JPH031619B2 - - Google Patents
Info
- Publication number
- JPH031619B2 JPH031619B2 JP23296483A JP23296483A JPH031619B2 JP H031619 B2 JPH031619 B2 JP H031619B2 JP 23296483 A JP23296483 A JP 23296483A JP 23296483 A JP23296483 A JP 23296483A JP H031619 B2 JPH031619 B2 JP H031619B2
- Authority
- JP
- Japan
- Prior art keywords
- flaw
- red
- signal
- imaging
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005286 illumination Methods 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 description 22
- 238000001514 detection method Methods 0.000 description 16
- 230000007547 defect Effects 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は被探傷材の表面欠陥の検出方法、とく
に連続鋳造工程において、赤熱鉄鋼スラブの表面
疵を非接触で検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for detecting surface defects in a material to be tested, and particularly to a method for non-contact detection of surface defects in a red-hot steel slab in a continuous casting process.
従来例の構成とその問題点
赤熱物の表面疵検出は、接触式、非接触式の2
つの方式が提案されている。しかし、接触式は対
象物体が高温であるため、接触部の耐熱性が要求
されたり、対象物体の平面性が問題となり、十分
な検出精度が期待できない。そこで、一般に赤熱
物体の表面疵の検出は、非接触で検出する方法が
とられている。Conventional structure and its problems There are two methods for detecting surface flaws on red-hot objects: contact type and non-contact type.
Two methods have been proposed. However, in the contact type, since the target object is at a high temperature, heat resistance of the contact part is required, and flatness of the target object becomes a problem, and sufficient detection accuracy cannot be expected. Therefore, a non-contact detection method is generally used to detect surface flaws on a red-hot object.
非接触で表面疵を検出する方法は、一般に光学
的方法がとられ、従来、次の2つの方法が提案さ
れている。 Optical methods are generally used to detect surface flaws in a non-contact manner, and the following two methods have been proposed so far.
1つは、赤熱物体に対して可視あるいは紫外域
の光を照射して、これにより生ずる赤熱物体表面
の陰影像を撮像し、この映像信号から疵検出を行
なうものである。 One method is to irradiate a red-hot object with light in the visible or ultraviolet range, capture a shadow image of the surface of the red-hot object, and detect defects from this image signal.
もう1つは、赤熱物体の自発光によつて検出す
る方法である。これは、赤熱物体の表面と疵によ
つて露出した赤熱物体の内部の温度差を利用して
赤外域で撮像し、この映像信号から疵検出を行な
う方法である。 The other method is detection based on the self-luminescence of a red-hot object. This is a method that uses the temperature difference between the surface of a red-hot object and the inside of the red-hot object exposed by a flaw to take an image in the infrared region, and detects a flaw from this video signal.
しかし、前記2つの方法では、前者は、疵以外
の凹凸が赤熱物体表面上にあれば、これも疵と見
なすといつた誤まつた判断をおこしうること、ま
た、後者は赤熱物体の表面状態によつて表面温度
の不均一性が生じるため、本方法のみではSN比
が十分とれないといつた欠点がある。 However, with the above two methods, the former may lead to erroneous judgments, such as assuming that if there are irregularities other than flaws on the surface of the red-hot object, it is also a flaw, and the latter may lead to erroneous judgments, such as considering the unevenness on the surface of the red-hot object as a flaw. This method has the disadvantage that a sufficient signal-to-noise ratio cannot be obtained by using this method alone, since non-uniformity of surface temperature occurs due to this.
また、前記2つの方法を1光学系で構成し、疵
の種類に応じて、おのおの別々の系統で疵を検出
する方法が特開昭49−131192号で提案されてい
る。しかし、この方法では、前に述べた2つの光
学的検出方法の欠点を含んだままであり、本質的
な改善とはならない。たとえば、赤熱物体表面に
疵でない凹凸があるとき、可視あるいは紫外域の
光の照射によつて、この凹凸の陰影が生じ、この
方法ではこれを疵と判別する。また自発光による
映像信号のSN比の改善もされていない。 Furthermore, Japanese Patent Application Laid-Open No. 131192/1983 proposes a method in which the above two methods are implemented in one optical system and each flaw is detected using a separate system depending on the type of flaw. However, this method still includes the drawbacks of the two optical detection methods described above and is not a substantial improvement. For example, when the surface of a red-hot object has irregularities that are not flaws, irradiation with light in the visible or ultraviolet range produces shadows from the irregularities, and this method identifies this as a flaw. Furthermore, the signal-to-noise ratio of the video signal has not been improved by self-emission.
また、特開昭和52−139482号および特開昭和55
−160837号においても、前記2つの検出方法のそ
れぞれから疵の2値化信号を得、これらの信号の
論理積をとつているため前記2つの方法の欠点を
含んだままであり、本質的な改善となつていな
い。 In addition, JP-A-52-139482 and JP-A-55
-160837 also obtains binary flaw signals from each of the above two detection methods and calculates the logical product of these signals, so it still contains the drawbacks of the above two methods and is not an essential improvement. It hasn't become familiar.
発明の目的
本発明は、先に述べた光学的検出方法の問題点
を解決することを目的とし、光学的検出手段であ
つて、しかも高精度で疵の検出を可能とする赤熱
物体の表面疵検出装置を提供するものである。Purpose of the Invention The present invention aims to solve the problems of the optical detection method described above. A detection device is provided.
発明の構成
本発明による装置は、赤熱物体の表面の像を1
つの結像光学系によつて投影し、この投影像を2
光路に分離して、一方の通過波長域を近赤外域と
し、他方の通過波長域を上記近赤外域よりも短波
長域とし、双方の投影面に位置する撮像素子の光
電信号のうち、一方を他方で除算する信号処理部
をもつた、赤熱物体の表面疵検出装置である。さ
らに本装置は上記の通過波長域のひとつである近
赤外域に分光放射をもつ照明装置をもつ。Structure of the Invention The apparatus according to the present invention captures an image of the surface of a red-hot object in one image.
The projected image is projected by two imaging optical systems.
The optical paths are separated, one of the passing wavelength ranges is a near-infrared range, and the other passing wavelength range is a shorter wavelength range than the above-mentioned near-infrared range, and one of the photoelectric signals of the image pickup devices located on both projection planes is This is a surface flaw detection device for a red-hot object, which has a signal processing section that divides one by the other. Furthermore, this device has an illumination device that emits spectral radiation in the near-infrared region, which is one of the above-mentioned passing wavelength regions.
上記構成により、照明によつて赤熱物体の疵の
陰影像を検出するのに近赤外域の長波長側を用
い、赤熱物体の自発光による検出はSN比のよい
可視域の短波長側で行なう。 With the above configuration, the long wavelength side of the near-infrared region is used to detect the shadow image of a flaw on a red-hot object using illumination, and the detection of self-luminescence of the red-hot object is performed on the short wavelength side of the visible range with a good signal-to-noise ratio. .
また、このようにして得られた双方の光電出力
のうち、一方を他方で除算した商について2値化
処理を行なうことにより、それぞれ単独で2値化
した場合に比べて、柔軟性のある疵判別を実現す
ることができる。 Furthermore, by performing binarization processing on the quotient obtained by dividing one of the photoelectric outputs of both obtained in this way by the other, it is possible to generate more flexible defects than when each is binarized independently. Discrimination can be realized.
実施例の説明
第1図は本発明の表面疵検出装置の一例を示す
もので、鉄鋼プラント、とくに連続鋳造設備にお
ける熱間鋼片(スラブ)の表面疵検出装置として
用いられるものである。この場合、スラブの表面
温度は約800〜900℃、内部温度は1300℃である。
この装置は第1図に示すように、赤熱物体、すな
わち熱間スラブ1を照明する近赤外域に主な分光
放射をもつ照明装置2と、この照明装置により照
明されたスラブ表面を撮像する撮像装置3と、こ
の撮像装置からの信号を処理する信号処理部10
とから構成される。DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows an example of a surface flaw detection device of the present invention, which is used as a surface flaw detection device for hot steel slabs in steel plants, particularly continuous casting equipment. In this case, the surface temperature of the slab is approximately 800-900°C, and the internal temperature is 1300°C.
As shown in Fig. 1, this device includes an illumination device 2 that emits mainly spectral radiation in the near-infrared region that illuminates a red-hot object, that is, a hot slab 1, and an image pickup device that images the surface of the slab illuminated by this illumination device. device 3 and a signal processing unit 10 that processes signals from the imaging device
It consists of
この照明装置2は、たとえば、白熱電球など赤
外域にも分光放射を有する光源とシヤープカツト
フイルタの組み合せ等によつて構成される。 The illumination device 2 is configured by, for example, a combination of a light source such as an incandescent lamp that emits spectral radiation also in the infrared region, and a sharp cut filter.
撮像装置3において、4は熱間スラブ1の表面
を投影するための投影光学系である。5は像界側
にもうけたハーフミラーで、これにより光路を2
つに分割し、結像面を2つ形成する。7および9
は上記2つの結像面に配置した撮像素子である。
撮像素子9の光路には、近赤外域に感度を有する
ようにシヤープカツトフイルタ8を配置し、撮像
素子7の光路には、可視域の短波長側に主に感度
を有するように、赤外カツトフイルタ6を配置す
る。 In the imaging device 3, 4 is a projection optical system for projecting the surface of the hot slab 1. 5 is a half mirror placed on the image field side, which divides the optical path into two.
The image plane is divided into two parts to form two imaging planes. 7 and 9
are image sensors arranged on the two imaging planes.
A sharp cut filter 8 is arranged in the optical path of the image sensor 9 so as to have sensitivity in the near-infrared region, and a sharp cut filter 8 is arranged in the optical path of the image sensor 7 so as to have sensitivity mainly in the short wavelength side of the visible region. A cut filter 6 is arranged.
第2図は信号処理部10のブロツクダイヤグラ
ムを示すもので、7,9は撮像素子、33,34
は撮像素子の光電信号の利得ならびに線形特性を
調整するための利得調整回路、35は利得調整回
路33,34からの光電出力の一方を他方で除算
し、その商を算出するための除算回路、37は除
算回路の出力を基準電圧発生部36と比較して、
2値化するための2値化回路、38は2値化回路
37による疵判別信号を表わす。 FIG. 2 shows a block diagram of the signal processing unit 10, in which 7 and 9 are image pickup elements, 33 and 34
35 is a gain adjustment circuit for adjusting the gain and linear characteristics of the photoelectric signal of the image sensor; 35 is a division circuit for dividing one of the photoelectric outputs from the gain adjustment circuits 33 and 34 by the other and calculating the quotient; 37 compares the output of the division circuit with the reference voltage generator 36,
A binarization circuit 38 represents a flaw discrimination signal produced by the binarization circuit 37.
以上のように構成された本実施例の疵検出装置
において、以下その動作を説明する。 The operation of the flaw detection apparatus of this embodiment configured as described above will be described below.
撮像素子9は、照明装置2からの照明光により
生じた熱間スラブ1の陰影像を撮像する。すなわ
ち熱間スラブ1の表面の凹部が影となり、撮像素
子の1ライン走査分に相当する光電信号は第3図
bの17に示すような形態をとる。また撮像素子
7は熱間スラブ1の自発光パターンを撮像する。
すなわち、第3図において熱間スラブ1の表面に
疵11があると、スラブ内部14の高温部が露出
するのでcに示すような疵信号22を得ることが
できる。 The image sensor 9 captures a shadow image of the hot slab 1 caused by the illumination light from the illumination device 2 . That is, the concave portion on the surface of the hot slab 1 becomes a shadow, and the photoelectric signal corresponding to one line of scanning of the image sensor takes the form shown at 17 in FIG. 3b. Further, the image sensor 7 images the self-luminous pattern of the hot slab 1.
That is, if there is a flaw 11 on the surface of the hot slab 1 in FIG. 3, the high temperature part inside the slab 14 is exposed, so that a flaw signal 22 as shown in c can be obtained.
一般に、すべての物体はその自身の温度と放射
率で定まる熱エネルギーを放射しているといえ
る。この放射エネルギー量、黒体(放射率が1)
の場合、次式で表われる。 In general, all objects can be said to radiate thermal energy determined by their own temperature and emissivity. This amount of radiant energy, a black body (emissivity is 1)
In the case of , it is expressed by the following formula.
Meλ=C1λ1λ5/(expλT/C2−1)〔WCm-2μ-1〕
…(1)
ただし、Meλはスペクトル放射発散度、Tは
完全放射体の絶体温度、λは波長、C1、C2は定
数で表わすことができる。Meλ=C 1 λ 1 λ 5 / (expλT/C 2 −1) [WCm -2 μ -1 ] …(1) Where, Meλ is the spectral radiant emittance, T is the absolute temperature of the perfect radiator, and λ is The wavelength, C 1 and C 2 can be expressed as constants.
第3図において熱間スラブの内部14の温度が
1300℃、スラブ表面13の温度が850℃として、
(1)式を図示すると、第4図に示すような分光放射
分布が得られる。 In Figure 3, the temperature inside the hot slab 14 is
Assuming that the temperature of the slab surface 13 is 1300℃ and 850℃,
When formula (1) is illustrated, a spectral radiation distribution as shown in FIG. 4 is obtained.
第1図において、撮像素子にシリコンを材料と
した固体撮像素子を用いると、この素子の感度波
長域は、0.4μm〜1.2μmである。このため、赤外
カツトフイルタ6の特性も考慮に入れた撮像素子
7の感度波長域は0.4μm〜0.7μmとなる。すなわ
ち、第4図からもわかるように、スラブ疵の自発
光放射のうち、短波長側の、たとえば0.7μm以下
の可視域の放射を利用することにより、近赤外域
に比べて十分なSN比をもつ光電信号を得ること
ができる。 In FIG. 1, when a solid-state image sensor made of silicon is used as the image sensor, the sensitivity wavelength range of this element is 0.4 μm to 1.2 μm. Therefore, the sensitivity wavelength range of the image sensor 7, which also takes into account the characteristics of the infrared cut filter 6, is 0.4 μm to 0.7 μm. In other words, as can be seen from Figure 4, by using the short wavelength radiation of the self-luminous radiation of slab defects, for example in the visible range of 0.7 μm or less, a sufficient SN ratio can be achieved compared to that in the near-infrared region. It is possible to obtain a photoelectric signal with
また、シヤープカツトフイルタ8(たとえば、
0.73μm以上の光を通過させるR−73フイルタ)
の特性を考慮した固体撮像素子9の感度波長域
は、0.73μm〜1.2μmである。一方、照明装置の
シヤープカツトフイルタに上記のR−73フイルタ
を用いることにより、照明光の波長帯により陰影
像が、そのまま撮像素子9でとらえられることに
なる。この場合、0.73μm〜1.2μmの自発光放射
も同時に検出することになるので、照明光による
光放射の出力を十分大きくとり、自発光放射との
レベル比を10:1〜20:1程度にとることにより
自発光放射の影響を除くことができる。 In addition, a sharp cut filter 8 (for example,
R-73 filter that passes light of 0.73μm or more)
The sensitivity wavelength range of the solid-state image sensor 9 is 0.73 μm to 1.2 μm, taking into consideration the characteristics of . On the other hand, by using the above-mentioned R-73 filter as the sharp cut filter of the illumination device, the image pickup device 9 can directly capture a shadow image depending on the wavelength band of the illumination light. In this case, since self-luminous radiation of 0.73 μm to 1.2 μm will also be detected at the same time, the output of the optical radiation from the illumination light should be sufficiently large and the level ratio with the self-luminous radiation should be about 10:1 to 20:1. By taking this, the influence of self-luminous radiation can be removed.
また、照明装置はハロゲン電球などの白熱電球
を使用することにより、検出器の走査周波数に無
関係に安定した照明光が得られ、かつ近赤外域に
効率のよい照明光が得られる。また、放電灯のよ
うな発光管内部の輝点移動に判なう照明光の変動
がない。 Further, by using an incandescent light bulb such as a halogen light bulb in the lighting device, stable illumination light can be obtained regardless of the scanning frequency of the detector, and efficient illumination light can be obtained in the near-infrared region. In addition, there is no fluctuation in illumination light that is noticeable due to movement of the bright spot inside the arc tube as in a discharge lamp.
以上の実施例に示すように、スラブ疵の自発光
成分の検出を0.4μm〜0.7μmで行ない、照明装置
によるスラブ疵の陰影像を検出するのに0.7μm〜
1.2μmの波長域を使用することにより、両波長域
ともにSN比の良い疵信号を得ることができる。 As shown in the above embodiment, the self-luminous component of a slab flaw is detected at a range of 0.4 μm to 0.7 μm, and the shadow image of a slab flaw by an illumination device is detected at a range of 0.7 μm to 0.7 μm.
By using the 1.2 μm wavelength range, it is possible to obtain flaw signals with a good S/N ratio in both wavelength ranges.
なお、照明装置2および撮像装置3に使用して
いるシヤープカツトフイルタの波長設定は0.73μ
mを中心に短波長側および長波長側に移動するこ
とができ、とくに短波長域の光量を補う場合に
は、0.73μmよりも長波長側のシヤープカツトフ
イルタを使用することにより、両光電信号のバラ
ンスをとることができる。 The wavelength setting of the sharp cut filter used in the illumination device 2 and imaging device 3 is 0.73μ.
By using a sharp cut filter on the wavelength side longer than 0.73 μm, both photoelectric signals can be shifted to the short wavelength side and the long wavelength side with m as the center. can be balanced.
また、ハーフミラー5の代りに、赤反射ダイク
ロイツクミラーを使用することにより、両受光器
への光入射のクロストークを低減し、SN比の良
い疵信号を得ることができる。 Further, by using a red reflective dichroic mirror instead of the half mirror 5, crosstalk between light incident on both light receivers can be reduced, and a flaw signal with a good signal-to-noise ratio can be obtained.
次に、第3図にもとづき、信号処理部の動作を
説明する。第3a図のような断面の熱間スラブ1
を撮像したときの光電信号は、前述のごとく第3
図b,cに示す信号となる。陰影像を撮像する撮
像素子9の光電信号15には、熱間スラブ1の上
の疵11による疵信号17のほかに、熱間スラブ
表面の凹部によつて生ずる信号16や、熱間スラ
ブ表面上の高反射体および低反射体によつて生ず
る信号18,19が存在する。また、自発光パタ
ーンを撮像する撮像素子7の光電信号21には、
熱間スラブ1の上の疵11による疵信号22のほ
かに、スラブ表面の不規則な温度分布によつて生
ずる信号23が存在する。 Next, the operation of the signal processing section will be explained based on FIG. Hot slab 1 with a cross section as shown in Figure 3a
As mentioned above, the photoelectric signal when the image is taken is the third one.
The signals are shown in Figures b and c. In addition to the flaw signal 17 caused by the flaw 11 on the hot slab 1, the photoelectric signal 15 of the image sensor 9 that captures a shadow image includes a signal 16 caused by a recess on the hot slab surface, and a signal 16 caused by the recess on the hot slab surface. There are signals 18, 19 produced by the upper high and low reflectors. In addition, the photoelectric signal 21 of the image sensor 7 that images the self-luminous pattern includes:
In addition to the flaw signal 22 due to the flaw 11 on the hot slab 1, there is a signal 23 caused by the irregular temperature distribution on the slab surface.
上記2つの信号をそれぞれ個別に2値化すれ
ば、光電信号15では、16,17,19が、ま
た、光電信号21では22,23がそれぞれ疵信
号としてとらえられ、これらの2系統信号の論理
和はいうに及ばず、論理積をとつても、疵以外の
信号たとえば19と23によつて生ずる為信号
は、容易に疵判定をうける。 If the above two signals are individually binarized, 16, 17, and 19 of the photoelectric signal 15 and 22 and 23 of the photoelectric signal 21 are recognized as defect signals, and the logic of these two signals is Even if logical product is taken, let alone sum, the signal is easily determined to be a defect because it is generated by signals other than defects, such as 19 and 23.
本信号処理では、第2図に示すごとく、撮像素
子7および9で得られた光電信号について、疵の
ない部分の平均信号電圧を基準として、利得調整
回路33および34においてレベル調整を行な
う。この利得調整回路33および34の信号は除
算回路35において一方の信号を他方で除算す
る。 In this signal processing, as shown in FIG. 2, the level of the photoelectric signals obtained by the image sensors 7 and 9 is adjusted in gain adjustment circuits 33 and 34 based on the average signal voltage of the portion without flaws. The signals of the gain adjustment circuits 33 and 34 are divided by one signal by the other signal in a division circuit 35.
第3図のdに示す信号出力25は、光電信号2
1を光電信号15で除算した結果を示すもので、
割れ疵信号27は2つの光電信号から強調される
が、他の光電信号波形16,18,19,23は
すべて相殺される。 The signal output 25 shown at d in FIG.
This shows the result of dividing 1 by the photoelectric signal 15.
Although the crack signal 27 is emphasized from the two photoelectric signals, the other photoelectric signal waveforms 16, 18, 19, and 23 are all canceled out.
上記判定方法の原理を第5図をもとに説明す
る。第5図aは従来例に示した疵判別方法を図示
したもので、陰影光がQより減小するか、自発光
がPより大きくなると、疵と判定される。すなわ
ち、Iの領域以外の、、の領域で疵と判定
することを示している。 The principle of the above determination method will be explained based on FIG. FIG. 5a illustrates the flaw discrimination method shown in the conventional example. When the shadow light decreases below Q or the self-emission exceeds P, it is determined that there is a flaw. In other words, it is shown that the area other than the area I is determined to be a flaw.
これに対し、第5図bではP′Q′で結ぶ曲線より
上の部分、すなわちIの領域では疵と判定され
ず、このP′Q′より下の領域、すなわち自発光に
よる光電出力を陰影光のそれで割るための除算回
路の出力が一定値以上となる場合に疵と判定する
ことを示している。 On the other hand, in Fig. 5b, the area above the curve connected by P'Q', that is, the area I, is not determined to be a flaw, and the area below this P'Q', that is, the photoelectric output due to self-luminescence, is shaded. This indicates that a defect is determined when the output of the division circuit for dividing the light by that of the light exceeds a certain value.
第5図のaとbを比較した場合、本発明はIの
領域中の39,40の領域が疵なしと判定され、
41の領域が逆に疵と判定されていることを示
す。第4図の測定例を第5図にあてはめると、陰
影光の光電信号のうち16と19が領域39に属
し、自発光の光電信号のうち23が領域40に属
することがわかり、本発明による疵判定方法が、
従来例に比べて柔軟な判定ができることを示して
いる。すなわち、自発光および陰影光の光電信号
の利得は利得調整回路33,34によつて変える
ことができるため、実測データに応じて、一定限
度内で任意の線形特性をもつ判定曲線P′Q′が設定
でき、疵判別に際して柔軟なアルゴリズム形成が
できる。 When comparing a and b in FIG. 5, in the present invention, areas 39 and 40 in area I are determined to be free of defects,
This indicates that the area No. 41 is determined to be a flaw. Applying the measurement example in FIG. 4 to FIG. 5, it can be seen that 16 and 19 of the photoelectric signals of shadow light belong to region 39, and 23 of the photoelectric signals of self-emission belong to region 40. The flaw determination method is
This shows that it is possible to make more flexible decisions than the conventional example. That is, since the gain of the photoelectric signal of self-luminous light and shadow light can be changed by the gain adjustment circuits 33 and 34, the judgment curve P'Q' having arbitrary linear characteristics within a certain limit is determined according to the actual measurement data. can be set, and a flexible algorithm can be created when determining defects.
なお、上記の実施例では、両光電信号の除算回
路の出力に対して、1つのスレツシヨールドで2
値化しているが、2値化回路37の代りに多値化
回路方式を配置して、疵の種類に応じて領域の
部分を分割してもよい。また、投影光学系の汚れ
などによる光電出力の低下によつて、第5図bの
判定レベルが変化するのを防ぐため、利得調整回
路33,34の出力信号を適宜記憶し、この情報
をもとに基準電圧発生部36の基準電圧を自動的
にシフトする機能をもうけることにより、長期間
にわたつて安定な判定動作を維持できる。 Note that in the above embodiment, one threshold divides the output of the division circuit for both photoelectric signals into two.
Although the image is converted into values, a multi-value conversion circuit system may be arranged in place of the binarization circuit 37, and the area portions may be divided according to the type of flaw. In addition, in order to prevent the determination level shown in FIG. 5b from changing due to a decrease in the photoelectric output due to dirt on the projection optical system, etc., the output signals of the gain adjustment circuits 33 and 34 are memorized as appropriate, and this information is also used. By providing a function to automatically shift the reference voltage of the reference voltage generating section 36, stable determination operation can be maintained over a long period of time.
発明の効果
本発明による赤熱物体の表面疵検出装置は、可
視放射の短波長域で赤熱物体の自発光を検出し、
近赤外域で疵による陰影光をとらえ、これらの2
つの光電信号を、それぞれの利得調整回路を通し
て除算回路に入力し、この除算回路の出力を2値
化することにより、実測の疵判定データに応じた
疵判定基準が設定でき、これにより正確かつ柔軟
性のある疵判定方法を提供することができ、その
実用的価値は極めて大きいものといえる。Effects of the Invention The device for detecting surface flaws on a red-hot object according to the present invention detects self-luminescence of a red-hot object in the short wavelength range of visible radiation,
By capturing shadow light caused by flaws in the near-infrared region, these two
By inputting two photoelectric signals to a division circuit through each gain adjustment circuit and binarizing the output of this division circuit, it is possible to set a flaw judgment standard according to the actually measured flaw judgment data, which makes it possible to accurately and flexibly Therefore, it is possible to provide a method for determining flaws with a high degree of practicality, and its practical value can be said to be extremely large.
第1図は、本発明による構成のうち、照明装
置、撮像装置および信号処理部の原理図を表わし
たものである。第2図は信号処理部のブロツクダ
イヤグラム、第3図aは熱間スラブ表面の形状、
第3図b〜dは前記aに対応して得られる光電信
号、第3図eは疵検出信号、第4図は(1)式にもと
づいて計算した、スラブ表面の分光放射分布、第
5図aは疵信号検出原理の従来例、第5図bは本
発明による疵検出原理図を、それぞれ表わす。
1……熱間スラブ、2……照明装置、3……撮
像装置、4……投影光学系、5……ハーフミラ
ー、7……撮像素子、8……シヤープカツトフイ
ルタ、9……撮像素子、10……信号処理部。
FIG. 1 shows a principle diagram of an illumination device, an imaging device, and a signal processing section of the configuration according to the present invention. Figure 2 is a block diagram of the signal processing section, Figure 3a is the shape of the hot slab surface,
3b to d are the photoelectric signals obtained corresponding to the above a, FIG. 3e is the flaw detection signal, and FIG. 4 is the spectral radiation distribution of the slab surface calculated based on equation (1). FIG. 5A shows a conventional example of the flaw signal detection principle, and FIG. 5B shows a flaw detection principle according to the present invention. DESCRIPTION OF SYMBOLS 1...Hot slab, 2...Illuminating device, 3...Imaging device, 4...Projection optical system, 5...Half mirror, 7...Imaging element, 8...Sharp cut filter, 9...Imaging element , 10... signal processing section.
Claims (1)
域の光を選択する手段を有する照明装置と、この
照明装置によつて選択された光を照明された赤熱
物体を投影するための結像光学系と、この結像光
学系から2系統の結像面を得るための光学素子
と、2系統に分割した光路上のそれぞれに別々に
設けた近赤外域の放射を通過させるフイルタおよ
び前記近赤外域より短波長側の可視放射を通過さ
せるフイルタと、前記2系統の結像面にそれぞれ
位置する撮像素子と、この撮像素子からの光電信
号のうち一方を他方で除算する手段と、前記除算
手段の出力を2値化するための信号処理部とから
なる赤熱物体の表面疵検出装置。1. An incandescent light bulb, an illumination device having means for selecting near-infrared light from the output light of the incandescent light bulb, and imaging optics for projecting the light selected by the illumination device onto a red-hot object. an optical element for obtaining two systems of imaging planes from this imaging optical system, a filter for passing radiation in the near-infrared region, which is provided separately on each of the optical paths divided into two systems, and the near-infrared region. a filter that passes visible radiation with a shorter wavelength than the outer region; an imaging device located on each of the imaging planes of the two systems; a means for dividing one of the photoelectric signals from the imaging device by the other; and the dividing means. A device for detecting surface flaws on a red-hot object, comprising a signal processing unit for binarizing the output of a red-hot object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23296483A JPS60125546A (en) | 1983-12-09 | 1983-12-09 | Detector for surface flaw of red heat object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23296483A JPS60125546A (en) | 1983-12-09 | 1983-12-09 | Detector for surface flaw of red heat object |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60125546A JPS60125546A (en) | 1985-07-04 |
JPH031619B2 true JPH031619B2 (en) | 1991-01-11 |
Family
ID=16947628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23296483A Granted JPS60125546A (en) | 1983-12-09 | 1983-12-09 | Detector for surface flaw of red heat object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60125546A (en) |
-
1983
- 1983-12-09 JP JP23296483A patent/JPS60125546A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60125546A (en) | 1985-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR870001401B1 (en) | Method and apparatus for detection of surface defects of hot metal body | |
US7162070B2 (en) | Use of patterned, structured light to detect and measure surface defects on a golf ball | |
US6424414B1 (en) | Method and apparatus for detecting refractive defects in transparent containers | |
US5478151A (en) | Device for detecting excessively heated components or locations in moving objects | |
JP3690157B2 (en) | Surface defect inspection equipment | |
JP4177288B2 (en) | Equipment for monitoring and measuring on-roof equipment for railway vehicles | |
US5048965A (en) | Three-dimensional imaging technique with occlusion avoidance | |
WO2009028956A1 (en) | Method and device for inspection of object surfaces | |
JPH031619B2 (en) | ||
JP3495212B2 (en) | Seam detection device for ERW pipe | |
JPH11230912A (en) | Apparatus and method for detection of surface defect | |
JPH04118546A (en) | Bottle inspection device | |
JPH06273506A (en) | Target detector | |
JP2001116690A (en) | Road surface moisture detecting method and road surface moisture detecting device | |
JPS60179638A (en) | Detector for surface defect of hot metallic material | |
JPH0311403B2 (en) | ||
JPS60179639A (en) | Detection for surface defect of hot metallic material | |
JP4216784B2 (en) | Pantograph sliding plate inspection device | |
JPH1010053A (en) | Inspection device for surface defect | |
JPH0520564A (en) | Fire detector using image processing | |
JPS5842420B2 (en) | Method for detecting surface flaws on objects | |
JP2001091470A (en) | Defect inspection device | |
JPH0227616B2 (en) | ||
JPS5892937A (en) | Automatic inspecting device for surface flaw | |
JP2698696B2 (en) | Surface flaw inspection method |