less than the reference value. A shaded area 19 indicates an area where circuit elements have been completely formed, that is, an effective area of the chip. Reference numeral 10 is a dicing line, which electrically separates the effective area 9 of the sample from the area where the yield cannot be guaranteed.

円周8の内側の面積は平径をRとして、πR2となる。The area inside the circumference 8 is πR2, where R is the flat diameter.

円周8に内接する正方形の面積は,2R2となる。また
、円周8に内接する正“八角形の面積は、2 ffR 
2となる。すなわち,同じウェハステッパの同一の光学
系を用いても、チッ■プの外形を正方形から八角形にす
るだけで、回路素子の配置に用いることのできる有効な
チップ領域を,2F丁/2=1.4 1 4・・・・と
約40%増加させることができる。内接する多角形の画
数を増加させていくと、究極的にはπ/2=1.570
・・・・と約60%有効に回路素子を露光できる領域の
面積を増加できる。
The area of the square inscribed in the circumference 8 is 2R2. Also, the area of the regular octagon inscribed in the circumference 8 is 2 ffR
It becomes 2. In other words, even if the same optical system of the same wafer stepper is used, by simply changing the external shape of the chip from a square to an octagon, the effective chip area that can be used for arranging circuit elements can be reduced to 2F/2= 1.4 1 4..., which can be increased by about 40%. As we increase the number of strokes of the inscribed polygon, ultimately π/2 = 1.570
. . . The area of the region where circuit elements can be effectively exposed can be increased by about 60%.

ウエ八ステッパの有限の露光範囲内で大きなチップを露
光するには、例えば1チップを2回にわけて半分ずつ露
光するなどの方式も考えられるが、(6) この方式は、(l)ウエハステッパの露光領域の端部(
すなわち通常のチップのダイシング・ライン領域にあた
る)(よ収差がかなり大きく、また、光のまわりこみな
どもあるので、微細な金属配線や素子を露光するのに適
した領域とは言えない、(2)ウエハステッパでウエハ
上のチップを1チップずつステップ・アンド・リビ−1
・で露光する際の移動は機械的に行われるので、精度の
点で二重露光や干渉などが生じやすく、微細な金属配線
や素子をその境界部で接続するのは困難である等の理由
からあまり現実的ではない。
In order to expose a large chip within the finite exposure range of the wafer stepper, it is possible to consider a method such as dividing one chip into two parts and exposing each half of the chip twice. The edge of the exposure area of the stepper (
In other words, it corresponds to the dicing line area of a normal chip) (It has quite large aberrations and there is some light reflection, so it is not a suitable area for exposing fine metal wiring or elements. (2) Step and Revy 1 chips on a wafer one by one using a wafer stepper
・Since the movement during exposure is done mechanically, double exposure and interference are likely to occur due to accuracy, and it is difficult to connect fine metal wiring and elements at their boundaries. It's not very realistic.

したがって、現有の露光装置で露光方法をかえることな
く、露光可能面積を一挙に40%から60%も増大でき
ることの意義は大きい。これは、従来のマイクロプロセ
ッサ・チップに浮動小数点演算ユニットやメモリ管理ユ
ニッ1−やキャッシュメモリ制御ユニットを搭載するな
ど、ますます増大する1チップ当tコりの回路素子数を
設備投資費等を増加させることなしに吸収するのに有効
な方法である。
Therefore, it is of great significance that the exposed area can be increased by 40% to 60% all at once without changing the exposure method using the existing exposure apparatus. This is due to the fact that the number of circuit elements per chip is increasing rapidly, such as by installing a floating point arithmetic unit, memory management unit, and cache memory control unit on a conventional microprocessor chip, while reducing capital investment costs. This is an effective way to absorb it without increasing it.

(7) 第2図にこの大規模半導体集積回路チップを収容するパ
ッケージを示す。この図において、7{よチップ(大規
模半導体集積回路チップ)、15はパッケージ、16は
このパッケージ15のインナリドと印刷基板とを電気的
に接続するピン、17は前記チップ7のボノデインゲ・
パッド18(第3図)とパッケージ15のイノナリード
とを電気的に接続するワイヤである。
(7) Figure 2 shows a package that accommodates this large-scale semiconductor integrated circuit chip. In this figure, 7 is a chip (large-scale semiconductor integrated circuit chip), 15 is a package, 16 is a pin that electrically connects the internal board of this package 15 and the printed circuit board, and 17 is a pin of the chip 7.
This is a wire that electrically connects the pad 18 (FIG. 3) and the inona lead of the package 15.

第3図にこの.f−,ソ−I7の拡大図を示す。乙0〕
図において、10はダインング・ライン、18はボンデ
ィノグ・パッドである。このように、ボンディング・バ
ッド18をチツブ7の周辺に配置することにより、チッ
プ7内部の回路論理とチツプ7外部からの制御信号や電
源を効率よく接続できる。
This is shown in Figure 3. An enlarged view of f-, so-I7 is shown. Otsu0〕
In the figure, 10 is a ding line and 18 is a bonding pad. By arranging the bonding pads 18 around the chip 7 in this way, the circuit logic inside the chip 7 can be efficiently connected to the control signals and power supply from outside the chip 7.

また、ダイシング・ライン10を図のようにチツプ7の
有効なパターン・レイアウ1−が露光されている領域と
その境界に配置する乙とにより、チツブ7内の有効なバ
クーン・レイアウ1・露光領域とその外部の露光装置の
光学系などの制約のために収差が保証されない領域であ
り、電気的な挙動が(8) 予測不可能である領域との間の電気的干渉が防止でき、
チップ7の正常な動作が可能となる。グイシノグ・ライ
ン10の構造は第8図に示すように、チップ7内部の有
効領域と挙動の制御不能な領域との間に、素子分離用の
絶縁膜12やチップ保護膜14を配置し、半導体基板表
面に適当な導電形の不純物を導入するので、機械的にも
電気的にもダイシング・ライン外部の領域から分離され
る。
In addition, by arranging the dicing line 10 between the area where the effective pattern layout 1- of the chip 7 is exposed and the boundary between the dicing lines 10 and 2, as shown in the figure, the effective pattern layout 1-exposed area within the chip 7 is placed. This is an area where aberrations are not guaranteed due to constraints such as the optical system of the external exposure device, and the electrical behavior is unpredictable (8).
This allows the chip 7 to operate normally. As shown in FIG. 8, the structure of the Guisinog line 10 is such that an insulating film 12 for element isolation and a chip protection film 14 are placed between the effective area inside the chip 7 and the area where the behavior cannot be controlled. By introducing impurities of the appropriate conductivity type into the substrate surface, it is mechanically and electrically isolated from areas outside the dicing line.

第3図に示すチップ7をウエハから切り離すのに、長方
形状に切断してもよいし、さらに長方形の角を落として
多角形にしてもよい。その場合、第2図に示すパッケー
ジ15に収容すると、パッケージ15のインナリードと
チップ7のボンディング・パッド18のワイヤ17によ
る相互接続が容易となり、ワイヤ17の接続長も短くな
り回路動作が高速化される。
To separate the chip 7 shown in FIG. 3 from the wafer, it may be cut into a rectangular shape, or the corners of the rectangle may be cut down to form a polygon. In that case, if it is housed in the package 15 shown in FIG. 2, the inner leads of the package 15 and the bonding pads 18 of the chip 7 can be easily interconnected by the wires 17, and the connection length of the wires 17 is also shortened, increasing the speed of circuit operation. be done.

第4図は、第3図の多角形チップの角をさらに増やした
チップ7aを示すものである。露光光学系の収差一定の
円周に内接する多角形チップの画数を増やすほど円に近
づき有効なチップ領域は拡(9) 太し同一の露光光学系を用いてより多くの回路論理を1
チップに収容する乙とができるようになる。
FIG. 4 shows a chip 7a in which the polygonal chip shown in FIG. 3 has more corners. The more the number of polygonal chips inscribed in the circumference of a constant aberration of the exposure optical system increases, the closer it becomes to a circle, and the effective chip area expands (9).
It will be possible to store the information in the chip.

第5図はチップ7の設計方法を説明するための図で、チ
ップ7を露光する光学装置の光学的収差が基準値を充た
す範囲を示す円周に内接し、6点以上の頂点を有し、少
なくとも2組の向かい合う辺が互いに平行であり、それ
ら2@の辺の組が直交する多角形の内側に、基本回路ブ
ロックの行配列の階段の幅と基本回路ブロックの高さの
比率を、傾きが水平垂直でない辺の傾きの正接と等しく
なるように、基本回路ブロックの配置配線を行う。
FIG. 5 is a diagram for explaining the design method of the chip 7, which is inscribed in the circumference indicating the range in which the optical aberration of the optical device that exposes the chip 7 satisfies the reference value, and has six or more vertices. , inside a polygon whose at least two sets of opposing sides are parallel to each other and whose two sets of sides are orthogonal, calculate the ratio of the width of the stairs in the row arrangement of basic circuit blocks to the height of the basic circuit blocks, The basic circuit blocks are arranged and routed so that the slope is equal to the tangent of the slope of the side that is not horizontal or vertical.

すなわち、上記のチップ有効領域の多角形化チップに対
してゲー1・アレイ方式や、高さ一定の基本回路ブロッ
ク(ボリセル)を配列して回路論理を構築する方式(セ
ルベース設計方式)を適用した場合である。図に示すよ
うに(図では配線領域を省略している)、高さYの回路
ブロックを横方向に並べてブロック間を相互接続するこ
とにより所望の回路論理を形成する。図のように有効領
域が多角形の場合には、辺の傾き角(θ)の正接に(1
0) 等しくなるように基本回路ブロックの行配列の階段状の
ずれXと基本回路ブロックの高さYとの比(Y/X)を
定めて基本回路ブロックを配置するという設計方法をと
るとチップ内の有効面積の利用効率が向上する。
In other words, the Ga1 array method or the cell-based design method, which constructs circuit logic by arranging basic circuit blocks (Voricells) with a constant height, is applied to the polygonized chip with the effective chip area. This is the case. As shown in the figure (the wiring area is omitted in the figure), desired circuit logic is formed by arranging circuit blocks of height Y in the horizontal direction and interconnecting the blocks. When the effective area is a polygon as shown in the figure, the tangent of the side inclination angle (θ) is (1
0) If a design method is adopted in which the basic circuit blocks are arranged by determining the ratio (Y/X) between the stepped deviation X of the row arrangement of the basic circuit blocks and the height Y of the basic circuit blocks so that they are equal, the chip The utilization efficiency of the effective area within the area is improved.

なお、上記実施例では、ゲー1・アレイ方式やボリセル
方式の設計方法の場合について示したが、メモリやPL
A等を含んだメガセル方式の大規模集積回路設計方法で
あってもよく、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, the case of the game 1 array method or the Vori cell method design method was shown, but it
A megacell type large-scale integrated circuit design method including A and the like may be used, and the same effects as in the above embodiment can be achieved.

また、各実施例では、厳密に光学的収差が基準値を充た
す範囲を示す円周に回路ディアウ1・デタを露光を内接
させたが、頂点の幾つかが多少内接しない位置にあって
も構わない。
In addition, in each example, the exposure of the circuit diau 1 data was inscribed in the circumference that strictly indicates the range in which the optical aberration satisfies the reference value, but some of the vertices were located at positions that were not inscribed to some extent. I don't mind.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、大規模半導体集積回
路チップを露光する光学装置の光学的収差が基準値を充
たす範囲を示す円周に内接し、6点以上の偶数の頂点を
有し、少なくとも2組の向かい合う辺が互いに平行であ
り、それら2組の辺(11) の組が直交する多角形状とし、その内側に大規模半導体
集積回路の有効な回路レイアウト・データを露光したの
で、同一の露光装置を用いても1チップ内に収容できる
回路論理の数が大きくできる効果が得られる。
As explained above, the present invention provides a circle inscribed in the circumference indicating a range in which the optical aberration of an optical device for exposing a large-scale semiconductor integrated circuit chip satisfies a reference value, and having an even number of vertices of six or more points, At least two sets of opposing sides are parallel to each other, and the two sets of sides (11) are perpendicular to each other, forming a polygon, and valid circuit layout data for a large-scale semiconductor integrated circuit is exposed inside the polygon, so that the same Even if an exposure apparatus of 1 is used, the effect of increasing the number of circuit logics that can be accommodated in one chip can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乙の発明の一実施例による大規模半導体集積回
路チップおよびダイシング・ラインを示す平面図、、第
2図はこの発明の一実施例による大規模半導体集積回路
チップ用のパッケーンを示す斜視図、第3図は乙の発明
の他の実施例による大規模半導体集積回路チップを示す
平面図、第4図はこの発明のさらに他の実施例による大
規模半導体集積回路チップを示す平面図、第5図はこの
発明の大規模半導体集積回路チップの設計方法の一実施
例を示す平面図、第6図はこの発明を説明する大規模半
導体集積回路チップを露光するウエハステッパの概略図
、第7図は従来の大規模半導体集積回路チップな示す平
面図、第8図ζま従来およびこの発明によるダイシング
・ライン構造を説明(12) する断面図、第9図は従来の大規模半導体集積回路チッ
プ用パッケージを示す斜視図である。 図において、7はチップ、8は露光光学系の光学的収差
が基準値以内の領域を示ず円周、10はダイシング・ラ
イン、11は半導体基板、12は素子分離用の酸化膜、
13はチップ内配線、14はチップ保護膜、15はパッ
ケージ、16はビン、17はワイヤ,18はボンディン
グ・パッド、19は有効領域、Xは基本回路ブロック行
配列の階段状のずれ、Yは基本回路ブロックの高さ、θ
は水平垂直以外の・辺の.傾きである。 なお、各図中の同一符号は同一まtコは相当部分を示す
FIG. 1 is a plan view showing a large-scale semiconductor integrated circuit chip and a dicing line according to an embodiment of O's invention, and FIG. 2 is a plan view showing a package for a large-scale semiconductor integrated circuit chip according to an embodiment of this invention. A perspective view, FIG. 3 is a plan view showing a large-scale semiconductor integrated circuit chip according to another embodiment of the invention of B, and FIG. 4 is a plan view showing a large-scale semiconductor integrated circuit chip according to still another embodiment of the invention. , FIG. 5 is a plan view showing an embodiment of the method for designing a large-scale semiconductor integrated circuit chip of the present invention, and FIG. 6 is a schematic diagram of a wafer stepper for exposing a large-scale semiconductor integrated circuit chip to explain the present invention. Fig. 7 is a plan view showing a conventional large-scale semiconductor integrated circuit chip, Fig. 8 is a cross-sectional view explaining the dicing line structure according to the conventional method and the present invention (12), and Fig. 9 is a plan view showing a conventional large-scale semiconductor integrated circuit chip. FIG. 2 is a perspective view showing a circuit chip package. In the figure, 7 is a chip, 8 is a circumference that does not indicate an area where the optical aberration of the exposure optical system is within the standard value, 10 is a dicing line, 11 is a semiconductor substrate, 12 is an oxide film for element isolation,
13 is internal wiring on the chip, 14 is a chip protective film, 15 is a package, 16 is a bin, 17 is a wire, 18 is a bonding pad, 19 is an effective area, Basic circuit block height, θ
is an edge other than horizontal or vertical. It is the slope. Note that the same reference numerals in each figure indicate corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 大規模半導体集積回路チップを露光する光学装置の光学
的収差が基準値を充たす範囲を示す円周に内接し、6点
以上の偶数の頂点を有し、少なくとも2組の向かい合う
辺が互いに平行であり、それら2組の辺の組が直交する
多角形状とし、その内側に大規模半導体集積回路の有効
な回路レイアウト・データを露光したことを特徴とする
大規模半導体集積回路チップ。
It is inscribed in the circumference of a circle that indicates the range in which the optical aberration of an optical device that exposes large-scale semiconductor integrated circuit chips satisfies the reference value, has an even number of vertices of 6 or more points, and has at least two pairs of opposing sides that are parallel to each other. A large-scale semiconductor integrated circuit chip, characterized in that the chip has a polygonal shape with two sets of sides orthogonal to each other, and effective circuit layout data of the large-scale semiconductor integrated circuit is exposed inside the polygonal shape.
JP1304246A 1989-11-21 1989-11-21 Large scale semiconductor integrated circuit chip Pending JPH03163817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304246A JPH03163817A (en) 1989-11-21 1989-11-21 Large scale semiconductor integrated circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304246A JPH03163817A (en) 1989-11-21 1989-11-21 Large scale semiconductor integrated circuit chip

Publications (1)

Publication Number Publication Date
JPH03163817A true JPH03163817A (en) 1991-07-15

Family

ID=17930750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304246A Pending JPH03163817A (en) 1989-11-21 1989-11-21 Large scale semiconductor integrated circuit chip

Country Status (1)

Country Link
JP (1) JPH03163817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099664A1 (en) * 2006-03-02 2007-09-07 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit
US8193613B2 (en) * 2007-03-06 2012-06-05 Broadcom Corporation Semiconductor die having increased usable area

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099664A1 (en) * 2006-03-02 2007-09-07 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit
JP2007234973A (en) * 2006-03-02 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor integrated device
US7989964B2 (en) 2006-03-02 2011-08-02 Panasonic Corporation Semiconductor integrated circuit
US8193613B2 (en) * 2007-03-06 2012-06-05 Broadcom Corporation Semiconductor die having increased usable area

Similar Documents

Publication Publication Date Title
KR100593219B1 (en) Method for providing layout design and photo mask
US8043928B2 (en) Efficient provision of alignment marks on semiconductor wafer
JPH0577184B2 (en)
JPH0828467B2 (en) Semiconductor device
JP2006523949A (en) Semiconductor wafer with non-rectangular die
JP4229829B2 (en) Hole pattern design method and photomask
CN110187611B (en) Arrangement method of exposure areas on wafer
JP2005093575A (en) Semiconductor integrated circuit device and wiring layout method
US5652163A (en) Use of reticle stitching to provide design flexibility
JPH03163817A (en) Large scale semiconductor integrated circuit chip
US5859448A (en) Alternative silicon chip geometries for integrated circuits
CN116127900A (en) Wafer system preparation method, wafer system and task processing method
JPH01251631A (en) Wafer
JPH07120696B2 (en) Method for manufacturing semiconductor device
WO2024066218A1 (en) Mask and layout method therefor, and typesetting pattern of chip
WO2024016384A1 (en) Semiconductor structure and method for forming same
JPH0379059A (en) Semiconductor integration circuit unit and manufacturing method
JPH10335205A (en) Pattern design method of semiconductor integrated circuit
JPH08123011A (en) Photomask
KR900008795B1 (en) Monolithic semi-custom system lsi
JPH06132289A (en) Semiconductor device
JP2005017314A (en) Exposure mask and method for manufacturing semiconductor device
JP2792447B2 (en) Semiconductor device manufacturing method and photomask
KR100232713B1 (en) Semiconductor device and its manufacturing method
JPH05335203A (en) Reticle for reduced projection exposure and exposure method using the reticle