JPH0316233A - Manufacture of photoconductive thin film - Google Patents

Manufacture of photoconductive thin film

Info

Publication number
JPH0316233A
JPH0316233A JP1151820A JP15182089A JPH0316233A JP H0316233 A JPH0316233 A JP H0316233A JP 1151820 A JP1151820 A JP 1151820A JP 15182089 A JP15182089 A JP 15182089A JP H0316233 A JPH0316233 A JP H0316233A
Authority
JP
Japan
Prior art keywords
cds
cdse
atmosphere
thin film
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151820A
Other languages
Japanese (ja)
Inventor
Yoichi Harada
洋一 原田
Noboru Yoshigami
由上 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1151820A priority Critical patent/JPH0316233A/en
Publication of JPH0316233A publication Critical patent/JPH0316233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve photoresponse speed by specifying the atmosphere in case of heat-treating CdS, CdSe, or CdS/CdSe thin film in the atmosphere which contains CdCl2. CONSTITUTION:A film, which is mainly composed of CdS, CdSe, or CdS/CdSe containing a very small amount of Cu, is heat-treated in the atmosphere which contains CdCl2. The concentration of O2 in the atmosphere at this heat treatment is set to 20-60% (for the rest, N2). With the increase of O2 concentration, photocurrents Jp decrease, and according to that gamma4 decrease, but gammar does not increase and becomes almost fixed. Moreover, the rise time till Jp reaching 50% from O is defined as gammar, and the time till its decreasing to 50% from a saturated value is defined as gammad. What is more, if O3 concentration is 60% or more, Jp becomes too small, and circuit cost becomes high. Hereby, photoresponse speed can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はCdSもしくはCdSeもしくは前記2物質の
固溶体(以下、CdS/Cd’sと略記)を主体とする
光導電性薄膜の製造方法に関し 特にその光応答速度の
改善を目的とした光導電性薄膜の製造方法に関するもの
であも 従来の技術 CdSあるいはCdSeあるいはCdS/CdSeを主
体とする薄膜を適当な雰囲気玄 高温加熱することによ
り光導電性薄膜を作製することは既に知られており、こ
の薄膜の形或方法として化学析出法や真空蒸着法 スパ
ッタ法などがあも このCdS,  CdSeあるいはCdS/CdSeに
光導電性を賦与するために ハロゲン特にC1等と金属
特にCu等を少量だけ添加して500℃以上の温度に加
気 結晶化するのが普通であも この様な方法で得られる光導電性薄膜はCdSを主体と
するものではO。4〜0.8μ&  CdSeを加えた
ものでは更に長波長の光に感応し 同時に応答時間が短
くなることが知られていも 膜中ヘのC1の導入は結晶化の温度を下(デ、結晶粒を
増大するだけでなく、主戒分中に入り結晶中に欠陥をつ
くるカt 同時にCd空孔を作りこれが増感中心となっ
て光電流(以下J.)を著しく増大させも しかしC1
は結晶中ではドナーとなるために同時に暗電流(以下J
.)をもかなり大きくしてしまう。一方Cuを導入する
とドナー電子はCuイオンの補償に消費されるためにJ
−を小さくすることができも そのため一般にはC1の
導入とともにCuを共添加してJpを大きく、 J4を
小さくする方法をとってい氏 また応答時間に関してはjpがOからその50%に達す
るまでの時間を立上がり時間τ11 飽和値からその5
0%に減少する時間をτ−とすると、Cl濃度が高い場
合は増感中心の増加により、電子の寿命が長くなるため
にて−は大きくなも 次に従来の光導電性薄膜の製造方法について述べも こ
のプロセスは大まかに言って絶縁性基板上にCdSある
いはCdSeあるいはCdS/CdSeの薄膜を形或す
るプロセスと、その薄膜をC dC bの蒸気を含む雰
囲気中で熱処理して光感度を得るプロセスに分けられも
 不純物としてのCuは薄膜形戊時に導入L,,  C
lは熱処理中に導入していも具体的な方法としては特開
昭57−17334号公報に詳しく述べられているよう
4,:..CdSあるいはCdSeあるいはCdS/C
dSeに微量のC uC hを加えたものを混妃 一旦
700〜1000℃で焼結後粉砕して蒸発源とすも こ
れを真空蒸着によりガラス基板上に薄膜化しこの薄膜を
500〜600℃、10〜60分間CdCh蒸気を含へ
 空気中で熱処理することにより粒子成長させ、不純物
を格子点に導入して光感度を得てい池 発明が解決しようとする課題 従来の光センサの問題点はその光応答速度にあ褐 第4図に従来の製造方法により、膜中のCu濃度を変え
て作製した光センサの.JDと応答時間の関係を示も 
電流の実用領域では応答速度はJ.に関連LA J.が
大きくなるとτrは減少、もしくは減少から飽私 τ−
は増姐 逆にJ−が小さくなるとτ・は増姐 τ−は減
少すも ここでは一例を示したバ 光センサのJ,はプロセスの
条件(薄膜中のCuC12濃嵐 膜尾 熱処理温嵐 熱
処理時間等)に大きく依存よ また応・答速度はJ−に
依存するたべ プロセスの条件を制御してJ●、それに
従って応答速度を制御していt:oしかし 前述の如く
、 τrとτ−は相反関係にあるた幽 どちらをも小さ
くすることは困難でありt4課題を解決するための手段 本発明による光センサの製造方法j;LCdSもしくは
CdSeもしくは前記2物質の固溶体を主体としてなり
、これに微量のCuを含んだ蒸発源を基板上に蒸着して
得られた膜をCdClgを含む雰囲気中で500〜60
0℃、10〜60分間熱処理して得られる光導電性薄膜
の製造方法において、前記雰囲気はN2と02を主体と
獣 02の含有率が20%以上 80X以下であること
を特徴としていも 作   用 本発明の製造方法でζ戴 熱処理時の雰囲気中の02濃
度を20〜60%とすも ○象濃度の増加と共にJ.は
減少ヒ それに従ってτ4が減少する戟 τ,はほぼ一
定であも つまり第1図に示すよう番ヘ○倉濃度を増加
して減少するJsに従ってτ−は減少する爪 τPは増
加しないという特徴を持つのであも それゆ丸 熱処理時のO黛濃度を、空気中で行う従来の
製造方法における場合(02!1度は約20%)より高
くすることによりτrを小さくすることができも また
OII濃度を60%以下としたの(上 それ以上ではJ
,が小さくなりすぎ回路コストが高くなるなど実用上不
都合が生じるからであも 実施例 蒸発源の作製としてCdSを0.6モノlkcdseを
0.4モルこれに不純物としてCuC1*を0. 00
2モルを秤t  混合す翫 これを800℃で1時間不
活性ガス中で焼広 冷却後粉砕すも これを蒸発源として真空蒸着により、ガラス基板( #
7059  コーニング社、40x 40x l. 1
)上に薄膜を形威す褐 基板温度は15Qt,  膜厚
は約4500人であも 次にホトリソ及びエッチングプ
ロセスにより膜を短冊状にパターン化すも 次にこれを、低部にCLICII1を5重量部加えたC
dS粉末lグラムを或形タブレット化したものを置いた
石英製ボー1・に入れ蓋をして全体を石英管中に入れて
熱処理する。そのときの雰囲気はN2と02の混合ガス
で、一旦管中を真空にした後ガスを導入し 熱処理屯 
及び冷却中も流し続けも ガスで満たされた後温度を上
ζ1  520t,  30分保持すも ここで02濃
度を0〜80%としtも次に電極形戊のためのレジスト
のりフトオフ用パターンを形或したK  N iC r
/ A u(500/650A )を電子ビーム蒸着し
 りフトオフしてプレーナ型電極を形成すも 受光部の
大きさは55x90μ一であム 最後にこれをN2中で
250℃30分の熱処理を行う。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a photoconductive thin film mainly composed of CdS, CdSe, or a solid solution of the above two substances (hereinafter abbreviated as CdS/Cd's). Regarding methods for producing photoconductive thin films aimed at improving response speed, conventional techniques are used to produce photoconductive thin films by heating a thin film mainly composed of CdS, CdSe, or CdS/CdSe in an appropriate atmosphere at high temperatures. It is already known that this thin film can be formed using chemical deposition, vacuum evaporation, sputtering, etc. to give photoconductivity to CdS, CdSe, or CdS/CdSe. Although it is common practice to add a small amount of a metal such as Cu, etc. and crystallize it under heating at a temperature of 500°C or higher, the photoconductive thin film obtained by this method is not one that is mainly composed of CdS. Although it is known that a film containing 4 to 0.8μ and CdSe is sensitive to longer wavelength light and at the same time shortens the response time, the introduction of C1 into the film lowers the crystallization temperature (de, crystal grains). C1 not only increases Cd, but also enters into the main precipitate and creates defects in the crystal.At the same time, Cd vacancies are created, which become sensitization centers and significantly increase the photocurrent (hereinafter referred to as J).However, C1
acts as a donor in the crystal, so at the same time dark current (J
.. ) becomes quite large. On the other hand, when Cu is introduced, donor electrons are consumed to compensate for Cu ions, so J
- can be made small. Therefore, in general, a method is adopted in which Cu is co-added with the introduction of C1 to increase Jp and reduce J4. Regarding the response time, the response time is as follows: Time rise time τ11 From saturation value 5
If the time for the decrease to 0% is τ-, then when the Cl concentration is high, the number of sensitized centers increases and the lifetime of the electrons becomes longer. Roughly speaking, this process involves forming a thin film of CdS, CdSe, or CdS/CdSe on an insulating substrate, and then heat-treating the thin film in an atmosphere containing C dC b vapor to increase photosensitivity. Cu is introduced as an impurity when forming a thin film.
Even if l is introduced during the heat treatment, the specific method is as described in detail in Japanese Patent Application Laid-open No. 17334/1984. .. CdS or CdSe or CdS/C
A mixture of dSe and a small amount of CuCh is sintered at 700-1000°C and then crushed to serve as an evaporation source. This is formed into a thin film on a glass substrate by vacuum evaporation, and this thin film is heated to 500-600°C. Particles are grown by heat treatment in air for 10 to 60 minutes, and photosensitivity is obtained by introducing impurities into the lattice points.Problems that the invention aims to solveThe problems with conventional optical sensors are that Figure 4 shows the difference in optical response speed of optical sensors fabricated by the conventional manufacturing method by varying the Cu concentration in the film. Also shows the relationship between JD and response time.
In the practical area of current, the response speed is J. Related to LA J. As τ increases, τr decreases, or becomes exhausted due to the decrease τ−
On the other hand, as J- becomes smaller, τ increases and τ- decreases. Here, an example is shown. However, as mentioned above, τr and τ- are Since they are in a contradictory relationship, it is difficult to reduce the size of both of them. A film obtained by evaporating an evaporation source containing a trace amount of Cu on a substrate was heated to 500 to 60% in an atmosphere containing CdClg.
In the method for producing a photoconductive thin film obtained by heat treatment at 0°C for 10 to 60 minutes, the atmosphere is characterized in that the atmosphere is mainly composed of N2 and 02, and the content of 02 is 20% or more and 80X or less. In the production method of the present invention, the concentration of 02 in the atmosphere during heat treatment is set at 20 to 60%. is decreasing, and τ4 is decreasing accordingly. τ, is almost constant. In other words, as shown in Figure 1, τ- is decreasing as Js is increasing as the concentration is increasing. τP is not increasing. It is also possible to reduce τr by increasing the O concentration during heat treatment compared to the conventional manufacturing method performed in air (approximately 20% at 02!1 degrees). The OII concentration was set below 60% (above, J
, becomes too small, causing practical inconveniences such as increased circuit cost.However, in order to prepare the evaporation source of the example, 0.6 moles of CdS and 0.4 moles of lkcdse were mixed with 0.4 moles of CuC1* as an impurity. 00
Weigh out 2 mol of t and mix. Spread the mixture at 800°C for 1 hour in an inert gas. After cooling, pulverize and use this as an evaporation source by vacuum evaporation to form a glass substrate (#
7059 Corning, 40x 40x l. 1
) The substrate temperature is 15 Qt, and the film thickness is approximately 4,500 mm.Next, the film is patterned into strips using a photolithography and etching process. C added
One gram of dS powder in the form of a tablet is placed in a quartz bowl 1, covered with a lid, and the whole is placed in the quartz tube for heat treatment. The atmosphere at that time was a mixed gas of N2 and 02, and after the inside of the tube was evacuated, the gas was introduced and the heat treatment was carried out.
After the gas is filled, the temperature is maintained at ζ1 520t for 30 minutes.Then, the 02 concentration is set to 0 to 80%, and the pattern for removing the resist paste for the electrode shape is prepared. K N iC r
/Au (500/650A) is electron beam evaporated and lifted off to form a planar electrode.The size of the light receiving area is 55x90μ.Finally, this is heat treated in N2 at 250℃ for 30 minutes. .

センサ特性の測定は電極間の印加電圧10V玄J*i&
  570nc  100 luxの光連続照舷 応答
時間(友これをIHzのパルス光にして行うね 第1図に熱処理時雰囲気のOs濃度と応答速度の関係を
、第2図に同じく02濃度とJ−の関係を示to Oe
濃度の増加と共&ス J−は減少し それに従ってτ一
が減少する力交 τPはほぼ一定であん第3図に本発明
の製造方法による光導電性薄膜のJeと応答時間の関係
を示す力t Ol濃度を増加して減少するJ−に従って
τ−は減少し τrは第4図に示す従来の方法による光
センサに見られるように増加しないことがわかん 発明の効果 以上のように本発明の光導電性薄膜の製造方法によれζ
L 従来の方法に比べて、速い応答時間をを持った光導
電性薄膜を得ることができ、ファクシミリ等各種OA機
器端末としての用途が拡大するなど、その工業的価値は
大であも
The sensor characteristics were measured using an applied voltage of 10 V between the electrodes.
570 nc 100 lux light continuous illumination response time (this is done using IHz pulsed light). Show the relationship to Oe
As the concentration increases, J- decreases, and τ decreases accordingly. τP remains almost constant. Figure 3 shows the relationship between Je and response time of the photoconductive thin film produced by the manufacturing method of the present invention. It can be seen that as the force t Ol concentration increases and J- decreases, τ- decreases, and τr does not increase as seen in the optical sensor according to the conventional method shown in FIG. Depending on the method of manufacturing the photoconductive thin film,
L Compared to conventional methods, it is possible to obtain a photoconductive thin film with a faster response time, and its industrial value is enormous, as its use as terminals for various office automation equipment such as facsimiles is expanding.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims]  CdSもしくはCdSeもしくは前記2物質の固溶体
を主体としてなり、これに微量のCuを含んだ蒸発源を
基板上に蒸着して得られた膜をCdChを含む雰囲気中
で500〜600℃、10〜60分間熱処理して得られ
る光導電性薄膜の製造方法において、前記雰囲気はN_
2とO_2を主体とし、O_2の含有率が20%以上、
60%以下であることを特徴とする光導電性薄膜の製造
方法。
A film obtained by evaporating an evaporation source mainly composed of CdS or CdSe or a solid solution of the above two substances and containing a trace amount of Cu on a substrate is heated at 500 to 600 °C in an atmosphere containing CdCh at 10 to 60 °C. In the method for producing a photoconductive thin film obtained by heat treatment for a minute, the atmosphere is N_
2 and O_2 as main components, with an O_2 content of 20% or more,
60% or less.
JP1151820A 1989-06-14 1989-06-14 Manufacture of photoconductive thin film Pending JPH0316233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151820A JPH0316233A (en) 1989-06-14 1989-06-14 Manufacture of photoconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151820A JPH0316233A (en) 1989-06-14 1989-06-14 Manufacture of photoconductive thin film

Publications (1)

Publication Number Publication Date
JPH0316233A true JPH0316233A (en) 1991-01-24

Family

ID=15527030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151820A Pending JPH0316233A (en) 1989-06-14 1989-06-14 Manufacture of photoconductive thin film

Country Status (1)

Country Link
JP (1) JPH0316233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541089B2 (en) 2006-07-26 2013-09-24 Ricoh Company, Ltd. Fixing belt, base element for fixing belt, fixing device, image forming apparatus and method for producing base element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541089B2 (en) 2006-07-26 2013-09-24 Ricoh Company, Ltd. Fixing belt, base element for fixing belt, fixing device, image forming apparatus and method for producing base element

Similar Documents

Publication Publication Date Title
JPS58123771A (en) Semiconductor element
JPH05136062A (en) Polycrystalline silicon thin film and its low temperature formation method
JP3466948B2 (en) Heat treatment method for fluoride crystal and method for producing optical component
US3386823A (en) Photothermic image producing process
JPH0316233A (en) Manufacture of photoconductive thin film
JPH0316234A (en) Manufacture of photosensor
JPH011273A (en) Method for manufacturing polycrystalline silicon thin film transistors
US3226253A (en) Method of producing photosensitive layers of lead selenide
US3945935A (en) Semiconductive metal chalcogenides of the type Cu3 VS4 and methods for preparing them
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
SU567159A1 (en) Method of sensitizing semiconductive films
US3466183A (en) Method of manufacturing photoconductive layers
US3492620A (en) Photosensitive device
JPH0786603A (en) Manufacture of semiconductor film
JPS6123371A (en) Manufacture of photoconductive material
JPH02206180A (en) Manufacture of photoconductive thin film
SU1051490A1 (en) Electrophotographic material
JPS61121371A (en) Manufacture of photoconductive element
JP2005210018A (en) Photoconductive element
JPS6184876A (en) Manufacture of photoconductive element
JPH02206181A (en) Manufacture of thin film
JPS6276514A (en) Manufacture of semiconductor device
JPH0476222B2 (en)
JPS628579A (en) Photoconductive thin film and manufacture thereof
Kortlandt Light sensitive CdS thin films with temperature resistant contacts