JPH03163291A - Shape memory alloy joint structure - Google Patents

Shape memory alloy joint structure

Info

Publication number
JPH03163291A
JPH03163291A JP30167089A JP30167089A JPH03163291A JP H03163291 A JPH03163291 A JP H03163291A JP 30167089 A JP30167089 A JP 30167089A JP 30167089 A JP30167089 A JP 30167089A JP H03163291 A JPH03163291 A JP H03163291A
Authority
JP
Japan
Prior art keywords
liner
shape memory
joint
memory alloy
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30167089A
Other languages
Japanese (ja)
Inventor
Masatoshi Hikita
疋田 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30167089A priority Critical patent/JPH03163291A/en
Publication of JPH03163291A publication Critical patent/JPH03163291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

PURPOSE:To prevent the contamination of a pipe and the variation of the inside- pipe resistance of liquid and obtain the superior pulling-out strength, by forming a plurality of ring-shaped uneven parts on the inner periphery of an inside liner and installing a coating member in the projection part positioned at both the edge parts of the liner. CONSTITUTION:A shape memory alloy joint 1 has a liner 2 made of copper and aluminum inside. A plurality of ring-shaped recessed parts 6 and 6' and projecting parts 7 and 7' are formed on the inner periphery of the liner 2, and coating members 3 and 3' are installed. Pipes 5 and 5' are inserted into the joint 1, and the liner 2 is tightened by the restoration force through heating, and the pipes 5 and 5' are connected by the tightening of the projection part 7. Accordingly, the pipe is firmly connected in the state where airtightness is maintained by the coating member. Further, the generation of contamination due to coating can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、引抜強度に優れ、かつパイプ接続部の汚染な
どを防止した形状記憶合金継手構造に関するものである
. 〔従来の技術とその課題〕 パイプ継手に形状記憶合金を利用する試みは、1970
年代に米国において提案され我が国においても実用化が
進められている.継手に用いられる形状記憶合金もNi
−Ti系、Cu−Zn−Aj!系、Fe−Mn−Si系
、Fe−Mn−Ni−Co系などがあり実用化されつつ
ある.いずれも形状記憶合金の特性とする低温側のマル
テンサイト構造と高温側のオーステナイト構造の熱によ
る構造変化に伴い元の形状に回復する性質を利用したも
のである.上記の形状記憶合金のうち、価格などの点か
ら銅系の形状記憶合金が一般の継手材料として注目され
ている. Cu−Zn−AIt系の形状記憶合金は相変態温度(A
s点)が約80℃であり熱収縮による回復ひずみは約4
%である. 形状記憶合金継手の構造としては第3図に示すようなも
のが一般に用いられている.それは例えばCu−Zn−
AJ!などの形状記憶合金からなる継手(1)と、この
内側に熱収縮量を上記の4%以上に増大させるためにア
ル果ニウム或いは銅のような軟質材のライナー(2)が
嵌合されている.ライナーの内径は接続しようとするパ
イプの外径よりやや大きく機械加工されており、継手の
内径はライナーの外径よりやや小さく機械加工されてい
る.そして低温のマルテンサイト相の状態の時に機械的
に拡管され、ライナーの外径よりも大きくなるように加
工されている.このライナーの内側には接続の際の気密
性向上のためにエボキシ系のコーティング材(3)が施
され、加熱時に継手が収縮されると同時に流動化し、ラ
イナーと内側とパイプ外側の僅かな間隙に沿って流れだ
し、加熱終了後に固形化し気密を保持するようになるも
のである.加熱された継手は拡管前の記憶形状に回復し
て収縮し、挿入されているバイブ外周にエボキシ層を介
して密着、締め付け強固に接続できる.なお、上記のラ
イナーの外周の一部に加熱が所定温度に上昇したか否か
を判別するための示温塗料(4)が設けられている. 上記のCu−Zn−AIlの継手の場合Aj点(変態終
了温度)約150℃であるが念のため約220℃まで加
熱するようにしており、この示温塗料は220℃で青色
から黒色に変化するようになっている. この形状記憶合金継手の特長としては、(a)形状記憶
合金の相変態を利用しており、作業員のスキル、環境の
変化などの影響を受けず、常に安定した高い性能が得ら
れる. (ハ)パイプ接続後も形状記憶効果の残部分を有し、温
度変化や振動などがあっても高い接続性能が保持される
. (C)作業が簡便であり迅速に作業できる.(ロ)狭い
場所での作業が可能である.(e)フランクスなどを使
わず、溶接による酸化物の生戒もなく比較的クリーンな
接続である.(f)異種金属パイプの接続が可能である
.などの利点があって各工業分野に使用されつつある. しかしながらこの形状記憶合金継手にも以下に述べるよ
うな難点がある. すなわち第4図に示すように従来の形状記憶合金継手を
使用してパイプを接続すると、ライナー(2)の内側に
施されたエポキシ系のコーティング材(3)が加熱によ
り流動し、ライナーの収縮に伴いライナーの両端に(a
)、(a′)のようにはみ出してくる.また接続するパ
イプ(5)と(5′)の突合せ部の継ぎ目b   b’ にも(8)、(6’)のようにエポキシ層のはみ出しが
生じる.このため管内の清浄度が低下し、特に半導体設
備の配管には清浄が要求され、このエポキシのはみ出し
部が液体あるいはガスの純度を下げる結果となるため問
題となる.またパイプの突合せ部付近にリング状にエボ
キシが流れ出すので液体の管内抵抗が大きくなり配管設
計をくるわす原因になる. さらにステンレスパイプ、銅パイプなどの飲料水などの
衛生配管においてはフラツシングしてもエボキシはとれ
ず衛生上問題となるなどの難点があった. 〔発明が解決しようとする!IN) 本発明は上記の問題について検討の結果なされたもので
形状記憶合金継手を使用したパイプを接続する際、エポ
キシ層のはみ出しを防止して、.配管の汚染や、流体の
管内抵抗の変化のない、かつ引抜強度の優れた形状記憶
合金継手構造を開発したものである. 〔課題を解決するための手段および作用〕本発明は、形
状記憶合金継手とその内部にライナーを設けた形状記憶
合金継手構造において、該ライナーの内周に複数のリン
グ状の凹凸を設けると共に、該ライナーの両端部に位置
する凸部にコーティング材を設けたことを特徴とする形
状記憶合金継手構造である. すなわち本発明は例えば第1図に示すように形状記憶合
金からなる継手(1)の内部に銅、アルミニウムなどか
らなるライナー(2)を設けて継手構造としたものであ
る.そして上記のライナーの内周に複数のリング状の凹
部(6)、(6′)および凸部(7)、(7′)を設け
ると共に、ライナーの両端に位置する凸部(7)、(7
′)にコーティング材(3)、(3′)を設けたもので
ある. 上記の継手構造によるパイプ接続方法を第2図により説
明する. 形状記憶合金からなる継手(1)を加熱するとその回復
力により,ライナー(2)が締付けられて、その内周に
設けられた凸部(7)によりパイブ(5》、(5′)を
締付けて接続する.その際ライナーの両端部の凸部(7
)、(7′)に設けられたコーティング材(3)、(3
′)は気密性を保持し、接続を強化するものであるが、
このコーティング材はライナーの両端部のみに設けられ
ているので加熱されて流動化してもパイプの合せ目の位
置までは流れていかずはみ出しは生じない.したがって
パイプ継目の清浄は保たれて汚染が防止できるものであ
る. 上記のコーティング材としては、エボキシ系のコーティ
ング材および通常用いられているコーティング材が適用
できるが、設ける位置はライナーの両端部としたので施
すことは非常に容易である.このコーティング材は必要
により多数設けることもできる.しかして本発明の継手
に用いられる形状記憶合金としては、Ni−Ti系、C
u−Zn−Affi系、Fe−Mn−St系、Fe−M
n−Ni−Co系などの他、通常の形状記憶合金が適用
できる.またライナーの材質としては銅、アルミニウム
、その他軟質の金属および合金が使用できる.さらに適
用できるパイプの種類としては鉄パイプ、銅パイプ、ア
ルミパイプ、ステンレスパイブ等いずれも適用でき、か
つこれらの組合せの接続も容易である. 〔実施例〕 以下に本発明の一実施例について説明する.先ず継手性
能の評価基準の一例と日本水道協会の規格値は22,2
鵬φ×1.0閣(のバイブで(SOS304) (1)引抜き試験 D≧190kgf (2)耐水圧試験 17.5kgf/ej 2分間保持
などとなっている. 上記の22.2閣φのパイプに対応する継手としてCu
−Zn−AJ系の形状記憶合金を用い外径34.4■φ
、肉厚3.0閣、”長さ50閣の第1図に示す継手(1
)とした.ライナー(2)は銅の0材を用い外径28.
4閣φ、肉厚3.0閣、長さ60mとした.この内周に
深さ1閣の凹部(6)を切削して設け両端の凸部(7)
、(7′)にエボキシ系のコーティング材(3)、(3
′〉を設けて継手構造とした. これに第2図に示すようにパイプ(5)、(5′)を挿
入して約220″Cに加熱してパイプを接続した.また
比較のためコーティング材のない継手を用いて同様に接
続した.これらの試料について引抜き試験と耐水試験を
行なった.その結果を第1表に示す. 第  1  表 表から明らかなように本発明のコーティング材を設けた
ものは著しく優れていることが判る.また上記の試料を
縦に切断して、その断面を観察したところパイプの継目
の部分にコーティング材が流れこんだ形跡はなかった. なお従来の第3図に示すようなライナーの内面全体にコ
ーティング材を施したものは引抜試験で2000kgf
以上でも破壊されなかったが、パイプの継目の部分にコ
ーティング材がはみ出していた.〔効果〕 以上に説明したように本発明によれば、接続性能に優れ
、かつコーティングの汚染のない形状記憶合金継手構造
が得られるもので工業顕著な効果を奏するものである.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shape memory alloy joint structure that has excellent pull-out strength and prevents contamination of pipe connections. [Prior art and its challenges] Attempts to use shape memory alloys in pipe joints began in 1970.
It was proposed in the United States in the 1990s and is being put into practical use in Japan. The shape memory alloy used in joints is also made of Ni.
-Ti-based, Cu-Zn-Aj! There are various types, such as Fe-Mn-Si, Fe-Mn-Ni-Co, etc., which are being put into practical use. Both utilize the characteristic of shape memory alloys, which is the ability of the martensite structure at the low temperature side and the austenite structure at the high temperature side to recover to their original shape as a result of structural changes caused by heat. Among the shape memory alloys mentioned above, copper-based shape memory alloys are attracting attention as general joint materials due to their cost and other aspects. The Cu-Zn-AIt-based shape memory alloy has a phase transformation temperature (A
s point) is approximately 80°C, and the recovery strain due to thermal contraction is approximately 4
%. The structure of shape memory alloy joints shown in Figure 3 is generally used. For example, Cu-Zn-
AJ! The joint (1) is made of a shape memory alloy such as, and a liner (2) of a soft material such as aluminum or copper is fitted inside the joint (2) in order to increase the amount of heat shrinkage to above 4%. There is. The inner diameter of the liner is machined to be slightly larger than the outer diameter of the pipe to be connected, and the inner diameter of the fitting is machined to be slightly smaller than the outer diameter of the liner. Then, when it is in the low-temperature martensitic phase, it is mechanically expanded to make it larger than the outer diameter of the liner. An epoxy-based coating material (3) is applied to the inside of this liner to improve airtightness during connection, and when heated, the joint shrinks and becomes fluid, creating a small gap between the liner, the inside, and the outside of the pipe. It begins to flow along the surface, solidifies after heating, and maintains an airtight state. The heated joint recovers to its memorized shape before expansion, contracts, and tightly attaches to the outer circumference of the inserted vibrator via the epoxy layer, making it possible to tighten and firmly connect it. Note that a temperature-indicating paint (4) is provided on a part of the outer periphery of the liner to determine whether or not the heating has risen to a predetermined temperature. In the case of the Cu-Zn-AIl joint mentioned above, the Aj point (transformation end temperature) is about 150°C, but just to be sure, it is heated to about 220°C, and this temperature-indicating paint changes from blue to black at 220°C. It is designed to do so. The features of this shape memory alloy joint are: (a) It utilizes the phase transformation of the shape memory alloy, so it is not affected by changes in the worker's skill or the environment, and can always provide stable and high performance. (c) Even after the pipe is connected, it retains a residual shape memory effect, and maintains high connection performance even when there are temperature changes or vibrations. (C) Work is simple and can be done quickly. (b) It is possible to work in narrow spaces. (e) It is a relatively clean connection that does not use franks or the like, and there is no oxidation caused by welding. (f) Connection of dissimilar metal pipes is possible. Due to these advantages, it is being used in various industrial fields. However, this shape memory alloy joint also has the following drawbacks. In other words, when pipes are connected using a conventional shape memory alloy joint as shown in Figure 4, the epoxy coating material (3) applied to the inside of the liner (2) flows due to heating, causing the liner to shrink. At both ends of the liner (a
) and (a′). Also, the epoxy layer protrudes from the joint b b' at the butt part of the connecting pipes (5) and (5'), as shown in (8) and (6'). As a result, the cleanliness inside the pipes decreases, and piping for semiconductor equipment in particular requires cleanliness, and this epoxy protrusion becomes a problem as it lowers the purity of the liquid or gas. In addition, epoxy flows out in a ring shape near the butt of the pipes, increasing the resistance of the liquid inside the pipes and causing problems with piping design. Furthermore, in sanitary piping for drinking water, such as stainless steel pipes and copper pipes, epoxy cannot be removed even when flushing, which poses a sanitary problem. [Invention tries to solve it! IN) The present invention was developed as a result of studies on the above-mentioned problems, and it prevents the epoxy layer from extruding when connecting pipes using shape memory alloy joints. We have developed a shape memory alloy joint structure that does not contaminate piping or change the resistance of fluid inside the pipe, and has excellent pull-out strength. [Means and effects for solving the problems] The present invention provides a shape memory alloy joint structure including a shape memory alloy joint and a liner provided inside the joint, in which a plurality of ring-shaped irregularities are provided on the inner periphery of the liner, and This is a shape memory alloy joint structure characterized by providing a coating material on the convex portions located at both ends of the liner. That is, the present invention has a joint structure in which a liner (2) made of copper, aluminum, etc. is provided inside a joint (1) made of a shape memory alloy, as shown in FIG. 1, for example. A plurality of ring-shaped recesses (6), (6') and convex parts (7), (7') are provided on the inner periphery of the liner, and convex parts (7), (7') located at both ends of the liner are provided. 7
') is coated with coating materials (3) and (3'). The method of connecting pipes using the above joint structure will be explained with reference to Figure 2. When the joint (1) made of shape memory alloy is heated, its recovery force tightens the liner (2), and the convex portion (7) provided on its inner circumference tightens the pipes (5》, (5')). Connect the liner using the protrusions (7) on both ends of the liner.
), (7') coating material (3), (3
′) maintains airtightness and strengthens the connection,
This coating material is applied only to both ends of the liner, so even if it is heated and becomes fluidized, it will not flow to the joint of the pipes and will not protrude. Therefore, the cleanliness of pipe joints can be maintained and contamination can be prevented. Epoxy-based coating materials and commonly used coating materials can be used as the above-mentioned coating materials, but since they are provided at both ends of the liner, they are very easy to apply. Multiple coating materials can be provided as needed. However, the shape memory alloys used in the joint of the present invention include Ni-Ti type, C
u-Zn-Affi system, Fe-Mn-St system, Fe-M
In addition to n-Ni-Co alloys, ordinary shape memory alloys can be used. Copper, aluminum, and other soft metals and alloys can be used as the material for the liner. Furthermore, the types of pipes that can be used include iron pipes, copper pipes, aluminum pipes, and stainless steel pipes, and combinations of these can be easily connected. [Example] An example of the present invention will be described below. First, an example of the evaluation criteria for joint performance and the standard value of the Japan Water Works Association is 22.2.
With the vibrator of Peng φ Cu as a fitting for pipes
-Using Zn-AJ type shape memory alloy, outer diameter 34.4■φ
, wall thickness 3.0 cm, length 50 cm, the joint shown in Figure 1 (1
). The liner (2) is made of copper material and has an outer diameter of 28.
4 cabinets φ, wall thickness 3.0 cabinets, length 60m. A concave part (6) with a depth of 1 inch is cut on the inner circumference, and convex parts (7) are formed at both ends.
, (7') are coated with epoxy coating material (3), (3
′〉 was provided to create a joint structure. As shown in Figure 2, pipes (5) and (5') were inserted into this, heated to approximately 220"C, and then connected. Also, for comparison, a joint without coating material was used and the same connection was made. A pullout test and a water resistance test were conducted on these samples.The results are shown in Table 1.As is clear from Table 1, it is clear that the samples provided with the coating material of the present invention are significantly superior. .Also, when the above sample was cut vertically and the cross section was observed, there was no evidence that the coating material had flowed into the joint of the pipe. The one with coating material has a pull-out test of 2000 kgf.
Although the pipe was not destroyed by the above methods, the coating material was protruding from the joint of the pipe. [Effects] As explained above, according to the present invention, a shape memory alloy joint structure with excellent connection performance and no contamination of the coating can be obtained, which brings about significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の一実施例に係る形状記憶合金継手の断
面図、第2図は本発明の一実施例にかかる継手を使用し
た接続方法を示す断面図、第3図は従来の継手の断面図
、第4図は従来の接続方法を示す断面図である.
Fig. 1 is a sectional view of a shape memory alloy joint according to an embodiment of the present invention, Fig. 2 is a sectional view showing a connection method using the joint according to an embodiment of the present invention, and Fig. 3 is a sectional view of a conventional joint. Fig. 4 is a sectional view showing a conventional connection method.

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金継手とその内部にライナーを設けた形状記
憶合金継手構造において、該ライナーの内周に複数のリ
ング状の凹凸を設けると共に、該ライナーの両端部に位
置する凸部にコーティング材を設けたことを特徴とする
形状記憶合金継手構造。
In a shape memory alloy joint structure including a shape memory alloy joint and a liner provided inside the joint, a plurality of ring-shaped irregularities are provided on the inner periphery of the liner, and a coating material is provided on the convex portions located at both ends of the liner. Shape memory alloy joint structure characterized by:
JP30167089A 1989-11-20 1989-11-20 Shape memory alloy joint structure Pending JPH03163291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30167089A JPH03163291A (en) 1989-11-20 1989-11-20 Shape memory alloy joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30167089A JPH03163291A (en) 1989-11-20 1989-11-20 Shape memory alloy joint structure

Publications (1)

Publication Number Publication Date
JPH03163291A true JPH03163291A (en) 1991-07-15

Family

ID=17899718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30167089A Pending JPH03163291A (en) 1989-11-20 1989-11-20 Shape memory alloy joint structure

Country Status (1)

Country Link
JP (1) JPH03163291A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113715A (en) * 2005-10-21 2007-05-10 Jfe Pipe Fitting Mfg Co Ltd Heat-fusion joining method of tube and joint made of thermoplastic resin
WO2013063715A1 (en) * 2011-10-31 2013-05-10 Li Suming Heat-shrinkable metal pipeline connecting apparatus
RU2669114C1 (en) * 2017-06-14 2018-10-08 Открытое акционерное общество "Композит" Pipes ends from composite fiber materials connection to metal parts and method of its implementation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113715A (en) * 2005-10-21 2007-05-10 Jfe Pipe Fitting Mfg Co Ltd Heat-fusion joining method of tube and joint made of thermoplastic resin
WO2013063715A1 (en) * 2011-10-31 2013-05-10 Li Suming Heat-shrinkable metal pipeline connecting apparatus
RU2669114C1 (en) * 2017-06-14 2018-10-08 Открытое акционерное общество "Композит" Pipes ends from composite fiber materials connection to metal parts and method of its implementation

Similar Documents

Publication Publication Date Title
US4556240A (en) Corrosion-resistant, double-wall pipe structures
JPS5948887B2 (en) fitting device
JP2008513687A (en) Mechanical pipe fittings derived from standard fittings
JPH03163291A (en) Shape memory alloy joint structure
US8991869B2 (en) Tube coupling apparatus having liquefiable metal sealing layer
JP2849345B2 (en) Pipe fittings
WO2017204818A1 (en) Modular push-to-connect assembly
JP3171690U (en) Stainless steel pipe joints for underground use
JP3171067U (en) Stainless steel pipe joints for underground use
KR101068220B1 (en) Method of manufacturing flange for connecting pipe
JPH04171390A (en) Terminal metal fitting for fluid transporting pipe
JPH02125194A (en) Leakage preventing device for connection section
JPH0324394A (en) Pipe connecting method using joint made of shape memory alloy
JPH0642682A (en) Flange connecting structure in resin duplex tube
KR101664309B1 (en) Apparatus for clamping pipes in butt fusion of polyethylene pipes
JPH05209697A (en) Reinforced plastic pipe joint
JPH0384292A (en) Shape memory alloy coupling
JP2006038002A (en) Housing type pipe joint
JPH05322074A (en) Screw type joint
JP3098353U (en) Connection structure of resin pipe
JP3187655B2 (en) Branch structure of rehabilitation pipe
JP2017096450A (en) Pipe connecting structure
JPS6384829A (en) Manufacture of self-fastening cover member
JP2548965B2 (en) Anticorrosion treatment method for cut end of resin-lined steel pipe
WO2016151563A1 (en) The improvement of connection [buttfusion] quality with connection supporting components