JPH031626B2 - - Google Patents

Info

Publication number
JPH031626B2
JPH031626B2 JP58227222A JP22722283A JPH031626B2 JP H031626 B2 JPH031626 B2 JP H031626B2 JP 58227222 A JP58227222 A JP 58227222A JP 22722283 A JP22722283 A JP 22722283A JP H031626 B2 JPH031626 B2 JP H031626B2
Authority
JP
Japan
Prior art keywords
variable gain
circuit
output
signal
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58227222A
Other languages
Japanese (ja)
Other versions
JPS60115882A (en
Inventor
Eiichi Matsuyama
Hirotaka Nishira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58227222A priority Critical patent/JPS60115882A/en
Publication of JPS60115882A publication Critical patent/JPS60115882A/en
Publication of JPH031626B2 publication Critical patent/JPH031626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To eliminate errors in the gain and frequency characteristics between channels, to decrease the number of parts, and to obtain a high-precision distance measurement signal by switching one variable gain amplifier through switching operation based upon a distance measurement timing signal. CONSTITUTION:Switch circuits 10a-10c turn on and off photodetecting circuits 5a and 5b and a gain control circuit 7 according to the timing output of a level decision circuit 9. Irradiation light from a light emitting element 2 is reflected by a body 3 to enter photodetecting elements 4a and 4b. Their photodetection outputs are led in the variable gain amplifier 6 through the photodetecting circuits 5a and 5b in operation states and amplified with the gain corresponding to the output of a control circuit 7, and both amplification outputs are supplied to a waveform processing circuit 8. The processing circuit 8 processes both amplification levels to output final distance information.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、測距装置の信号処理回路に関し、
特に、目標物体(被写体)までの距離を測定する
写真カメラなどの光学機器に適した測距装置の信
号処理回路に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a signal processing circuit for a distance measuring device.
In particular, the present invention relates to a signal processing circuit for a distance measuring device suitable for optical equipment such as a photographic camera that measures the distance to a target object (subject).

[従来技術] 第1図は、従来の測距装置の信号処理回路の一
例を示す概略ブロツク図である。
[Prior Art] FIG. 1 is a schematic block diagram showing an example of a signal processing circuit of a conventional distance measuring device.

まず、第1図を参照して従来の測距装置の信号
処理回路の構成について説明する。第1図におい
て、発光回路1は、発光素子2を駆動して発光さ
せ、その光は測定対象である目標物体(被写体)
3に向けて照射されるように構成されている。目
標物体3からの反射光は、受光素子4aおよび4
bで電気信号に変換され、さらに受光回路5aお
よび5bで増幅される。受光回路5aおよび5b
の出力はそれぞれ、その利得が可変である利得可
変増幅器6aおよび6bに与えられて増幅され
る。ここで、利得制御回路7は、利得可変増幅器
6aおよび6bの利得をそれぞれ時間の関数とし
て変化させる制御回路である。利得可変増幅器6
aおよび6bの出力は波形処理回路8に与えら
れ、波形処理回路8は後述の測距タイミング信号
受信時に、距離情報としてのそれらの入力を同時
に演算する。また、利得可変増幅器6bの出力は
同時にレベル判定回路9にも与えられ、レベル判
定回路9は、利得可変増幅器6bの出力レベルが
所定のしきい値を越えると、ローレベルからハイ
レベルに立上がる測距タイミング信号を発生して
波形処理回路8に与える。波形処理回路8はこの
測距タイミング信号を受けると、上述の利得可変
増幅器6aおよび6bからの距離情報を演算して
その結果を目標物体までの測定距離を表わす最終
測距情報として出力する。
First, the configuration of a signal processing circuit of a conventional distance measuring device will be explained with reference to FIG. In FIG. 1, a light emitting circuit 1 drives a light emitting element 2 to emit light, and the light is emitted from a target object (subject) to be measured.
It is configured to irradiate towards 3. The reflected light from the target object 3 is transmitted to light receiving elements 4a and 4.
The signal is converted into an electric signal at step b, and further amplified at light receiving circuits 5a and 5b. Light receiving circuits 5a and 5b
The outputs of are respectively applied to variable gain amplifiers 6a and 6b whose gains are variable and amplified. Here, the gain control circuit 7 is a control circuit that changes the gains of the variable gain amplifiers 6a and 6b as a function of time. Variable gain amplifier 6
The outputs of a and 6b are given to a waveform processing circuit 8, and the waveform processing circuit 8 simultaneously calculates these inputs as distance information when receiving a distance measurement timing signal, which will be described later. Further, the output of the variable gain amplifier 6b is also given to the level determination circuit 9 at the same time, and the level determination circuit 9 rises from the low level to the high level when the output level of the variable gain amplifier 6b exceeds a predetermined threshold. A distance measurement timing signal is generated and applied to the waveform processing circuit 8. When the waveform processing circuit 8 receives this ranging timing signal, it calculates the distance information from the variable gain amplifiers 6a and 6b described above and outputs the result as final ranging information representing the measured distance to the target object.

第2図は、第1図に示した従来の測距装置の信
号処理回路の動作を説明するための波形図であ
る。
FIG. 2 is a waveform diagram for explaining the operation of the signal processing circuit of the conventional distance measuring device shown in FIG.

次に、第2図を参照して第1図に示す従来の測
距装置の信号処理回路の動作について説明する。
Next, the operation of the signal processing circuit of the conventional distance measuring device shown in FIG. 1 will be explained with reference to FIG.

まず、発光回路1によつて駆動された発光素子
2より照射された光は目標物体3に当たり、反射
されて受光素子4aおよび4bに入る。そして、
この受光素子4aおよび4bに入つた光はそれぞ
れ電気信号に目標され、受光回路5aおよび5b
で増幅される。この受光回路5aおよび5bで増
幅された各信号は、それぞれ次段の利得可変増幅
器6aおよび6bによつて増幅される。この利得
可変増幅器6aおよび6bの利得は、前述のよう
に利得制御回路7によつて時間の関数として変化
させられるが、ここでは、たとえば第2図aに示
すように、利得G(縦軸)が時間t(横軸)に対し
て比例して増大する場合を考える(それ以外の時
間関数でもよい)。そして、この利得可変増幅器
6aおよび6bに入力する受光回路5aおよび5
bからの各信号は、目標物体3の状態が一定であ
れば、一定量として入力してくる。たとえば、測
定対象である目標物体3までの距離が中距離で被
写体からの反射率が中程度の場合、すなわち入射
光量が中程度の場合を考える。第2図bは、縦軸
に利得可変増幅器6aおよび6bの出力レベルを
とり、横軸に時間tをとつたグラフである。上述
の入射光量が中程度の場合、利得可変増幅器6a
および6bの利得は第2図aのように線形に増大
するので、利得可変増幅器6aおよび6bの出力
は第2図bのLMで示すような線形の特性で増大
する。
First, light emitted from the light emitting element 2 driven by the light emitting circuit 1 hits the target object 3, is reflected, and enters the light receiving elements 4a and 4b. and,
The light entering the light-receiving elements 4a and 4b is targeted to an electric signal, respectively, and the light-receiving circuits 5a and 5b
is amplified. The signals amplified by the light receiving circuits 5a and 5b are amplified by variable gain amplifiers 6a and 6b at the next stage, respectively. The gains of the variable gain amplifiers 6a and 6b are varied as a function of time by the gain control circuit 7 as described above, but here, as shown in FIG. 2a, for example, the gain G (vertical axis) Consider the case where t increases in proportion to time t (horizontal axis) (other time functions may be used). The light receiving circuits 5a and 5 input to the variable gain amplifiers 6a and 6b.
Each signal from b is input as a constant amount if the state of the target object 3 is constant. For example, consider a case where the distance to the target object 3 to be measured is medium and the reflectance from the subject is medium, that is, the amount of incident light is medium. FIG. 2b is a graph in which the vertical axis represents the output levels of variable gain amplifiers 6a and 6b, and the horizontal axis represents time t. When the above-mentioned amount of incident light is medium, the variable gain amplifier 6a
and 6b increase linearly as shown in FIG. 2a, so the outputs of variable gain amplifiers 6a and 6b increase with linear characteristics as shown by LM in FIG. 2b.

ここで、利得可変増幅器6bの出力レベルが、
レベル判定回路9で設定された電圧のしきい値
VDに達するとき(時刻t1)に、レベル判定回路9
は、ローレベルからハイレベルに立上がる測距タ
イミング信号を出力して波形処理回路8に送る。
波形処理回路8は、これを受けて利得可変増幅器
6aおよび6bの出力を演算し、最終測距信号を
出力する。
Here, the output level of the variable gain amplifier 6b is
Voltage threshold set by level judgment circuit 9
When reaching V D (time t 1 ), the level judgment circuit 9
outputs a ranging timing signal that rises from low level to high level and sends it to the waveform processing circuit 8.
In response to this, the waveform processing circuit 8 calculates the outputs of the variable gain amplifiers 6a and 6b, and outputs a final ranging signal.

次に、目標物体3までの距離が近距離でその反
射率が大きい場合には入射光量が大きく、利得可
変増幅器6aおよび6bの出力レベルは、第2図
bのLLで示すような線形の特性で増大し、時刻
t2でしきい値VDに到達する。このとき、レベル判
定回路9は、測距タイミング信号を出力し、上述
のように波形処理回路8から最終測距信号を得る
ことができる。
Next, when the distance to the target object 3 is short and its reflectance is large, the amount of incident light is large, and the output level of the variable gain amplifiers 6a and 6b has a linear characteristic as shown by LL in FIG. 2b. increases with time
The threshold V D is reached at t 2 . At this time, the level determination circuit 9 outputs a distance measurement timing signal, and the final distance measurement signal can be obtained from the waveform processing circuit 8 as described above.

また、目標物体までの距離が遠距離あるいは反
射率が小さい場合には、入射光量が小さく、利得
可変増幅器6aおよび6bの出力レベルは、第2
図bのLSで示すような線形の特性で増大し、時
刻t3でしきい値VDに到達する。このとき、レベル
判定回路9は測距タイミング信号を出力し、上述
のように波形処理回路8から最終測距信号を得る
ことができる。
Further, when the distance to the target object is long or the reflectance is small, the amount of incident light is small and the output level of the variable gain amplifiers 6a and 6b is
It increases with a linear characteristic as shown by LS in Figure b, and reaches the threshold value V D at time t3 . At this time, the level determination circuit 9 outputs a distance measurement timing signal, and the final distance measurement signal can be obtained from the waveform processing circuit 8 as described above.

すなわち、利得可変増幅器6aおよび6bによ
つて、入射光量は回路のダイナミツクレンジを十
分保証できる適正レベルである電圧値VDまで線
形に増幅される。そして、しきい値VDに到達し
たときに、測距タイミング信号が発生し、最終測
距信号が得られる。
That is, the variable gain amplifiers 6a and 6b linearly amplify the amount of incident light to a voltage value V D that is an appropriate level that can sufficiently guarantee the dynamic range of the circuit. Then, when the threshold value V D is reached, a ranging timing signal is generated and a final ranging signal is obtained.

しかしながら、上述の従来の測距装置は、測定
精度向上のために複数(上述の例では2系統)の
信号処理系すなわち受光回路および利得可変増幅
器を用いているが、各信号処理系間の利得や周波
数特性の誤差を完全になくすことは困難であり、
わずかな誤差のために、却つて高精度の演算結果
を得ることができないという欠点があつた。
However, the conventional distance measuring device described above uses a plurality of signal processing systems (two systems in the above example), that is, a light receiving circuit and a variable gain amplifier, in order to improve measurement accuracy, but the gain between each signal processing system is It is difficult to completely eliminate errors in frequency characteristics.
The drawback was that it was not possible to obtain highly accurate calculation results due to slight errors.

[発明の概要] それゆえに、この発明の主たる目的は、従来通
り複数の受光回路を使用する一方で、スイツチの
切換えによつて利得可変増幅器が1つで済むよう
に構成することによつて、信号処理系間の誤差の
影響を受けることなく、部品点数の少ない高精度
の測距装置の信号処理回路を提供することであ
る。
[Summary of the Invention] Therefore, the main object of the present invention is to use a plurality of light receiving circuits as before, but by configuring it so that only one variable gain amplifier is required by switching a switch. It is an object of the present invention to provide a highly accurate signal processing circuit for a distance measuring device that is not affected by errors between signal processing systems and has a small number of parts.

この発明の上述の目的およびその他の目的と特
徴は、以下に図面を参照して行なう詳細な説明か
ら一層明らかとなろう。
The above objects and other objects and features of the present invention will become more apparent from the detailed description given below with reference to the drawings.

[発明の実施例] 第3図は、この発明の一実施例を示す概略ブロ
ツク図である。
[Embodiment of the Invention] FIG. 3 is a schematic block diagram showing an embodiment of the invention.

この第3図に示す例は、以下の点を除いて前述
の第1図に示した概略ブロツク図と同じである。
すなわち、受光回路5aおよび5bの各出力は、
単一の利得可変増幅器6に与えられ、さらに利得
可変増幅器6の出力は、波形処理回路8に単一の
入力として与えられるとともに、レベル判定回路
9にも与えられる。レベル判定回路9の出力は、
その入力が一定のしきい値VD以下のときはロー
レベルであり、VDを越えるとローレベルからハ
イレベルに立上がるタイミング信号を出力する。
スイツチ回路10a,10bおよび10cはそれ
ぞれ、レベル判定回路9から出力される前述のタ
イミング信号に基づいて、受光回路5a,5bお
よび利得制御回路7を動作状態あるいは非動作状
態に切換えるためのものである。
The example shown in FIG. 3 is the same as the schematic block diagram shown in FIG. 1 above, except for the following points.
That is, each output of the light receiving circuits 5a and 5b is
It is applied to a single variable gain amplifier 6 , and the output of the variable gain amplifier 6 is applied as a single input to a waveform processing circuit 8 and also to a level determination circuit 9 . The output of the level judgment circuit 9 is
When the input is below a certain threshold value V D , it is at low level, and when it exceeds V D , it outputs a timing signal that rises from low level to high level.
The switch circuits 10a, 10b, and 10c are for switching the light receiving circuits 5a, 5b and the gain control circuit 7 into an operating state or a non-operating state, respectively, based on the above-mentioned timing signal output from the level determination circuit 9. .

より詳細に説明すると、スイツチ回路10a
は、レベル判定回路9への入力がしきい値に達せ
ず、その出力がローレベルのときに受光回路5a
を動作状態に、しきい値に達してハイレベルのタ
イミング信号が発生したときに非動作状態に切換
えるように設定され、スイツチ回路10bは逆
に、レベル判定回路9の出力がローレベルのとき
に受光回路5bを非動作状態に、ハイレベルのタ
イミング信号発生時に動作状態に切換えるように
設定され、スイツチ回路10cは、レベル測定回
路9の出力がローレベルのときに利得制御回路7
を動作状態に、ハイレベルのタイミング信号発生
時に非動作状態に切換えるように設定される。
To explain in more detail, the switch circuit 10a
is the light receiving circuit 5a when the input to the level determination circuit 9 does not reach the threshold and its output is low level.
The switch circuit 10b is set to be in the operating state and switched to the non-operating state when the threshold value is reached and a high-level timing signal is generated. The light receiving circuit 5b is set to be in a non-operating state and switched to an operating state when a high-level timing signal is generated, and the switch circuit 10c is set to switch the gain control circuit 7 to a non-operating state when the output of the level measuring circuit 9 is at a low level.
is set to be in an active state, and switched to a non-active state when a high-level timing signal is generated.

第4図は、第3図に示す実施例の動作を説明す
るための波形図である。
FIG. 4 is a waveform diagram for explaining the operation of the embodiment shown in FIG. 3.

次に、第4図を参照して第3図に示す実施例の
動作について説明する。
Next, the operation of the embodiment shown in FIG. 3 will be explained with reference to FIG.

まず、発光回路1によつて駆動された発光素子
2より照射された光は、目標物体3に当たり、反
射されて受光素子4aおよび4bに入る。しか
し、受光回路5aおよび5bは、スイツチ回路1
0aおよび10bによつて、受光回路5aだけが
動作状態になるように設定されており、この受光
素子4aに入つた光のみが電気信号に変換され受
光回路5aで増幅される。この受光回路5aで増
幅された信号は利得可変増幅器6に与えられて増
幅される。この利得可変増幅器6は、第1図の従
来例における利得可変増幅器6aおよび6bと同
じものであり、この利得可変増幅器6の利得は、
前述のように利得制御回路7(レベル判定回路9
の出力はまだローレベルなので、このとき利得制
御回路7は動作状態にある)によつて時間の関数
として増大させられる。そしてここでは、第2図
aの従来の信号処理回路と同様に利得Gが時間t
に比例して増大する場合を考える(それ以外の時
間関数でもよい)。そしてこの利得可変増幅器6
に入力する受光回路5aからの光信号は、目標物
体3が一定状態であれば、一定量として入力して
くる。第4図aは、利得可変増幅器6の出力レベ
ル(縦軸)の時間t(横軸)に対する関係を示す
グラフであり、利得の変化と同様に線形の特性で
増大する。第4図c,d,gは、それぞれ受光回
路5a,5bおよび利得制御回路7が動作状態
(オン)あるいは非動作状態(オフ)のいずれの
状態にあるかを示すグラフである。上述の利得可
変増幅器出力が増大している状態においては、受
光回路5aは動作状態、受光回路5bは非動作状
態、利得制御回路7は動作状態にある。ここで、
利得可変増幅器6の出力レベルがレベル判定回路
9で設定された回路のダイナミツクレンジを十分
保証できる適正レベルであるVDに達するとき
(時刻t1)に、レベル判定回路9は、ローレベル
からハイレベルに立上がるタイミング信号(第4
図b)を出力する。(すなわち、この状態で回路
のダイナミツクレンジは保証される。)ここで、
レベル判定回路9がハイレベルのタイミング信号
を出力することにより、第4図c,d,eに示す
ように、t1以後、受光回路5aは非動作状態に、
受光回路5bは動作状態に、利得制御回路7は非
動作状態に切換わる。この状態では、利得可変増
幅器6の利得は、t1直前における利得に固定さ
れ、受光回路5bが動作状態なので受光回路5b
から光信号が入つてきて利得可変増幅器6で増幅
される。すなわち、波形処理回路8は、第4図a
に示すように、t1直前の利得可変増幅器6の出力
レベルと、t1直後の利得可変増幅器6の出力レベ
ルとを演算することにより、t1における最終測距
情報を出力することができる。
First, light emitted from the light emitting element 2 driven by the light emitting circuit 1 hits the target object 3, is reflected, and enters the light receiving elements 4a and 4b. However, the light receiving circuits 5a and 5b are
0a and 10b are set so that only the light receiving circuit 5a is in an operating state, and only the light that enters the light receiving element 4a is converted into an electrical signal and amplified by the light receiving circuit 5a. The signal amplified by this light receiving circuit 5a is given to a variable gain amplifier 6 and amplified. This variable gain amplifier 6 is the same as the variable gain amplifiers 6a and 6b in the conventional example shown in FIG. 1, and the gain of this variable gain amplifier 6 is as follows.
As mentioned above, the gain control circuit 7 (level determination circuit 9
Since the output of is still at a low level, it is increased as a function of time by the gain control circuit 7 (at this time the gain control circuit 7 is active). And here, as in the conventional signal processing circuit shown in FIG. 2a, the gain G changes over time t.
Consider a case in which the time function increases in proportion to (other time functions may be used). And this variable gain amplifier 6
If the target object 3 is in a constant state, the optical signal from the light receiving circuit 5a is input as a constant amount. FIG. 4a is a graph showing the relationship between the output level (vertical axis) of the variable gain amplifier 6 and time t (horizontal axis), which increases linearly in the same way as the gain changes. 4c, d, and g are graphs showing whether the light receiving circuits 5a, 5b and the gain control circuit 7 are in an operating state (on) or a non-operating state (off), respectively. In the state where the variable gain amplifier output is increasing, the light receiving circuit 5a is in an operating state, the light receiving circuit 5b is in an inactive state, and the gain control circuit 7 is in an operating state. here,
When the output level of the variable gain amplifier 6 reaches V D, which is an appropriate level that can sufficiently guarantee the dynamic range of the circuit set by the level judgment circuit 9 (time t 1 ), the level judgment circuit 9 changes the level from the low level to V D (time t 1 ). Timing signal rising to high level (4th
Figure b) is output. (In other words, the dynamic range of the circuit is guaranteed in this state.) Here,
As the level determination circuit 9 outputs a high-level timing signal, the light receiving circuit 5a becomes inactive after t1 , as shown in FIG. 4c, d, and e.
The light receiving circuit 5b is switched to an operating state, and the gain control circuit 7 is switched to a non-operating state. In this state, the gain of the variable gain amplifier 6 is fixed to the gain immediately before t 1 , and since the light receiving circuit 5b is in the operating state, the light receiving circuit 5b
An optical signal enters from the input terminal and is amplified by the variable gain amplifier 6. That is, the waveform processing circuit 8 is as shown in FIG.
As shown in FIG. 1, the final ranging information at t 1 can be output by calculating the output level of the variable gain amplifier 6 immediately before t 1 and the output level of the variable gain amplifier 6 immediately after t 1 .

なお、上述の実施例では、受光回路として5
a,5bの2チヤネルを有する回路系で説明した
が、2チヤネル以上の場合でも上述の実施例と同
様の効果を奏する。
In addition, in the above-mentioned embodiment, 5 is used as the light receiving circuit.
Although the circuit system having two channels a and 5b has been described, the same effects as in the above-mentioned embodiments can be obtained even in the case of two or more channels.

[発明の効果] 以上のように、この発明では、従来複数であつ
た利得可変増幅器を、測距タイミング信号に基づ
くスイツチの切換えによつて、1つで複数の光入
力信号を増幅演算するように構成したので、従来
調整が困難であつたチヤネル間の利得や周波数特
性の誤差を解消し、部品点数が少なく安価かつ高
精度の測距装置の信号処理回路を得ることができ
る。
[Effects of the Invention] As described above, in the present invention, a plurality of variable gain amplifiers, which were conventionally required, can be used to amplify and calculate a plurality of optical input signals with one by switching a switch based on a ranging timing signal. With this configuration, it is possible to eliminate errors in gain and frequency characteristics between channels, which have been difficult to adjust in the past, and to obtain an inexpensive and highly accurate signal processing circuit for a distance measuring device with a small number of parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の測距装置の信号処理回路の構成
を示す概略ブロツク図である。第2図は、第1図
に示す従来の測距装置の信号処理回路の動作を示
す波形図である。第3図はこの発明の一実施例を
示す概略ブロツク図である。第4図は第3図に示
す実施例の動作を説明するための波形図である。 図において、1は発光回路、2は発光素子、3
は目標物体、4a,4bは受光素子、5a,5b
は受光回路、6,6a,6bは利得可変増幅器、
7は利得制御回路、8は波形処理回路、9はレベ
ル判定回路、10a,10b,10cはスイツチ
回路を示す。
FIG. 1 is a schematic block diagram showing the configuration of a signal processing circuit of a conventional distance measuring device. FIG. 2 is a waveform diagram showing the operation of the signal processing circuit of the conventional distance measuring device shown in FIG. FIG. 3 is a schematic block diagram showing one embodiment of the present invention. FIG. 4 is a waveform diagram for explaining the operation of the embodiment shown in FIG. 3. In the figure, 1 is a light emitting circuit, 2 is a light emitting element, and 3 is a light emitting circuit.
is a target object, 4a, 4b are light receiving elements, 5a, 5b
is a light receiving circuit, 6, 6a, 6b are variable gain amplifiers,
7 is a gain control circuit, 8 is a waveform processing circuit, 9 is a level determination circuit, and 10a, 10b, and 10c are switch circuits.

Claims (1)

【特許請求の範囲】 1 目標物体までの距離を測定する測距装置の信
号処理回路であつて、 前記目標物体に対して光を照射する発光手段
と、 前記目標物体からの反射光を受けて電気信号に
変換する複数の受光手段と、 前記受光手段からの出力信号を増幅する単一の
利得可変増幅手段と、 前記利得可変増幅手段の利得を時間の関数とし
て変化させる利得制御手段と、 前記利得可変増幅手段の出力レベルが所定のし
きい値に達したときにタイミング信号を発生する
レベル判定手段と、 前記タイミング信号に基づいて前記受光手段お
よび前記利得制御手段を動作状態または非動作状
態に切換えるスイツチング手段と、 前記タイミング信号発生直前の前記利得可変増
幅手段出力と前記タイミング信号発生直後の前記
利得可変増幅手段出力とを演算して目標物体まで
の距離を表わす測距信号を出力する波形処理手段
とを備えた、測距装置の信号処理回路。
[Scope of Claims] 1. A signal processing circuit for a distance measuring device that measures the distance to a target object, comprising: a light emitting unit that irradiates light to the target object; and a light emitting unit that receives reflected light from the target object. a plurality of light receiving means for converting into electrical signals; a single variable gain amplifying means for amplifying the output signal from the light receiving means; a gain control means for changing the gain of the variable gain amplifying means as a function of time; level determining means for generating a timing signal when the output level of the variable gain amplification means reaches a predetermined threshold; and setting the light receiving means and the gain control means in an operating state or a non-operating state based on the timing signal. switching means for switching; and waveform processing for calculating the output of the variable gain amplification means immediately before the generation of the timing signal and the output of the variable gain amplification means immediately after the generation of the timing signal and outputting a ranging signal representing the distance to the target object. A signal processing circuit for a distance measuring device, comprising means.
JP58227222A 1983-11-29 1983-11-29 Signal processing circuit of distance measuring device Granted JPS60115882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227222A JPS60115882A (en) 1983-11-29 1983-11-29 Signal processing circuit of distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227222A JPS60115882A (en) 1983-11-29 1983-11-29 Signal processing circuit of distance measuring device

Publications (2)

Publication Number Publication Date
JPS60115882A JPS60115882A (en) 1985-06-22
JPH031626B2 true JPH031626B2 (en) 1991-01-11

Family

ID=16857408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227222A Granted JPS60115882A (en) 1983-11-29 1983-11-29 Signal processing circuit of distance measuring device

Country Status (1)

Country Link
JP (1) JPS60115882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022138A (en) * 2017-02-15 2023-02-14 パイオニア株式会社 Optical scanning device and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348857Y2 (en) * 1989-01-24 1991-10-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022138A (en) * 2017-02-15 2023-02-14 パイオニア株式会社 Optical scanning device and control method

Also Published As

Publication number Publication date
JPS60115882A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
US4954786A (en) Optical amplifying device
US5008695A (en) Rangefinder for camera
US5880827A (en) Measurement System with large dynamic range
TWI735399B (en) Photosensor device with dark current cancellation
JPH031626B2 (en)
JP2648491B2 (en) Distance detection device
US5515350A (en) Optical head with adjustable output power detector
JPH03189584A (en) Distance measuring instrument
JPS59197807A (en) Signal processing circuit for distance measuring device
JPS6230363B2 (en)
JP2662036B2 (en) Appearance inspection equipment for electronic components
US7119949B1 (en) System and method for measuring an amount of error associated with an optical amplifier
US6961172B1 (en) System and method for measuring an amount of error associated with an optical amplifier
JPH03272413A (en) Distance measuring apparatus
JP2005196877A (en) Optical integrated element
JP2001211125A (en) Detector circuit
SU1647920A1 (en) Digital optoelectronic transmitter
JPS62204138A (en) Optical fiber measuring instrument
JPH053455A (en) Optical amplifier
JPH11297171A (en) Optical beam sensor
JP2841743B2 (en) Light emitting and receiving circuit for optical sensor
JPS61149883A (en) Range measuring instrument
JPH0378612A (en) Signal processing circuit of distance measuring apparatus
JP2000056017A (en) Method and device for measuring distance
JPH06111353A (en) Stray light canceling circuit