JPH03162532A - Manufacture of ni-ti intermetallic compound - Google Patents

Manufacture of ni-ti intermetallic compound

Info

Publication number
JPH03162532A
JPH03162532A JP1299673A JP29967389A JPH03162532A JP H03162532 A JPH03162532 A JP H03162532A JP 1299673 A JP1299673 A JP 1299673A JP 29967389 A JP29967389 A JP 29967389A JP H03162532 A JPH03162532 A JP H03162532A
Authority
JP
Japan
Prior art keywords
reaction
liquid phase
phase
heat treatment
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1299673A
Other languages
Japanese (ja)
Inventor
Kazuo Ebato
江波戸 和男
Masaomi Tsuda
津田 正臣
Tsutomu Omori
勉 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP1299673A priority Critical patent/JPH03162532A/en
Priority to GB9024530A priority patent/GB2238320A/en
Priority to DE4036832A priority patent/DE4036832A1/en
Priority to FR909014464A priority patent/FR2654746B1/en
Priority to KR1019900018837A priority patent/KR960006450B1/en
Publication of JPH03162532A publication Critical patent/JPH03162532A/en
Priority to US07/912,120 priority patent/US5316599A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To easily obtain the Ni-Ti intermetallic compound which is thick and broad and having a prescribed compsn. by subjecting Ni-Ti plural layers laminated alternately to homogenizing treatment in vacuum or the like under prescribed conditions such as the temp. range in which a liquid phase is partly formed. CONSTITUTION:Ni-Ti plural layers are alternately laminated to regulate the thickness of each layer respectively into an objective compsn. Next, the Ni-Ti laminated product is subjected to homogenizing treatment in vacuum or in an inert gas atmosphere. This homogenizing treatment is executed in the temp. range where a liquid phase is partly formed, i.e., at 955 to 1015 deg.C for 1 sec to 10 hr or at 1015 to 1110 deg.C for 1sec to 1 hr. Then, the Ni-Ti intermetallic compound having the compsn. of 48 to 55 atomic% Ni can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反応拡散を利用して、NiおよびTiの積層
体から直接、NiTi金属間化合物を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a NiTi intermetallic compound directly from a laminate of Ni and Ti using reaction diffusion.

〔従来の技術〕[Conventional technology]

NiTi系合金は、その組或に応して様々な機能を呈す
るので、各種材料として多方面にわたり実用化が進めら
れている。
Since NiTi-based alloys exhibit various functions depending on their composition, they are being put into practical use as various materials in a wide range of fields.

従来、NiTi系合金の板材や線条材は、通常の金属材
料と同様、溶解一熱間圧延一冷間圧延一中間軟化焼鈍一
冷間圧延−・・・・・・一最終製品という工程を経て製
造されていた。
Conventionally, NiTi-based alloy plates and wire materials have undergone a process of melting, hot rolling, cold rolling, intermediate softening annealing, cold rolling, and final product, just like ordinary metal materials. It was manufactured after.

しかしながら、上記の方法による製造は、後述するNi
Ti系合金に特有の性質上、極めて困難であったことか
ら、それに代わるものとして粉末焼結法が開発された。
However, the production by the above method cannot be performed with Ni, which will be described later.
Since this was extremely difficult due to the unique properties of Ti-based alloys, a powder sintering method was developed as an alternative.

この方法は、NiおよびTi粉末を目標組或となるよう
な割合で混合し、この混合粉末をプレス、HIP,CI
Pおよび冷間粉末圧延法などの戒形技術によって目的と
する製品形状かまたはそれに近い形状に圧粉成形したの
ち、高温焼結を施してNiとTiの反応拡敗により単相
のNiTi系合金を得ようとするものである。この方法
によれば、前述した溶解から冷間加工を経る方法に較べ
ると、威分調整時や中間工程における歩留りは格段に向
上する。
In this method, Ni and Ti powders are mixed in a ratio to form a target composition, and this mixed powder is pressed, HIPed, CI
After compacting into the desired product shape or a shape close to it using preforming techniques such as P and cold powder rolling, high-temperature sintering is performed to form a single-phase NiTi-based alloy through the reaction expansion of Ni and Ti. It is an attempt to obtain. According to this method, compared to the method described above which involves melting and cold working, the yield during weight adjustment and intermediate steps is significantly improved.

上に述べた2種類の方法が、現在、NiTi系合金の製
造に用いられている一般的な方法であるが、これらの製
造法がそなえる問題点を解決する他の製造法として、た
とえば特開昭59 7 116340号公報には、Ni
とTiを圧接、めっきまたは蒸着などの膜形或法により
密着させてから加熱し、ついで反応拡散によってNiT
i相を得る方法が提案されている。
The two methods mentioned above are the general methods currently used for manufacturing NiTi alloys, but there are other manufacturing methods that solve the problems of these manufacturing methods, such as those described in Japanese Patent Application Laid-Open No. Publication No. 116340 of 1987 discloses that Ni
NiT and Ti are brought into close contact with each other by a film forming method such as pressure welding, plating or vapor deposition, and then heated, and then NiT is formed by reaction diffusion.
A method for obtaining the i-phase has been proposed.

また特開昭62 − 120467号公報には、NiT
i系合金の線条材について、上掲特開昭59 − 11
6340号公報に開示の技術の改良方法として、Ti心
線の表面をNiで被覆した複合線条材を複数本束ね、つ
いで縮径加工を施してから、拡散処理によってNiTi
相を生成させる方法が提案されている。この方法は、線
条材の製造方法としては充分に実用的であり、また得ら
れた線条材を圧迫することによって、数III〜数cm
程度の板条材の製造も可能である。
In addition, Japanese Patent Application Laid-Open No. 120467/1983 describes NiT
Regarding the wire material of i-series alloy, the above-mentioned Japanese Patent Application Laid-Open No. 59-11
As an improvement method of the technique disclosed in Japanese Patent No. 6340, a plurality of composite filaments in which the surfaces of Ti core wires are coated with Ni are bundled, and then diameter-reduced, and then NiTi is formed by diffusion treatment.
Methods for generating phases have been proposed. This method is sufficiently practical as a method for producing filament material, and by compressing the filament material obtained, it is possible to
It is also possible to manufacture sheets and strips of about 100 ml.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したようにNiTi系合金については、種々の製造
方法が提案されているが、いずれも以下にのべるとおり
、解決すべき多くの問題点を残していた。その主要原因
は、NiTi系合金が有用な特性を示すのはNiとTi
の原子比がl:1付近の限られた組成であるが、この組
成範囲では通常の金属材料に較べて、冷間加工性が極め
て悪い点にある。
As mentioned above, various manufacturing methods have been proposed for NiTi-based alloys, but all of them leave many problems to be solved, as described below. The main reason for this is that NiTi-based alloys exhibit useful properties because of Ni and Ti.
Although it has a limited composition with an atomic ratio of around 1:1, its cold workability is extremely poor in this composition range compared to ordinary metal materials.

たとえば、一般的に板状のNiTi系合金を得るために
用いられている溶解一熱間圧延一冷間圧延一中間軟化焼
鈍一冷間圧延・・・・・・最終製品という製造工程では
、冷間圧延と中間軟化焼鈍工程をかなりの回数繰返さな
ければ所定の厚みまで加工することができない。この連
続加工一軟化焼鈍の繰返しは、圧延中における耳割れの
発生、焼鈍酸洗時における酸化・酸洗ロス等による歩留
りの低下、さらには焼鈍時の酸化による材質の劣化など
の原因となり、そのためNiTiは生産性が悪く、また
価格も高いものとならざるを得なかった。とくに、低温
における超弾性を発現させるために必要なNi含有量が
50a t%以上の組或のものについては、冷間加工に
よる仮製品の製造は工業的には事実上不可能であった。
For example, melting, hot rolling, cold rolling, intermediate softening annealing, and cold rolling, which are generally used to obtain plate-shaped NiTi alloys, produce the final product. Unless the intermediate rolling and intermediate softening annealing steps are repeated a considerable number of times, it is not possible to process the product to a predetermined thickness. This repetition of continuous processing and softening annealing can cause edge cracking during rolling, decrease in yield due to oxidation and pickling loss during annealing and pickling, and furthermore, deterioration of the material due to oxidation during annealing. NiTi has poor productivity and is inevitably expensive. In particular, it has been practically impossible to produce temporary products by cold working industrially for some sets in which the Ni content required to exhibit superelasticity at low temperatures is 50 at% or more.

このようにNiTi合金は難加工性であるため、従来大
量に製造されているのは加工が比較的容易な線材が主で
あり、板材の生産量は極めて少ない。
As described above, since NiTi alloys are difficult to process, conventionally, what has been produced in large quantities is mainly wire rods that are relatively easy to process, and the production amount of plate materials is extremely small.

この他にも、生産性を阻害し、コストを上昇させる大き
な要因として、適性組成への溶解の難しさが挙げられる
。たとえば、形状記憶材料においては、その動作温度を
目標どおりに制御することが最も重要であるが、NiT
i合金の場合、Nii5度が0.1%変化しただけで動
作温度は10゜Cも変化する。
In addition to this, another major factor that impedes productivity and increases costs is the difficulty in dissolving into an appropriate composition. For example, in shape memory materials, where it is of paramount importance to control their operating temperature on target, NiT
In the case of i-alloys, a change in Nii5 degrees of just 0.1% causes a change in operating temperature of 10 degrees Celsius.

そのため正確な戒分調整が不可欠であるが、Tiは高温
で極めて活性に富み、溶解鋳造時に酸化ロスや鋳型との
反応などで失われてしまうため、目標とおりの組或に調
整することは極めて難しかった。
Therefore, accurate adjustment of the composition is essential, but Ti is extremely active at high temperatures and is lost during melting and casting due to oxidation loss and reaction with the mold, so it is extremely difficult to adjust the composition to the target. was difficult.

従って、溶解には特別の設備を必要とし、かかる要因が
歩留り良く一定の品質のものを安価に製造することを妨
げていたのである。
Therefore, special equipment is required for melting, and this factor has hindered the production of products of constant quality at low cost with a good yield.

上記した溶解および冷間加工に伴う諸問題を回避する方
法として開発されたのが粉末焼結法であるが、この方法
では、それ自体製造が難しくまた高価でもあるTi粉末
を用いなければならないこともあって、やはり製品価格
は高くならざるを得なかった。従って、粉末焼結法は、
複雑形状または少量多品種の部材製造に適用する場合に
はそれなりの利点があるといえるけれども、板条材のよ
うにある程度まとまった量を安定かつ安価に供給しなけ
ればならない製品の製造には適さない。加えて、粉末焼
結材は、素材として用いる粉末の表面が程度の差こそあ
れ酸化しているため、最終製品の内部にはかなりの量の
酸化物が残留し、製品品質上も問題が残っていた。
Powder sintering was developed as a method to avoid the problems associated with melting and cold working described above, but this method requires the use of Ti powder, which is itself difficult to manufacture and expensive. As a result, product prices had to rise. Therefore, the powder sintering method is
Although it can be said to have certain advantages when applied to the manufacture of parts with complex shapes or small quantities of a wide variety of products, it is not suitable for the manufacture of products such as plate and strip materials that must be supplied in large quantities stably and at low cost. do not have. In addition, with powder sintered materials, the surface of the powder used as a raw material is oxidized to varying degrees, so a considerable amount of oxide remains inside the final product, which poses problems in terms of product quality. was.

さらに、反応拡散を用いるという点で粉末焼結法と同し
原理に基づき、しかも和未焼結法に較べてより安価に板
条材を製造する方法として提案された特開昭59− 1
16340号公報に開示の方法を、実際の板条材の製造
に適した場合には、0.1mm厚程度の単相のNiTi
合金板を得ようとする場合にも数百時間にも及ぶ長時間
の拡散熱処理を必要とする。
Furthermore, JP-A-59-1 was proposed as a method for manufacturing plates and strips based on the same principle as the powder sintering method in that it uses reaction diffusion, but at a lower cost than the Japanese unsintered method.
When the method disclosed in Japanese Patent No. 16340 is suitable for manufacturing actual strips, single-phase NiTi with a thickness of about 0.1 mm is used.
Even when trying to obtain an alloy plate, a long diffusion heat treatment lasting several hundred hours is required.

また、NiおよびTi各層の層厚が厚い場合には、拡散
熱処理中に材料内部にボイドなどの欠陥が多発し、組織
の健全性が害されることから、この方法で実用材料とし
て製造可能な板厚は、せいぜい数十μm程度にすぎない
。従って、この方法も工業的製造方法として実用的とは
いい難い。
In addition, if the Ni and Ti layers are thick, defects such as voids will occur frequently inside the material during diffusion heat treatment, impairing the integrity of the structure. The thickness is only about several tens of micrometers at most. Therefore, this method cannot be said to be practical as an industrial manufacturing method either.

なお、上記の製造法の延長と考えられるものに、特開昭
64 − 31938号公報に開示の方法がある。この
方法は、とくにNiTiには限定していないが、箔状の
金属素材を複数層積層し、その後熱処理によって拡散を
起こさせるというものである。
Incidentally, there is a method disclosed in Japanese Patent Application Laid-open No. 31938/1983 that is considered to be an extension of the above manufacturing method. Although this method is not particularly limited to NiTi, a plurality of foil-like metal materials are laminated, and then diffusion is caused by heat treatment.

しかしながらこの方法は、反応拡散が固相拡敗であり、
Ni− Ti間の反応拡散とくに平面状に積層したNi
− Ti板の固相反応拡散の場合には、粉末を素材とし
た場合に較べると以下に列挙するような特有な問題が生
じるため、実用に耐え得る品質の材料は得がたく、また
所要時間も長い。なお、これらの点については、本発明
者らの実験により確かめられている。
However, in this method, the reaction diffusion is solid phase diffusion,
Reaction diffusion between Ni-Ti, especially Ni layered in a planar manner
- In the case of solid phase reaction diffusion of Ti plates, compared to the case of using powder as a material, specific problems such as those listed below occur, so it is difficult to obtain materials of quality that can withstand practical use, and the time required It's also long. Note that these points have been confirmed through experiments conducted by the present inventors.

(1)第1の点は、反応拡散に要する時間であり、同一
重量で考えた場合、粉末に比較して拡散が進行する界面
の面積(比表面積ms”/g)が少ないため、拡散の進
行に長時間を要することである。
(1) The first point is the time required for reaction and diffusion, and when considering the same weight, the area of the interface where diffusion progresses (specific surface area ms''/g) is smaller than that of powder, so the diffusion The problem is that it takes a long time to proceed.

(2)第2の点は、上記したところと同じ原因により、
単位界面面積当りを通過する原子の絶対数が増大するこ
とから、相互拡散に特有の現象であるカーケンドール効
果によるボイドの発生が多発することである。とくにN
iとTi間の相互拡散の場合、Ti中のNi原子の拡散
速度の方がNi中のTi原子の拡散速度に較べて100
0倍以上も大きいために、界面近傍においてNi原子が
欠乏する傾向が大きく、そのためカーケンドールボイド
の発生が顕著となる。ボイドの発生は、単に組織を害す
るだけでなく、とくに界面ポイドはそれ以降の反応拡散
の障害となり、組戒均質化の妨げともなるので、極力滅
少する必要がある。
(2) The second point is due to the same cause as mentioned above.
As the absolute number of atoms passing through per unit interface area increases, voids occur frequently due to the Kirkendall effect, a phenomenon specific to interdiffusion. Especially N
In the case of interdiffusion between i and Ti, the diffusion rate of Ni atoms in Ti is 100% higher than that of Ti atoms in Ni.
Since it is more than 0 times larger, there is a strong tendency for Ni atoms to be depleted near the interface, and as a result, the occurrence of Kirkendall voids becomes significant. The generation of voids not only harms the tissue, but interfacial voids in particular become an obstacle to subsequent reaction diffusion and hinder homogenization of the composition, so they must be minimized as much as possible.

なお、ボイドの発生は、反応拡散の熱処理温度と密接な
関係にあり、Ni−Tiの場合には700℃程度の比較
的低い温度ではボイドの発生をある程度抑制することが
できる反面、拡散速度が遅くなるため組成の均質化には
長時間を要し、実用的ではない。一方、反応時間を短縮
するために900℃程度の固相反応上限温度近傍で熱処
理を行うと、ボイドの多量の発生を招く。
The generation of voids is closely related to the reaction-diffusion heat treatment temperature, and in the case of Ni-Ti, although the generation of voids can be suppressed to some extent at a relatively low temperature of about 700°C, the diffusion rate is Because of this slow process, it takes a long time to homogenize the composition, which is not practical. On the other hand, if heat treatment is performed near the upper limit temperature of solid phase reaction of about 900° C. in order to shorten the reaction time, a large amount of voids will be generated.

(3)第3の点は、これもNiとTiの相互拡散速度の
差に起因する現象で、NiとTi層との間に拡散の進行
に伴って体積の増減が起こり、その結果、界面に応力が
発生して機械的な剥離現象が生じることである。この点
につき、いま少し具体的に説明すると、原子を優先的に
放出するNi層の方は当然体積が相対的に減少する方向
に向かい、その際における減少の仕方は、マクロ的には
厚さ方向の層厚の減少となって現れる。他方、原子を吸
収する側のTi層の方は、マクロ的にみるとN厚の増加
と共に層の平面方向にも膨張することとなる。そのため
、NiとTiNの境界付近では平面方向に剪断力が働く
ことになり、その結果、界面で機械的剥離が生しること
になる。
(3) The third point is a phenomenon that is also caused by the difference in mutual diffusion rate between Ni and Ti, and as the diffusion progresses between the Ni and Ti layers, the volume increases and decreases, and as a result, the interface This is because stress is generated and mechanical peeling occurs. To explain this point in more detail, the volume of the Ni layer that preferentially releases atoms naturally tends to decrease relatively, and the way in which the volume decreases in this case is macroscopically determined by the thickness. This appears as a decrease in the layer thickness in the direction. On the other hand, from a macroscopic perspective, the Ti layer on the side that absorbs atoms expands in the plane direction of the layer as the N thickness increases. Therefore, a shearing force acts in the plane direction near the boundary between Ni and TiN, and as a result, mechanical peeling occurs at the interface.

上述した理由により、特開昭64−31938号公報に
開示の製造法は、工業的規模での通用が実際的とは言え
ないわけである。
For the reasons mentioned above, the production method disclosed in JP-A-64-31938 cannot be said to be practical on an industrial scale.

なお、特開昭62 − 120467号公報に開示の製
造法は、線条材の製造に際しては工業的に充分利用可能
と言えるけれども、この方法で得られる仮条材の寸法は
、元になる線条材の寸法が限られているため自から限界
があり、厚肉のものや広幅のものなど多様な寸法要求に
は応えられない。
Although it can be said that the manufacturing method disclosed in JP-A-62-120467 can be fully used industrially for manufacturing wire material, the dimensions of the temporary wire material obtained by this method are smaller than the original wire material. Since the dimensions of the strips are limited, they have their own limits, and cannot meet diverse dimensional demands such as thick or wide strips.

本発明は、上記の諸問題を有利に解決するもので、たと
え厚肉または広幅なものであっても、工業的に安価に製
造することができるNiTi金属間化合物の有利な製造
方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems and proposes an advantageous manufacturing method for NiTi intermetallic compounds that can be manufactured industrially and inexpensively, even if they are thick or wide. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

さて本発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、反応拡散の形態を固相拡散ではなく、液相
を利用した拡散で行うことが、所期した目的の達戒に関
し、極めて有効であることの知見を得た。
As a result of intensive research to solve the above problem, the inventors of the present invention have found that it is possible to achieve the desired purpose by using liquid phase diffusion rather than solid phase diffusion for reaction diffusion. We have obtained knowledge that this method is extremely effective.

すなわち、Ni −Ti二元系状態図上で特定の組威範
囲で液相を生成するような温度範囲を選んで熱処理を行
い、NiとTiの界面に部分的に液相を生じさせてみた
ところ、反応が短時間に終了するのみならず、欠陥が極
めて少ない材料を得ることができたのである。
That is, heat treatment was performed by selecting a temperature range that would produce a liquid phase within a specific composition range on the Ni-Ti binary system phase diagram, and a liquid phase was partially generated at the interface between Ni and Ti. However, not only was the reaction completed in a short time, but a material with extremely few defects was also obtained.

なお、固相関の反応に液相を介在させる手法としては、
粉末冶金における液相焼結法が知られているが、この方
法は、比較的体積分率の少ない低融点のバインダーとな
る戒分のみを液相として利用しているのに対し、本法で
は、液相焼結法におけるバインダーのような概念ではな
く、拡散の進行に伴って液相生成界面が移動し、熱処理
条件によっては最終的に材料のほぼ100%に近い部分
が少なくとも一度は液相状態を得ることになるという、
液相焼結法とは全く異なる特徴を有している。
In addition, as a method for intervening a liquid phase in a solid phase reaction,
A liquid phase sintering method in powder metallurgy is known, but this method uses only a low melting point binder with a relatively small volume fraction as a liquid phase. , rather than the concept of a binder in liquid phase sintering, the liquid phase generation interface moves as diffusion progresses, and depending on the heat treatment conditions, eventually nearly 100% of the material will form a liquid phase at least once. It is said that the state will be obtained,
It has completely different characteristics from the liquid phase sintering method.

従来、反応拡散を利用したNiTi金属間化合物の製造
において、液相を利用することについて試みられた例は
なく、かかる液相の活用は本発明で初めて実施されたも
のである。
Conventionally, there has been no attempt to utilize a liquid phase in the production of a NiTi intermetallic compound using reaction diffusion, and the present invention is the first to utilize such a liquid phase.

本発明は、上記の知見に立脚するものである。The present invention is based on the above findings.

すなわち本発明は、NiとTiを複数層交互に積層し、
ついで拡散熱処理により48〜55a t%組成のNi
Ti金属間化合物を製造するに際し、該拡散熱処理を一
部液相が生じる温度範囲で行うことからなるNiTi金
属間化合物の製造法(第1発明)である。
That is, in the present invention, a plurality of layers of Ni and Ti are alternately laminated,
Then, by diffusion heat treatment, Ni with a composition of 48 to 55 at%
This is a method for producing a NiTi intermetallic compound (first invention), which comprises performing the diffusion heat treatment in a temperature range where a liquid phase partially occurs when producing the Ti intermetallic compound.

また本発明は、真空中または不活性ガス雰囲気中で行う
拡散熱処理を、955〜1015℃の温度範囲で1秒〜
10時間(第2発明) 、1015〜11lO℃の温度
範囲で1秒〜1時間(第3発明) 、1110〜124
0℃の温度範囲で1秒〜10分(第4発明)、ならびに
955〜l015℃および/または1015〜1110
℃の温度範囲で1秒〜1分間行い、その温度での液相生
戒反応が終了した後、引続き1110〜1240℃の温
度範囲で1秒〜10分間(第5発明)で行うことからな
るNiTi金属間化合物の製造方法である。
In addition, the present invention performs diffusion heat treatment in a vacuum or inert gas atmosphere at a temperature range of 955 to 1015°C for 1 second to
10 hours (second invention), 1 second to 1 hour in a temperature range of 1015 to 1110°C (third invention), 1110 to 124
1 second to 10 minutes in the temperature range of 0°C (fourth invention), and 955 to 1015°C and/or 1015 to 1110°C
℃ for 1 second to 1 minute, and after the liquid phase reaction at that temperature is completed, the reaction is continued at a temperature range of 1110 to 1240℃ for 1 second to 10 minutes (fifth invention). This is a method for producing a NiTi intermetallic compound.

本発明は、第1発明で述べたとおり、一部液相が生じた
状態での反応拡散を基本とするが、以下、具体的な温度
範囲を規定した第2〜5発明について説明する。
As described in the first invention, the present invention is based on reaction-diffusion in a state where a liquid phase is partially generated.Hereinafter, the second to fifth inventions which define a specific temperature range will be explained.

玉1発里 第2発明は、第l図に示すNi −Ti二元系状態図上
で、βTi−Ni固溶体およびTi.Ni と液相とが
共存する温度範囲(図中、興域I)で拡散熱処理を行う
ものである。この温度範囲では、Tiリンチ側の相に液
相が生じ、理想的に反応が進行した場合には最終的に材
料全体の83 vol%が液相となり、Tiリンチ側の
相が全てTi2Ni となった時点で液相反応は終了す
る。
The second invention is based on a βTi-Ni solid solution and a Ti. Diffusion heat treatment is performed in a temperature range where Ni and the liquid phase coexist (in the figure, Hyo region I). In this temperature range, a liquid phase occurs in the phase on the Ti lynch side, and if the reaction progresses ideally, 83 vol% of the entire material will eventually become a liquid phase, and the entire phase on the Ti lynch side will become Ti2Ni. At that point, the liquid phase reaction ends.

実際には、固相であるNi側にも固相拡散によって若干
Tiが拡散して行くので、液相生戒率は83vo 1%
未満である。液相反応終了後は、この温度範囲では固相
拡散に移行し、材料全体が均一な組成になるまで反応拡
散が進行する。このときTi.Ni とNi間の固相拡
散が律速となるため、液相生戒体積がより大きいこの温
度範囲以上の温度域で反応拡散を行う後述の第3〜5発
明に較べると、NiTi単相になるまでの反応時間は幾
分長くなる(1秒以上、とくに20μmのNiとTiを
積層した場合、約10時間)が、液相部分をサンドイン
チ状に支えるNiリッチ側の固相が比較的厚いために、
通常反応拡散に伴って生じる材料の歪みや変形を低いレ
ベルに抑える上では有利である。
In reality, some Ti diffuses into the Ni side, which is the solid phase, due to solid phase diffusion, so the liquid phase rate is 83vo 1%.
less than After the liquid phase reaction is completed, the reaction transitions to solid phase diffusion within this temperature range, and the reaction diffusion progresses until the entire material has a uniform composition. At this time, Ti. Since the solid phase diffusion between Ni and Ni is rate-determining, compared to the third to fifth inventions described later in which reaction and diffusion are performed in a temperature range above this temperature range where the liquid phase biovolume is larger, NiTi becomes a single phase. The reaction time for this reaction is somewhat longer (more than 1 second, especially about 10 hours when stacking 20 μm of Ni and Ti), but the solid phase on the Ni-rich side that supports the liquid phase in a sandwich-like manner is relatively thick. for,
This is advantageous in suppressing to a low level distortion and deformation of the material that normally occurs with reaction-diffusion.

策主又映 第3発明は、第1図の状態図上で、βTi−Ni固溶体
およびTiNiと液相とが共存する温度範囲でかつ、T
iNiよりもNiリッチ側では液相が生成しない温度範
囲(図中、領域II)で熱処理を行うものである。この
温度範囲では、Tiリッチ側の相に液相が生じ、理想的
に反応が進行した場合には最終的に材料全体の99vo
l%程度が液相となり、Tiリッチ側の相が全て48a
 t%Ni−52at%Tiの組或(状態図上のTiN
iとTiNi十液相共存領域の境界線上の組戒)となっ
た時点で液相反応は終了する。実際の液相生成率は、積
層状態におけるNiとTiの比率や温度によって変化し
、また状態図のNiTiとNiTi +液相の2領域の
境界も完全に確定されているわけではないので、現時点
では明確には規定できない。
The third invention is based on the phase diagram shown in FIG.
Heat treatment is performed in a temperature range (region II in the figure) in which no liquid phase is generated on the Ni-rich side than iNi. In this temperature range, a liquid phase occurs in the phase on the Ti-rich side, and if the reaction progresses ideally, the final 99 vol of the entire material
About 1% becomes a liquid phase, and the Ti-rich phase is all 48a.
A combination of t%Ni-52at%Ti (TiN on the phase diagram)
The liquid phase reaction is completed at the point when the boundary line of the liquid phase coexistence region of i and TiNi is reached. The actual liquid phase formation rate varies depending on the ratio of Ni and Ti in the stacked state and the temperature, and the boundaries between the two regions of the phase diagram, NiTi and NiTi + liquid phase, are not completely determined, so at present cannot be clearly defined.

この温度範囲では、材料のほぼ全量が一度は液相状態を
経ることから、NiTi単相になるまでの反応は短時間
(約1秒〜1時間)で完了する。反応が律速となるのは
、βTi−Ni固溶体の熔融が生じるための固溶体中へ
のNiの拡散、あるいはβTi −Ni固溶体と液相界
面での溶融反応であると考えられるが、どちらもさして
問題となるほど遅い反応ではない。なお、この反応の進
行過程において液相部分を保持するのは、主に固相状態
にあるNi相であり、その他拡散反応によりNi相の外
側に生成したTiNi.およびTiNi相である。
In this temperature range, since almost the entire amount of the material passes through a liquid phase state at least once, the reaction to form a NiTi single phase is completed in a short time (about 1 second to 1 hour). It is thought that the rate-limiting reaction is the diffusion of Ni into the solid solution to cause melting of the βTi-Ni solid solution, or the melting reaction at the interface between the βTi-Ni solid solution and the liquid phase, but neither of these poses much of a problem. It's not that slow of a reaction. In addition, during the progress of this reaction, it is mainly the Ni phase in the solid phase that retains the liquid phase portion, and the TiNi. and TiNi phase.

星土発咀 第4発明は、第1図の状態図上で、NiTiよりもTi
リッチ側でβTi−Ni固溶体およびTiNiと液相と
が共存し、かつNiTiよりもNiリッチ側ではTiN
i.およびTiNiと液相とが共存する温度範囲(図中
、領域■)でより短時間の熱処理を行うものである。
The fourth invention of Xingdo Hatsutsui is that on the phase diagram of FIG.
On the rich side, βTi-Ni solid solution and TiNi coexist with the liquid phase, and on the Ni-rich side than NiTi, TiN
i. The heat treatment is performed for a shorter time in a temperature range where TiNi and the liquid phase coexist (region ■ in the figure).

この温度範囲では、反応の進行に伴って最終的には材料
の全量が一度は液相状態を経ることになる.従って、材
料全体がTiNi単相になるまでの反応時間は極めて短
く (約1秒〜10分)、積N仮各層の厚みにもよるが
、実際的には数秒から数分でTiNi単相となる。
In this temperature range, as the reaction progresses, the entire amount of the material will eventually pass through the liquid phase at least once. Therefore, the reaction time for the entire material to become a TiNi single phase is extremely short (approximately 1 second to 10 minutes), and depending on the thickness of each layer, it actually takes a few seconds to a few minutes to turn the entire material into a TiNi single phase. Become.

この温度範囲で反応拡散を行わせる際に特に注意しなけ
ればならないことは、反応の進行に伴って材料中の全て
の部分が液相あるいは固液共存相となる過程が存在する
ことである。
What must be particularly noted when carrying out reaction-diffusion in this temperature range is that as the reaction progresses, there is a process in which all parts of the material become a liquid phase or a solid-liquid coexistence phase.

この点、第2発明および第3発明では、反応進行中にも
常にNi相の一部および反応により生或したTtNix
やTiNiが固相状態で存在するので、その部分が液相
あるいは固液共存相を保持する働きを担っていた。これ
に対し、第4発明の温度範囲では、反応の前後を通じて
常に固相状態を保っている部分が存在しないため、材料
自体には反応中に材料の形状を強固に保持する能力はほ
とんどない。
In this respect, in the second and third inventions, even during the progress of the reaction, a part of the Ni phase and the TtNix produced by the reaction are always present.
Since TiNi and TiNi exist in a solid state, this part plays a role in maintaining a liquid phase or a solid-liquid coexistence phase. On the other hand, in the temperature range of the fourth invention, there is no part that always maintains a solid state before and after the reaction, so the material itself has almost no ability to firmly maintain its shape during the reaction.

従って、この温度範囲で反応拡散を行わせるためには、
材料形状を外部から保持する支えとなるもの、たとえば
セラミックスまたは耐熱合金製の金型などを用いる必要
がある。しかしながら、この場合にも、材料全てが同時
に液相状態になることはな( 、TiNiz .  β
Ti−Ni固溶体と液相との共存状態となるため、液相
と固相聞の界面張力や毛細管現象などによる形状保持能
力は存在する。従って、完全な液体のように無制限に形
状が崩れてしまうおそれはない。
Therefore, in order to carry out reaction diffusion in this temperature range,
It is necessary to use a support that holds the shape of the material from the outside, such as a mold made of ceramics or a heat-resistant alloy. However, even in this case, all the materials do not become liquid phase at the same time (TiNiz, β
Since the Ti--Ni solid solution and the liquid phase coexist, the shape retention ability exists due to the interfacial tension between the liquid phase and the solid phase, capillary phenomenon, and the like. Therefore, unlike a complete liquid, there is no fear that the shape will collapse indefinitely.

較15  吸 第5発明は、最終的には材料の全量が一度は液相状態を
経て、しかも反応拡散中に一部分に常に固相状態を保ち
、材料自体の形状保持能力を維持できる熱処理法である
。この方法では、反応の進行はまず第2発明または第3
発明で述べたところと同様に進行(955〜1050℃
または10I5〜1110゜Cで■秒〜1分間の熱処理
を行う)し、少量のNi相および/または固相拡敗反応
によって生成したNi3Ti相を残した状態で液相反応
は終了する。ついで第4発明の温度範囲および時間(1
110℃〜1240℃で1秒〜10分)で熱処理するこ
とにより、それまで固相状態を保っていたNi相の残り
ならびに反応によって生戒したTiNi3およびTiN
iの一部が液相状態となり、全体がTiNijit相と
なった時点で反応が終了する。
Comparison 15 The fifth invention is a heat treatment method that allows the entire amount of the material to pass through a liquid phase at least once, and that a portion always remains in a solid phase during reaction and diffusion, thereby maintaining the shape retention ability of the material itself. be. In this method, the reaction progresses first in the second or third invention.
Proceeds in the same manner as described in the invention (955-1050℃
Alternatively, heat treatment is performed at 10I5 to 1110°C for 1 second to 1 minute), and the liquid phase reaction is completed with a small amount of Ni phase and/or Ni3Ti phase generated by the solid phase spreading reaction remaining. Next, the temperature range and time (1
By heat treatment at 110°C to 1240°C for 1 second to 10 minutes), the remaining Ni phase that had remained in a solid state as well as TiNi3 and TiN recovered by the reaction were removed.
The reaction ends when a part of i becomes a liquid phase and the whole becomes a TiNijit phase.

この2段階熱処理によれば、材料の全量が一度は液相状
態を経るものの、前半段階ではNi相の一部が、一方後
半段階では反応により生戒したTiNi相の一部が常に
固相状態で存在するので、材料が溶融してその形状を保
持できなくなるような事態に至ることはない。
According to this two-stage heat treatment, although the entire amount of the material passes through the liquid phase state once, part of the Ni phase remains in the first stage, while part of the TiNi phase recovered by the reaction remains in the solid state in the second half stage. Therefore, the material will not melt and become unable to hold its shape.

〔作 用〕[For production]

本発明において、製造すべきNiTi金属間化合物のN
i紺成を48〜55a t%の範囲に限定したのは、次
の理由による。
In the present invention, N of the NiTi intermetallic compound to be produced is
The reason why the i-containing content was limited to the range of 48 to 55 at% is as follows.

すなわち、下限のNi含有量を48a t%としたのは
、それ以下では形状記憶合金あるいは超弾性合金として
有利な特性をもつものが得られない。一方、その量が5
5a t%を超えると、材料が脆くなり、疲労強度など
の面から実用に適しないからである。
That is, the reason why the lower limit of the Ni content is 48 at % is because below this value, a shape memory alloy or a superelastic alloy with advantageous properties cannot be obtained. On the other hand, the amount is 5
This is because if it exceeds 5 at%, the material becomes brittle and is not suitable for practical use in terms of fatigue strength.

また本発明において、Ni−Ti交互積層の形或方法と
しては、箔を交互に重ねる方法をはじめとして、スパソ
タリングやCVD法などの気相蒸着法など、従来公知の
方法いずれもが適合する。このとき各相の厚みは、処理
時間を考慮すると薄いほど好ましいが、20μm以下程
度であれば実際上問題はない。要は、Ni, Ti各層
の全体厚みをそれぞれ目標組或となるように厳密に管理
することである。
Further, in the present invention, as the form or method of alternately laminating Ni-Ti, any conventionally known method is suitable, including a method of alternately stacking foils, and a vapor phase deposition method such as spa sottering or CVD method. At this time, the thickness of each phase is preferably as thin as possible in consideration of processing time, but there is no problem in practice if the thickness is about 20 μm or less. The key point is to strictly control the total thickness of each of the Ni and Ti layers so that they meet the desired thickness.

さらに積層後、必要に応じて軽圧下を加えたり、予、備
熱処理を施すことが有利である。というのは、積層界面
に気泡が存在する場合には、軽圧下によってかかる気泡
を除去することができるので、製品の品質劣化が回避さ
れるからである。
Furthermore, after lamination, it is advantageous to apply light pressure or to perform preheat treatment as necessary. This is because, if air bubbles are present at the lamination interface, such air bubbles can be removed by applying light pressure, thereby avoiding product quality deterioration.

また、予備熱処理の目的は、Niと↑iからNiTiが
生或する反応は発熱反応であることから、積層板を急激
に加熱した場合に反応が進みすぎて自己発熱により融点
を超えて溶解するのを、未然に防ぐことにある.この予
備熱処理により、NiとTiの中間にTiNi.やTi
Ni, Ti.Niなどが生成し、これらがNiとTi
のダイレクト反応を防ぐバリャーとして作用するので、
自己発熱反応による溶解が有利に防止されるのである。
In addition, the purpose of the preliminary heat treatment is that the reaction in which NiTi is produced from Ni and ↑i is an exothermic reaction, so if the laminate is heated rapidly, the reaction will proceed too much and melt beyond the melting point due to self-heating. The goal is to prevent this from happening. By this preliminary heat treatment, TiNi. YaTi
Ni, Ti. Ni, etc. are generated, and these are Ni and Ti.
acts as a barrier to prevent the direct reaction of
Dissolution due to self-heating reactions is advantageously prevented.

なお本発明では、拡散熱処理時における処理時間につい
ては、幅広い時間としたが、というのは、処理時間は、
積層体中の各層の厚みに応じて変化するからである。た
だ、液相反応が終了した時点では、とくに第2発明では
TiNi単相とはなっておらず、すなわち、他に、Ni
>50at%で、時効により母相中には、TiJi4,
 TizNi3あるいはTiNiz相などの析出が見ら
れる。また他の条件でも状態図上のTiNiO&lIt
c幅に対応した組或の不均一があるため、材料全体を均
一な組威にするためには、液相反応終了後、数時間から
数十時間の均質化焼鈍、すなわち、NiTi単相にする
ための拡散熱処理とは別に、得られたNiTi単相中の
温度のバラッキを均らすための処理を行うことが望まし
い。
In the present invention, the treatment time during the diffusion heat treatment was set over a wide range of times.
This is because it changes depending on the thickness of each layer in the laminate. However, at the time when the liquid phase reaction is completed, especially in the second invention, the TiNi single phase is not formed.
>50at%, TiJi4, TiJi4,
Precipitation of TizNi3 or TiNiz phase is observed. Also under other conditions, TiNiO&lIt on the phase diagram
Since there is some non-uniformity in the composition corresponding to the c width, in order to make the entire material uniform, homogenization annealing for several to tens of hours after the liquid phase reaction is completed, that is, NiTi single phase Separately from the diffusion heat treatment to achieve this, it is desirable to perform a treatment to even out the temperature variations in the obtained NiTi single phase.

なお、本発明中の温度範囲は、現在知られているNi−
Ti二元系状態図(第1図)より導き出したものであり
、今後のさらに詳細で正確な状態図の研究により温度の
絶対値は変化することが考えられるが、本発明の本質は
Ni−Ti二元系状.態図上の相変化の領域にあり、か
りに温度の絶対値が修正された場合には、本発明の適性
温度範囲はその修正値を基準として変更される。同様の
温度の絶対値の変化は本合金系に不可避的に、あるいは
特性改善を目的とした添加により含まれる第三元素(〈
20%のCuなど)によっても同様に考えられる。
Note that the temperature range in the present invention is based on the currently known Ni-
This was derived from the Ti binary system phase diagram (Figure 1), and although the absolute value of the temperature may change with future research into a more detailed and accurate phase diagram, the essence of the present invention is that the Ni- Ti binary system. If the temperature is in the phase change region on the phase diagram and the absolute value of the temperature is corrected, the appropriate temperature range of the present invention is changed based on the corrected value. A similar change in the absolute value of temperature is caused by a third element (<
20% Cu, etc.) may be considered in the same way.

〔実施例〕〔Example〕

本発明法に従ってNiTi金属間化合物を製造するため
に、まず次のようにして素材を作製した。
In order to produce a NiTi intermetallic compound according to the method of the present invention, a material was first produced as follows.

NiとTiの原子比を50.5 7 49.5とするた
め、板厚比で38.8 : 61.2となるように板厚
を調整した純Ni箔と純Ti箔をそれぞれ交互にNi箔
を外層として25枚積層し、全体の厚みが0.2泪とな
るまで圧延したのち、750℃,4時間、ついで900
℃,1時間の予備熱処理を施し、素材とした。
In order to set the atomic ratio of Ni to Ti to 50.5 7 49.5, pure Ni foil and pure Ti foil whose thickness was adjusted to have a thickness ratio of 38.8:61.2 were alternately coated with Ni. After laminating 25 sheets of foil as the outer layer and rolling until the total thickness was 0.2 mm, the foil was rolled at 750°C for 4 hours, then at 900°C.
A preliminary heat treatment was performed at ℃ for 1 hour to obtain a material.

大施旌上 上記の素材を、真空雰囲気下に、室温から60℃III
inの昇温速度で1000℃まで昇温し、この温度に1
時間保持してから、炉中冷却した。なお、熱処理は、素
材をジルコニアセラミックスの平板上に平に載せた状態
で行った。
The above material was heated from room temperature to 60℃ in a vacuum atmosphere.
The temperature was raised to 1000°C at a heating rate of in, and at this temperature
After holding for a period of time, it was cooled in the furnace. Note that the heat treatment was performed with the material placed flat on a flat plate of zirconia ceramics.

かくして得られた試験片を室温で変形させたのち、90
℃の温水中に浸したところ、直ちに元の形状に復元した
。またこの試験片の断面を顕微鏡で観察したところ、拡
散熱処理前に存在した積層構造は消失して、完全なNi
Ti単相状態となっていた。
After deforming the test piece thus obtained at room temperature, 90
When immersed in warm water at ℃, it immediately returned to its original shape. Furthermore, when the cross section of this test piece was observed under a microscope, the layered structure that existed before the diffusion heat treatment disappeared, and a complete Ni
It was in a Ti single phase state.

裏施拠1 上記の素材を、真空雰囲気下に、室温から60゜C/m
inの昇温速度で1050℃まで昇温し、この温度に3
0分間保持してから、炉中冷却した。なお熱処理時にお
ける素材の載置状態は実施例lと同様である. 得られた試験片を室温で変形させたのち、90゜Cの温
水中に浸したところ、直ちに元の形状に復元した。また
試験片の断面は完全なNiTi単相状態となっていた。
Back construction 1 The above material was heated from room temperature to 60°C/m under a vacuum atmosphere.
The temperature was raised to 1050°C at a heating rate of
After holding for 0 minutes, the mixture was cooled in the furnace. The mounting condition of the material during heat treatment was the same as in Example 1. The obtained test piece was deformed at room temperature and then immersed in warm water at 90°C, and immediately restored to its original shape. Further, the cross section of the test piece was in a complete NiTi single phase state.

尖施握主 上記の素材を、真空雰囲気下に、室温から60℃/mi
nの昇温速度で1150℃まで昇温し、この温度に5分
間保持してから、炉中冷却した。なお熱処理時における
素材の載置状態は実施例1と同様である。
The above material was heated from room temperature to 60℃/mi under a vacuum atmosphere.
The temperature was raised to 1150° C. at a heating rate of n, held at this temperature for 5 minutes, and then cooled in the furnace. Note that the mounting state of the material during the heat treatment is the same as in Example 1.

得られた試験片を室温で変形させたのち、90℃の温水
中に浸したところ、直ちに元の形状に復元した。また組
織は完全なNiTi単相状態となっていた。
The obtained test piece was deformed at room temperature and then immersed in hot water at 90°C, and immediately restored to its original shape. Moreover, the structure was in a complete NiTi single phase state.

実1l彫上 上記の素材を、真空雰囲気下に、室温から60℃/mi
nの昇温速度で1150℃まで昇温し、この温度にIO
分間保持したのち、引続き同じ<60゜c/minの昇
温速度で1150℃まで昇温し、この温度に5分間保持
してから、炉中冷却した。なお熱処理時における素材の
載置状態は実施例1と同様である。
Carved 1 liter of the above material in a vacuum atmosphere from room temperature to 60℃/mi.
The temperature was raised to 1150°C at a heating rate of n, and IO was added to this temperature.
After holding for a minute, the temperature was raised to 1150° C. at the same heating rate of <60° C/min, held at this temperature for 5 minutes, and then cooled in the furnace. Note that the mounting state of the material during the heat treatment is the same as in Example 1.

得られた試験片を室温で変形させたのち、90℃の温水
中に浸したところ、直ちに元の形状に復元した。またm
織は完全なNiTi単相状態となっていた。
The obtained test piece was deformed at room temperature and then immersed in hot water at 90°C, and immediately restored to its original shape. Also m
The weave was in a complete NiTi single phase state.

天社自41 素材の形状を円筒状として炉内に立てた状態で載置した
以外は、実施例4と同様の条件で熱処理を施した。
Tenshaji 41 Heat treatment was performed under the same conditions as in Example 4, except that the material was made into a cylindrical shape and placed in an upright state in the furnace.

熱処理後において、試験片の形状は若干の変形がみられ
たものの、ほぼ原型どおりの姿をとどめていた。
After the heat treatment, the shape of the test specimen remained almost the same, although some deformation was observed.

比較のため、実施例3と同様の条件で熱処理を行ったと
ころ、試験片の変形は著しく、円筒を開いて平板状に戻
すことができない状態であった。
For comparison, heat treatment was carried out under the same conditions as in Example 3, and the specimen was so significantly deformed that it was impossible to open the cylinder and return it to a flat plate shape.

比較例1 20μm厚のNiとTiの箔を交互に積層することによ
り、全体が0.5m厚になるようにし、これを冷間で1
0%の圧延を施し、その後950℃で5時間拡散焼鈍を
施した。
Comparative Example 1 20 μm thick Ni and Ti foils were laminated alternately to make the whole 0.5 m thick, and then cold
0% rolling was performed, and then diffusion annealing was performed at 950° C. for 5 hours.

得られた試料について、その断面を顕微鏡観察したとこ
ろ、層状の多数のボイドが生じており、従って、工業的
には厚肉広幅のものを製造するのは困難であることが窺
えた。
When the cross section of the obtained sample was observed under a microscope, it was found that many voids were formed in a layered manner, and therefore it was found that industrially it would be difficult to manufacture a thick and wide sample.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、従来工業的規模での製造が事
実上不可能とされた厚肉、広幅のNiTi金属間化合物
であっても、高品質の下に短時間でかつ安価に製造する
ことができる。
Thus, according to the present invention, even thick-walled, wide-width NiTi intermetallic compounds, which have conventionally been virtually impossible to manufacture on an industrial scale, can be manufactured in a short time and at low cost with high quality. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 Ni−Ti二元系状態図である。 Figure 1 shows It is a Ni-Ti binary system phase diagram.

Claims (1)

【特許請求の範囲】 1、NiとTiを複数層交互に積層し、ついで拡散熱処
理により48〜55at%Ni組成のNiTi金属間化
合物を製造するに際し、該拡散熱処理を一部液相が生じ
る温度範囲で行うことを特徴とするNiTi金属間化合
物の製造法。 2、拡散熱処理を、真空中または不活性ガス雰囲気中に
て955〜1015℃の温度範囲で1秒〜10時間行う
請求項1記載の製造法。 3、拡散熱処理を、真空中または不活性ガス雰囲気中に
て1015〜1110℃の温度範囲で1秒〜1時間行う
請求項1記載の製造法。 4、拡散熱処理を、真空中または不活性ガス雰囲気中に
て1110〜1240℃の温度範囲で1秒〜10分行う
請求項1記載の製造法。 5、拡散熱処理を、955〜1050℃および/または
1015〜1110℃の温度範囲で1秒〜1分間行い、
その温度での液相生成反応が終了した後、引続き111
0〜1240℃の温度範囲で1秒〜10分間行う請求項
1記載の製造法。
[Claims] 1. When producing a NiTi intermetallic compound having a Ni composition of 48 to 55 at% by laminating a plurality of layers of Ni and Ti alternately and then performing diffusion heat treatment, the diffusion heat treatment is performed at a temperature at which a portion of the liquid phase occurs. 1. A method for producing a NiTi intermetallic compound, characterized in that the production method is carried out within a range. 2. The manufacturing method according to claim 1, wherein the diffusion heat treatment is performed in a vacuum or in an inert gas atmosphere at a temperature range of 955 to 1015°C for 1 second to 10 hours. 3. The manufacturing method according to claim 1, wherein the diffusion heat treatment is performed in a vacuum or in an inert gas atmosphere at a temperature range of 1015 to 1110°C for 1 second to 1 hour. 4. The manufacturing method according to claim 1, wherein the diffusion heat treatment is performed in a vacuum or in an inert gas atmosphere at a temperature range of 1110 to 1240°C for 1 second to 10 minutes. 5. Performing diffusion heat treatment at a temperature range of 955 to 1050°C and/or 1015 to 1110°C for 1 second to 1 minute,
After the liquid phase generation reaction at that temperature is completed, 111
The manufacturing method according to claim 1, wherein the manufacturing method is carried out at a temperature range of 0 to 1240°C for 1 second to 10 minutes.
JP1299673A 1989-11-20 1989-11-20 Manufacture of ni-ti intermetallic compound Pending JPH03162532A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1299673A JPH03162532A (en) 1989-11-20 1989-11-20 Manufacture of ni-ti intermetallic compound
GB9024530A GB2238320A (en) 1989-11-20 1990-11-12 Ni-Ti alloy production
DE4036832A DE4036832A1 (en) 1989-11-20 1990-11-19 METHOD FOR PRODUCING NI-TI INTERMETALLIC COMPOUNDS
FR909014464A FR2654746B1 (en) 1989-11-20 1990-11-20 PROCESS FOR MANUFACTURING NI-TI INTERMETALLIC COMPOUNDS.
KR1019900018837A KR960006450B1 (en) 1989-11-20 1990-11-20 Method of producing ni-ti intermetallic compounds
US07/912,120 US5316599A (en) 1989-11-20 1992-07-09 Method of producing Ni-Ti intermetallic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299673A JPH03162532A (en) 1989-11-20 1989-11-20 Manufacture of ni-ti intermetallic compound

Publications (1)

Publication Number Publication Date
JPH03162532A true JPH03162532A (en) 1991-07-12

Family

ID=17875590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299673A Pending JPH03162532A (en) 1989-11-20 1989-11-20 Manufacture of ni-ti intermetallic compound

Country Status (5)

Country Link
JP (1) JPH03162532A (en)
KR (1) KR960006450B1 (en)
DE (1) DE4036832A1 (en)
FR (1) FR2654746B1 (en)
GB (1) GB2238320A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855008B (en) * 2022-04-07 2023-05-23 华南理工大学 Nickel-titanium alloy double-pass shape memory effect training method with high nickel-rich content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116340A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material
JPS61104006A (en) * 1984-10-23 1986-05-22 Tdk Corp Production of powder for shape memory alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981429A (en) * 1970-10-16 1976-09-21 Rohr Industries, Inc. Method for plated foil liquid interface diffusion bonding of titanium
US3782926A (en) * 1971-02-03 1974-01-01 Trw Inc Method for producing and evaluating alloys
GB1430587A (en) * 1972-10-12 1976-03-31 Fulmer Res Inst Ltd Diffusion bonding of metallic parts
US4029479A (en) * 1973-01-29 1977-06-14 Rohr Industries, Inc. Plated foil for liquid interface bonding of titanium
SU496124A1 (en) * 1974-06-26 1975-12-25 Всесоюзный научно-исследовательский и конструкторско-технологический институт компрессорного машиностроения The method of contact-reactive soldering of titanium and its alloys
JPS6055232B2 (en) * 1981-03-23 1985-12-04 ヤマハ株式会社 Manufacturing method of clad wood
JPS6036356B2 (en) * 1981-07-13 1985-08-20 株式会社日立製作所 Diffusion bonding method
JPS59116342A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy
JPS59116341A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material
DE3321231C2 (en) * 1983-06-11 1985-10-31 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for the production of wear protection layers on the surfaces of components made of titanium or titanium-based alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116340A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material
JPS61104006A (en) * 1984-10-23 1986-05-22 Tdk Corp Production of powder for shape memory alloy

Also Published As

Publication number Publication date
KR960006450B1 (en) 1996-05-16
GB2238320A (en) 1991-05-29
GB9024530D0 (en) 1991-01-02
FR2654746B1 (en) 1993-04-23
KR910009567A (en) 1991-06-28
DE4036832A1 (en) 1991-05-23
FR2654746A1 (en) 1991-05-24

Similar Documents

Publication Publication Date Title
US5024369A (en) Method to produce superplastically formed titanium alloy components
WO2006068948A1 (en) Titanium braze foil with a zirconium layer
WO1985003943A1 (en) Liquid phase bonded amorphous materials and process for preparation thereof
US5316599A (en) Method of producing Ni-Ti intermetallic compounds
EP2272666A2 (en) Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements
US5980658A (en) Catalytic converters-metal foil material for use herein, and a method of making the material
US4223434A (en) Method of manufacturing a niobium-aluminum-germanium superconductive material
US4710236A (en) Method for the preparation of a metallic body from an amorphous alloy
JP4591900B2 (en) Method for producing Ti-Al intermetallic compound plate
US4743311A (en) Method of producing a metallic part
JP4394452B2 (en) Metal strip for epitaxial coating and method of manufacturing the same
JPH0726192B2 (en) Manufacturing method of high Al content stainless steel plate
JPH03162532A (en) Manufacture of ni-ti intermetallic compound
CA1045009A (en) Process for producing copper base alloys
JPH0754068A (en) Production of niti intermetallic compound
KR20220072081A (en) High Entropy Alloy Phase Filament Reinforced Copper-Based High Entropy Alloy And Method for Manufacturing The Same
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JP2001329351A (en) Method for manufacturing shape memory alloy by laminated rolling, and shape memory alloy
JPH0250969B2 (en)
JPH10118702A (en) Production of iron-chromium-aluminum foil and using method therefor
JP6848991B2 (en) Titanium material for hot rolling
JP2001342527A (en) Titanium - nickel intermetallic alloy sheet and production procss for the same
Taleff et al. Mechanical behavior of fine-grained Mg-6.5 Li at elevated temperature
JPH02133550A (en) Manufacture of intermetallic compound
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis