JPH0316284A - Semiconductor laser excitated solid state laser device - Google Patents

Semiconductor laser excitated solid state laser device

Info

Publication number
JPH0316284A
JPH0316284A JP15183389A JP15183389A JPH0316284A JP H0316284 A JPH0316284 A JP H0316284A JP 15183389 A JP15183389 A JP 15183389A JP 15183389 A JP15183389 A JP 15183389A JP H0316284 A JPH0316284 A JP H0316284A
Authority
JP
Japan
Prior art keywords
laser beam
yag
semiconductor laser
state laser
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15183389A
Other languages
Japanese (ja)
Other versions
JP2676920B2 (en
Inventor
Hideo Nagai
秀男 永井
Masahiro Kume
雅博 粂
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1151833A priority Critical patent/JP2676920B2/en
Publication of JPH0316284A publication Critical patent/JPH0316284A/en
Application granted granted Critical
Publication of JP2676920B2 publication Critical patent/JP2676920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve combination efficiency, to improve excitation efficiency and to realize high output by setting an optical path of a YAG laser beam and that of a semiconductor laser beam to coincide each other in a laser medium of a solid state laser device of polygonal pole type. CONSTITUTION:An optical path of a YAG laser beam and that of a semiconductor laser beam are made to coincide each other inside a YAG rod 1 by setting an incident angle (a reflection angle) thetaYAG of the YAG laser beam at the side of the YAG rod 1 to a critical angle thetaC=33.3 deg. or less to make an optical path of the semiconductor laser beam coincide with that of YAG laser beam. An incident angle of YAG laser beam can be made 33.3 deg. or less only by making sides of the YAG rod 1 cross at 60 deg. each other. Excitaton efficiency can be improved by matching semiconductor laser beams respectively against an incident light and a reflection light at each point of reflection of the YAG laser beam. Thereby, a YAG laser of high efficiency and high output can be acquired.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属・半導体・セラミックス等の加工及びコ
アギュレータとして医療に用いることができる半導体レ
ーザ励起による高出力固体レーザ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-output solid-state laser device excited by a semiconductor laser, which can be used for processing metals, semiconductors, ceramics, etc., and for medical purposes as a coagulator.

従来の技術 固体レーザ装置の励起には、従来アークランプやフラッ
シュランプ等が用いられてきたが、励起に寄与するスペ
クトル以外を多く含むために励起効率が悪く、ランプや
レーザ媒質の放熱の点から装置は大型にならざるを得な
かった。ところが近年、半導体レーザの高出力化に伴な
い、これを固体レーザの励起光源として用いる試みがな
されるようになってきた。半導体レーザを用いると固体
レーザの吸収帯に波長を合わせることができるので、励
起効率が良く、しかも余分なスペクトルの吸収による発
熱がないため放熱が楽になる。
Conventional technology Arc lamps, flash lamps, etc. have traditionally been used to excite solid-state laser devices, but since they contain a large amount of spectrum other than those that contribute to excitation, the excitation efficiency is poor, and from the standpoint of heat dissipation from the lamp and laser medium. The equipment had to be large. However, in recent years, as semiconductor lasers have become more powerful, attempts have been made to use them as excitation light sources for solid-state lasers. When a semiconductor laser is used, the wavelength can be matched to the absorption band of a solid-state laser, so the excitation efficiency is good, and heat dissipation is facilitated because there is no heat generation due to absorption of excess spectrum.

そこで近年多く試みられている方法に第7図に示すよう
な軸端面励起と呼ばれる方法がある。この方法は、Nd
 : YAGロッド4の輔端面に半導体レーザ5の光を
集光レンズ6で集めて励起している。共振器は外部反射
!!13とYAGロッド4の励起側端面とのあいだに形
成されている。この方式はYAGレーザ光と半導体レー
ザ光との結合効率がよいために効率よく励起でき、しか
も安定にT E Mooモードで動作させることができ
る。ところが、11所しか励起できる点がないため、Y
AGレーザ光の出力を向上させるには、半導体レーザの
高出力化が不可欠であり、半導体レーザの出力で制限さ
れるという問題点がある。
Therefore, one of the methods that has been tried many times in recent years is a method called shaft end face excitation as shown in FIG. This method uses Nd
: The light from the semiconductor laser 5 is focused on the end face of the YAG rod 4 by a condenser lens 6 and excited. The resonator reflects externally! ! 13 and the excitation side end surface of the YAG rod 4. In this method, since the coupling efficiency of the YAG laser light and the semiconductor laser light is high, efficient excitation can be achieved, and moreover, it can be stably operated in the T E Moo mode. However, since there are only 11 points that can be excited, Y
In order to improve the output of AG laser light, it is essential to increase the output of the semiconductor laser, and there is a problem that the output is limited by the output of the semiconductor laser.

この問題点を解決する方法として提案されているのが第
8図に示すような六角柱型のYAGロッド内でYAGレ
ーザ光を各側面で反射させ、YAGレーザ光がスパイラ
ル状の光路を描く方式である。この方式を用いると各面
での反射点を励起点にできるので、従来から知られてい
る軸励起方式(第7図)の1か所しか励起点がないとい
う欠点をカバーでき、しかも安定にTEMooモードで
動作させることができる。
A method proposed to solve this problem is a method in which the YAG laser beam is reflected on each side of a hexagonal prism-shaped YAG rod, as shown in Figure 8, so that the YAG laser beam draws a spiral optical path. It is. By using this method, the reflection points on each surface can be used as excitation points, which overcomes the drawback of the conventionally known axial excitation method (Figure 7) that there is only one excitation point, and it is also stable. It can be operated in TEMoo mode.

発明が解決しようとする課題 しかし、第8図で示す六角柱角YAGレーザでは、YA
Gロッド内でのYAGレーザ光の光路と励起光である半
導体レーザ光の光路が一致していない。そのために、結
合効率が十分でないため、励起効率の向上の妨げになっ
ている。励起効率が悪いと高出力化の際、放熱の点で問
題になってくる。
Problems to be Solved by the Invention However, in the hexagonal prism YAG laser shown in FIG.
The optical path of the YAG laser beam within the G rod and the optical path of the semiconductor laser beam, which is excitation light, do not match. Therefore, the coupling efficiency is not sufficient, which hinders the improvement of excitation efficiency. Poor excitation efficiency poses a problem in terms of heat dissipation when increasing output.

課題を解決するための手段 本発明は結合効率を上げるためには、YAGロッド内で
のYAGレーザ光と半導体レーザ光の光路を一致させな
ければならない。そのためには第4図に示すように、Y
AGロッド側面でのYAGレーザ光の入射角(反射角)
QYAOが臨界角θc( s i rr’ (nA+r
/ nvAa)= 3 3.3(d e g+)以下に
なるように設定しなければ、半導体レーザ光をYAGレ
ーザ光の光路と一致させることができない。YAGレー
ザ光の入反射角を33.3度以下にするには、YAGロ
ッドの側面は互いに60度で交わるようにすればよい。
Means for Solving the Problems In the present invention, in order to increase the coupling efficiency, the optical paths of the YAG laser light and the semiconductor laser light within the YAG rod must be matched. For this purpose, as shown in Figure 4, Y
Incident angle (reflection angle) of YAG laser beam on the side of the AG rod
QYAO is the critical angle θc( s i rr' (nA+r
/nvAa)=33.3(d e g+) or less, otherwise the semiconductor laser light cannot be aligned with the optical path of the YAG laser light. In order to make the angle of incidence and reflection of the YAG laser beam 33.3 degrees or less, the side surfaces of the YAG rods should intersect with each other at 60 degrees.

また、第4図に示すように、YAGレーザ光の各反射点
での入射光と反射光に対して、半導体レーザ光をそれぞ
れあわせることにより、励起効率を上げることができる
Furthermore, as shown in FIG. 4, excitation efficiency can be increased by matching the semiconductor laser light to the incident light and reflected light at each reflection point of the YAG laser light.

作用 以上のように、多角柱型YAGロッド内のYAGレーザ
光と半導体レーザ光の光路を一致させることにより、結
合効率を改善させ、効率よく励起することができる。こ
のような構造にすることにより、金属等の加工に使用で
きる高効率.高出力の半導体レーザ励起YAGレーザが
実現できる。
Effect As described above, by matching the optical paths of the YAG laser beam and the semiconductor laser beam in the polygonal YAG rod, the coupling efficiency can be improved and efficient excitation can be achieved. With this structure, it is highly efficient and can be used for processing metals, etc. A high-output semiconductor laser pumped YAG laser can be realized.

実施例 以下、本発明の一実施例について図面を引用しながら説
明する。第1図に本発明の半導体レーザ励起固体レーザ
装置の構造図を示す。六角柱型に加工したNd j Y
AGロッド1内において、第2図に示すようにYAGレ
ーザ光(細線)を互いに60度で交わる3g4面で反射
させることにより、スパイラル状の光路を描きながら進
行させている。この六角柱型のYAGロッドは第3図の
見取図に示すように、底面は長さ6mと22論の辺を交
互にした六角形であり、高さは50−である。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a structural diagram of a semiconductor laser pumped solid-state laser device of the present invention. Nd j Y processed into a hexagonal column shape
In the AG rod 1, as shown in FIG. 2, the YAG laser beam (thin line) is reflected by 3g4 planes that intersect at 60 degrees, so that it travels while drawing a spiral optical path. As shown in the sketch of FIG. 3, this hexagonal prism-shaped YAG rod has a hexagonal bottom surface with a length of 6 m and alternating sides of 22 mm, and a height of 50 mm.

共振器はYAGロッドの底面に形成した反射面1−1と
外部反射鏡3とで形成されている。YAGロッドの底面
に形成した反射面1−1と出射面1−2は、YAG光線
の光路がスパイラル状になるように、YAGロッドの底
面の法線方向に対して角度θ#4.4度だけ傾きをもっ
ており、YAGレーザ光は、この反射面1−1と出射面
1−2に垂直に入射している。反射而1−1は平面で波
長1.06μmに対して99%以上の反射率をもち、出
射面1−2は平面であり、波長1.06μmに対して9
0%以上の透過率をもつ。また外部反射w!.3の曲率
半径1.5mであり、波長1.06μmに対して80%
の反射率をもつ。YAGロッドを励起するために側面(
励起面1−3)は励起波長809μmに対して90%以
上の透過率をもち、波長1.06μmに対して99%以
上の反射率をもつ。半導体レーザ光による励起点は第2
図及び第3図の・印で示すように、YAGレーザ光がY
AGロッドの側面で反射する点に相当している。この・
印で示す点におけるYAGレーザ光を半導体レーザ光の
様子を示したものが第4図である。励起効率を良くする
には、YAGレーザ光と半導体レーザ光の光路が一致す
ることが望ましい。そこで本実施例では、YAGロッド
の反射側面に対してYAGレーザ光を角度θYA(1=
 3 0.3 ( d e gt)で入射及び反射させ
、半導体レーザ光は角度θ+.o=66.6 (de 
g+)で入射させることにより、光路を一致させている
。また、励起効率を上げるために、YAGレーザ光の入
射光と反射光の両方が励起されるように、1つの反射点
(・印)に対して、半導体レーザ光を2方向から入射し
ている。ところで、YAGレーザ光の入射・反射角θY
AGと半導体レーザの入射角θLDは、六角柱角YAG
ロッドの高さ方向に対する共振器の傾きθで決る。この
角度θとθYAG及びθLDの関係を示したものが第5
図である。YAGレーザ光の入射角θYAOの最大角は
全反射の臨界角で決りθYAG =33.3 (deg
+)である。このことから反射側面は互いに60(de
g+)で交わる関係でなければならない。
The resonator is formed by a reflecting surface 1-1 formed on the bottom surface of a YAG rod and an external reflecting mirror 3. The reflective surface 1-1 and the output surface 1-2 formed on the bottom surface of the YAG rod are at an angle θ#4.4 degrees with respect to the normal direction of the bottom surface of the YAG rod so that the optical path of the YAG ray becomes a spiral shape. The YAG laser beam is incident on the reflection surface 1-1 and the emission surface 1-2 perpendicularly. The reflecting surface 1-1 is a flat surface and has a reflectance of 99% or more for a wavelength of 1.06 μm, and the output surface 1-2 is a flat surface and has a reflectance of 99% for a wavelength of 1.06 μm.
Has a transmittance of 0% or more. Another external reflection lol! .. 3 has a radius of curvature of 1.5 m and is 80% for a wavelength of 1.06 μm.
It has a reflectance of side (
The excitation surface 1-3) has a transmittance of 90% or more for an excitation wavelength of 809 μm and a reflectance of 99% or more for a wavelength of 1.06 μm. The excitation point by the semiconductor laser beam is the second
As shown in the figure and Fig. 3, the YAG laser beam
This corresponds to the point reflected on the side of the AG rod. this·
FIG. 4 shows the state of YAG laser light and semiconductor laser light at the points indicated by marks. In order to improve excitation efficiency, it is desirable that the optical paths of the YAG laser beam and the semiconductor laser beam coincide. Therefore, in this embodiment, the YAG laser beam is directed at an angle θYA (1=
3 0.3 (d e gt), and the semiconductor laser light is incident and reflected at an angle θ+. o=66.6 (de
g+), the optical paths are made to coincide. In addition, in order to increase excitation efficiency, semiconductor laser light is incident on one reflection point (marked with a *) from two directions so that both the incident light and reflected light of the YAG laser light are excited. . By the way, the incident and reflection angle θY of the YAG laser beam
The incident angle θLD between AG and the semiconductor laser is the hexagonal prism angle YAG.
It is determined by the inclination θ of the resonator with respect to the height direction of the rod. The relationship between this angle θ, θYAG, and θLD is shown in the fifth
It is a diagram. The maximum angle of incidence angle θYAO of YAG laser beam is determined by the critical angle of total reflection, θYAG = 33.3 (deg
+). Therefore, the reflective sides are 60 (de) from each other.
The relationship must intersect at g+).

以上のような構成のもとでの本実施例における入出力特
性を第6図に示す。本装置では励起のための半導体レー
ザ光は光ファイバで導き、半導体レーザはペルチェ素子
で冷却している。また、励起点が27ii所あるので、
計54個の半導体レーザで励起した。第6図に示すよう
に入力20Wに対して8.5Wの出力が得られた。なお
入力14W以上になると出力が飽和しているが、これは
熱のためと考えられる。YAGロッドの放熱をよくする
と改善される。
FIG. 6 shows the input/output characteristics of this embodiment under the above configuration. In this device, the semiconductor laser light for excitation is guided through an optical fiber, and the semiconductor laser is cooled by a Peltier element. Also, since there are 27ii excitation points,
Excitation was performed using a total of 54 semiconductor lasers. As shown in FIG. 6, an output of 8.5 W was obtained for an input of 20 W. Note that when the input exceeds 14 W, the output becomes saturated, but this is thought to be due to heat. This can be improved by improving the heat dissipation of the YAG rod.

発明の効果 本発明は多角柱型固体レーザ装置のレーザ媒質中でのY
AGレーザ光と半導体レーザ光の光路を一致するように
設定することで結合効率を向上させている。結合効率の
向上により励起効率が上がり、高出力化がはかられる。
Effects of the Invention The present invention provides Y in the laser medium of a polygonal solid state laser device.
The coupling efficiency is improved by setting the optical paths of the AG laser light and the semiconductor laser light to match. Improving coupling efficiency increases excitation efficiency and increases output power.

本発明は高出力を要する加工,医療用の固体レーザとし
て大なる効果を有する。
The present invention has great effects as a solid-state laser for processing and medical applications that require high output.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の半導体レーザ励起固体レーザ装置の構
造図、第2図は本発明の装置の一部である固体レーザ媒
質内におけるレーザ光の光路を説明する図、第3図は本
発明の装置の一部である固体レーザ媒質の見取図、第4
図は本発明の装置の一部である固体レーザ媒質の反射側
面におけるYAGレーザ光と半導体レーザ光の入射角,
反射角の関係を説明する図、第5図は本発明の装置の一
部である固体レーザ媒質の底面部分に形成される反射面
2出射面および外部反射鏡がレーザ媒質の高さ方向に対
する角度θと第4図で示すYAGレーザ光の入射角θY
AG及び半導体レーザ光の入射角θLDの関係を示す図
、第6図は本発明の装置の入出力特性図、第7図は従来
からある軸励起固体レーザ装置の構造図、第8図は従来
の多角柱型固体レーザ装置の構造図である。 1・・・・・・六角柱型Nd : YAGロッド、1−
1・・・・・・反射面、1−2・・・・・・出射面、1
−3・・・・・・励起面(反射側面)、2・・・・・・
集光用レンズ付き光ファイバ、3・・・・・・外部反射
鏡、4・・・・・・Nd : YAGロッド、5・・・
・・・半導体レーザ、6・・・・・・集光レンズ。
Fig. 1 is a structural diagram of a semiconductor laser pumped solid-state laser device of the present invention, Fig. 2 is a diagram illustrating the optical path of a laser beam in a solid-state laser medium that is a part of the device of the present invention, and Fig. 3 is a diagram of the present invention. Schematic diagram of the solid-state laser medium that is part of the device, No. 4
The figure shows the incident angles of YAG laser light and semiconductor laser light on the reflective side of the solid-state laser medium that is part of the device of the present invention.
FIG. 5 is a diagram illustrating the relationship between reflection angles, and FIG. θ and the incident angle θY of the YAG laser beam shown in Figure 4.
A diagram showing the relationship between the incident angle θLD of AG and semiconductor laser light, FIG. 6 is an input/output characteristic diagram of the device of the present invention, FIG. 7 is a structural diagram of a conventional axially pumped solid-state laser device, and FIG. 8 is a diagram of the conventional axially pumped solid-state laser device. FIG. 2 is a structural diagram of a polygonal column type solid-state laser device. 1...Hexagonal column type Nd: YAG rod, 1-
1...Reflection surface, 1-2...Emission surface, 1
-3...Excitation surface (reflection side), 2...
Optical fiber with condensing lens, 3... External reflecting mirror, 4... Nd: YAG rod, 5...
... Semiconductor laser, 6... Condensing lens.

Claims (1)

【特許請求の範囲】[Claims]  互いに60度で交わる関係にある3側面を有する多角
柱型の固体レーザ媒質内を、固体レーザ光がスパイラル
状の光路を描くように進行するように共振器を形成し、
前記共振器は前記多角柱型固体レーザ媒質の底面上ある
いは側面上あるいは外部に有し、前記共振器面は前記多
角柱型固体レーザ媒質の底面の法線方向に対して0度以
上15.3度以下の傾きをもち、前記固体レーザ光が前
記多角柱型固体レーザ媒質の各側面で反射される点にお
いて半導体レーザ光を前記固体レーザ光の光路と一致す
るように入射角65.5度以上90.0度以下で集光し
励起することを特徴とする半導体レーザ励起固体レーザ
装置。
A resonator is formed so that solid-state laser light travels along a spiral optical path in a polygonal solid-state laser medium having three sides that intersect with each other at 60 degrees,
The resonator is provided on the bottom surface, side surface, or outside of the polygonal solid-state laser medium, and the resonator surface is at an angle of 0 degrees or more and 15.3 degrees with respect to the normal direction of the bottom surface of the polygonal solid-state laser medium. The angle of incidence is 65.5 degrees or more so that the semiconductor laser beam is aligned with the optical path of the solid-state laser beam at the point where the solid-state laser beam is reflected by each side surface of the polygonal solid-state laser medium. A semiconductor laser-excited solid-state laser device characterized by condensing and exciting light at 90.0 degrees or less.
JP1151833A 1989-06-14 1989-06-14 Semiconductor laser pumped solid-state laser device Expired - Lifetime JP2676920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151833A JP2676920B2 (en) 1989-06-14 1989-06-14 Semiconductor laser pumped solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151833A JP2676920B2 (en) 1989-06-14 1989-06-14 Semiconductor laser pumped solid-state laser device

Publications (2)

Publication Number Publication Date
JPH0316284A true JPH0316284A (en) 1991-01-24
JP2676920B2 JP2676920B2 (en) 1997-11-17

Family

ID=15527300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151833A Expired - Lifetime JP2676920B2 (en) 1989-06-14 1989-06-14 Semiconductor laser pumped solid-state laser device

Country Status (1)

Country Link
JP (1) JP2676920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272187A (en) * 1990-03-22 1991-12-03 Matsushita Electron Corp Semiconductor laser excitation solid-state laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105586A (en) * 1987-08-28 1989-04-24 General Electric Co <Ge> Solid laser apparatus
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105586A (en) * 1987-08-28 1989-04-24 General Electric Co <Ge> Solid laser apparatus
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272187A (en) * 1990-03-22 1991-12-03 Matsushita Electron Corp Semiconductor laser excitation solid-state laser device

Also Published As

Publication number Publication date
JP2676920B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP3265173B2 (en) Solid state laser device
JP3167844B2 (en) Solid-state laser device
US5661738A (en) Solid-state laser amplifying apparatus and solid-state laser apparatus capable of oscillating high-power laser beam under stable condition
US6160934A (en) Hollow lensing duct
US4912713A (en) Solid state laser rod for optimizing efficiency and minimizing wave front distortion
US20040076211A1 (en) Solid state laser amplifier
JP2007299962A (en) Thin disk laser device
JPH0316284A (en) Semiconductor laser excitated solid state laser device
JPH09270552A (en) Solid-state laser device
JPH10261825A (en) Semiconductor laser light shaping optical system and semiconductor laser-excited solid-state laser device
JP2558523B2 (en) Semiconductor laser pumped solid-state laser device
JPH0482281A (en) Solid laser oscillator
JPH033379A (en) Solid-state laser device
JP2685331B2 (en) Semiconductor laser pumped solid-state laser device
JP2546145B2 (en) Lamp pumped TEMoo mode solid state laser device
JP2576794B2 (en) Laser diode pumped solid-state laser oscillator
JPH033377A (en) Semiconductor laser pumping solid-state laser device
JPH0637368A (en) Laser and beam expander
JPH03150885A (en) Semiconductor laser excited solid state laser device
JPH0311680A (en) Semiconductor laser excitation solid-state laser apparatus
JPH03272187A (en) Semiconductor laser excitation solid-state laser device
JPH06132586A (en) Solid state laser system
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.
JP6083709B2 (en) Solid state laser equipment
JPH02130882A (en) Solid state laser device