JPH0316124A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0316124A
JPH0316124A JP12670990A JP12670990A JPH0316124A JP H0316124 A JPH0316124 A JP H0316124A JP 12670990 A JP12670990 A JP 12670990A JP 12670990 A JP12670990 A JP 12670990A JP H0316124 A JPH0316124 A JP H0316124A
Authority
JP
Japan
Prior art keywords
film
contact hole
diffusion layer
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12670990A
Other languages
Japanese (ja)
Inventor
Hideo Sunami
英夫 角南
Tokuo Kure
久礼 得男
Yoshifumi Kawamoto
川本 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12670990A priority Critical patent/JPH0316124A/en
Publication of JPH0316124A publication Critical patent/JPH0316124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain a film whose resistance is low and whose coverage is good by a method wherein, after a contact hole has been formed once, tungsten is applied to the whole surface, the whole surface is then dry-etched and the tungsten is left inside the contact hole. CONSTITUTION:After a contact hole 10 has been made, an end-part protective film 9 is formed on the whole surface. This protective film 9 can be formed of an insulating film such as an SiO2 film, an Si3N4 film or the like, a semiconductor film of polycrystalline Si or the like, a silicide film of Mo, W or the like, or e hard-to-melt metal such as Mo, W or the like. After that, the metal of the protective film 9 is etched by a dry-etching operation using e gas as a main component; an end-part protective film 9-1 is applied to an inner-wall face of the contact hole 10 in a self-aligned manner. Consequently, even when an electrode 8 is applied, the electrode 8 is not applied directly to an end part 7 of a diffusion layer 3. As a result, a junction leakage current is not increased at the end part 7 where the electrode 8 and the diffusion layer 3 are easily reacted. Thereby, when tungsten is used, the contact hole can be buried in such a way that a coverage is good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微小な接続孔にタングステンが充填された構
造を有するシリコンLSIやその他の半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to silicon LSIs and other semiconductor devices having a structure in which minute connection holes are filled with tungsten.

〔従来の技術〕[Conventional technology]

シリコンのLSIでは通称LOCOS ( Local Oxida口on of Silic
on )といわれる選択的フイーノレド酸化膜形成法が
よく用いられる。このフィールド酸化膜の被Nざれてい
ない部分の一部に、通常基板とは4電型を異に丁る拡散
層を設ける。ここで説明の便宜上仮に基板をp型、拡散
層をn型とする。この拡散層は特にLSIでは一般的に
薄くたとえば1μm以下であることが多い。
Silicon LSI is commonly known as LOCOS (Local Oxida mouth on of Silicon).
A selective Finoredo oxide film formation method called on) is often used. A diffusion layer having a 4-electrode type different from that of the normal substrate is provided in a part of the field oxide film that is not exposed to N. Here, for convenience of explanation, it is assumed that the substrate is a p-type and the diffusion layer is an n-type. This diffusion layer is generally thin, particularly in LSIs, and is often, for example, 1 μm or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この拡散層にはAJを主とする電極を接続するが、素子
が微細であるが故に従来法では次にのべるような欠点を
有する。
Electrodes, mainly AJ, are connected to this diffusion layer, but because the elements are minute, the conventional method has the following drawbacks.

すなわち第1図に示すようにシリコン基板】上に設けら
れたLOCOSiによるフィールド酸化M2と、基板表
面部に設けられた拡散層3上K C V D法KJ: 
7) P 8 G ( Phos pho −8i1i
cate Glass )  に代表ざれる眉間絶縁膜
4を被着する。さらに眉間絶縁膜4を除去して眉間絶縁
膜に貫通孔を形成する部分すなわちコンタクト孔部6以
外の部分にレジスト膜5を選択的に被着する。
That is, as shown in FIG. 1, the field oxidation M2 using LOCOSi provided on the silicon substrate and the KCVD method KJ on the diffusion layer 3 provided on the surface of the substrate:
7) P 8 G (Phos pho -8i1i
A glabellar insulating film 4 typified by Cate Glass) is applied. Furthermore, the glabellar insulating film 4 is removed and a resist film 5 is selectively applied to the portion of the glabella insulating film where the through hole is to be formed, that is, the portion other than the contact hole portion 6.

しかる後に眉間絶縁膜4をエッチングする。After that, the glabellar insulating film 4 is etched.

エッチング法はHFバツファ液等による溶液エッチング
や,C,F,  ガスプラズマ法を用いた反応性スパツ
タエッチングが用いられる。この際素子が微細化してく
ると、コンタクト孔】0は、実質的にフィールド酸化膜
2の端にかかるようになり、第2図に示すように、コン
タクト孔形成の際、フィールド酸化膜2の端部および拡
散層3の表面部が削れて拡散層端薄層部7が発生する。
Etching methods include solution etching using an HF buffer solution, and reactive sputter etching using C, F, and gas plasma methods. At this time, as the device becomes finer, the contact hole 0 comes to substantially extend over the edge of the field oxide film 2, and as shown in FIG. The end portion and the surface portion of the diffusion layer 3 are scraped to form a thin layer portion 7 at the end of the diffusion layer.

このコンタクト部6にAl!で代表ざれる電極8を被着
すると、この部分で接合リークt流が増大する。また、
コンタクト孔内部でのカバレージが悪いという問題があ
る。
Al! When the electrode 8, which is represented by , is deposited, the junction leakage t current increases at this portion. Also,
There is a problem of poor coverage inside the contact hole.

本発明の目的は、信頼性の高い半導体装置を提曲するこ
とにある。
An object of the present invention is to provide a highly reliable semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、一旦コンタクト孔を形成した後、全面にタ
ングステンを被着し、その後全面をドライエッチングす
ることにより、コンタクト孔内部にタングステンを残存
させ、た構造を有する半導体装置とすることにより達成
ざれる。
The above objective can be achieved by forming a contact hole, then depositing tungsten on the entire surface, and then dry etching the entire surface, thereby leaving tungsten inside the contact hole, thereby producing a semiconductor device having a structure. It will be done.

〔作用〕[Effect]

本発明者らは、タングステンを用いることにより、カバ
レージの良好なコンタクト孔内埋込みができることを見
い出した。
The present inventors have discovered that by using tungsten, contact holes can be filled with good coverage.

〔実施例〕〔Example〕

以下本発明を実施?1]を用いて説明丁る。第3?に示
すように、第2図に示したコンタクト孔10を形成した
後、全面に端部保護膜9を形成する 。この保護膜9は
、8i0■やSi3N4膜等の絶縁膜、あるいは各結晶
81等の半導体膜あるいはMoやW等のシリサイド膜、
さ′らにはMoやW等の難浴金属等を用いることができ
る。
Implement the present invention below? 1]. Third? As shown in FIG. 2, after forming the contact hole 10 shown in FIG. 2, an end protection film 9 is formed on the entire surface. This protective film 9 may be an insulating film such as 8i0■ or Si3N4 film, a semiconductor film such as each crystal 81, or a silicide film such as Mo or W.
Furthermore, metals that are difficult to bathe, such as Mo and W, can be used.

膜厚はコンタクト孔10の寸法の】/2以下の例を示丁
The film thickness is shown in an example of less than /2 of the dimension of the contact hole 10.

ここでは多結晶Siを保護膜9として用いた例を示すと
、全面被着後SF6やCF4等のガスを主成分としたド
ライエッチングで金属をエッチングし、第4図に示すよ
うにコンタクト孔以外の平面の部分の保護膜が除去され
た時点でエッチングを終えるか、あるいは多少残存して
いてもその後酸化で不用な部分が酸化膜に変換できうる
までエッチングするかする。こうすると多結晶Siの端
部保護膜9−1は図示のようにコンタクト孔10の内壁
側面に自己整合で被着される。このとき拡散層端薄層部
7は端部保護膜9で覆われる。従って第5図に示すよう
に、ざらにAJで代表ざれる電極8を被着しても、電極
8が直接拡散層3の端部7に被Nざれることはないので
、t極8と拡散層3の反応の起き易い端郡での接合リー
ク電流の増加はない。このとき多結晶Si9−1は予じ
めリンやAsの不純物を含ませておく、あるいは端部に
残存させた後にリンやAsをよく知られたイオン打込み
法や熱拡散法で添加すると第6図に示すように追加拡散
層11が形成されて、仮に第4図に示すようにコンタク
ト孔】0の中心に深い残存コンタクト孔】2が形成され
たとしてもその部分に深い追加拡散層11が形成される
ので電極8の拡散層3へ接触する部分の厚さは本来の拡
散層の厚さXjより小さくなることはなく、接合リーク
をおさえることができる。
Here, we will show an example in which polycrystalline Si is used as the protective film 9. After coating the entire surface, the metal is etched by dry etching using a gas such as SF6 or CF4 as the main component, and as shown in FIG. Either the etching is finished when the protective film on the flat part is removed, or even if some remains, the etching is continued until the unnecessary part can be converted into an oxide film by oxidation. In this way, the end protection film 9-1 of polycrystalline Si is deposited on the inner wall side of the contact hole 10 in a self-aligned manner as shown in the figure. At this time, the thin layer portion 7 at the end of the diffusion layer is covered with the end protective film 9. Therefore, as shown in FIG. 5, even if the electrode 8, typically AJ, is deposited, the electrode 8 will not be directly exposed to the end 7 of the diffusion layer 3, so the t-pole 8 and There is no increase in junction leakage current at the edges of the diffusion layer 3 where reactions are likely to occur. At this time, if the polycrystalline Si9-1 is impurized with phosphorus or As in advance, or left at the end and then added with phosphorus or As by a well-known ion implantation method or thermal diffusion method, the sixth Even if an additional diffusion layer 11 is formed as shown in the figure, and a deep residual contact hole 2 is formed at the center of the contact hole 0 as shown in FIG. Since the thickness of the portion of the electrode 8 that contacts the diffusion layer 3 does not become smaller than the original thickness Xj of the diffusion layer, junction leakage can be suppressed.

また一般にドライエッチングでは微小な溝の部分はエッ
チング種が共給されにくいので、第7図に示丁ように平
面部分で端部保護膜9が除去ざれても拡散層3に達丁る
残存コンタクト孔12が形成されない場合があるので、
このドライエッチングの特性を積極的に用いることがで
きる。
Furthermore, in general, in dry etching, it is difficult for etching species to be co-supplied in the part of a minute groove, so even if the end protection film 9 is removed in a flat part as shown in FIG. 7, the remaining contact reaches the diffusion layer 3. Since the hole 12 may not be formed,
This characteristic of dry etching can be actively used.

また以上の実施例の説明ではコンタクト孔10の寸法L
の1/2より端部保護膜の厚さが小さい場合を示したが
、大きい場合の実施例を次に示す。第8図に示すように
、コンタクト孔10の寸法Lの1/2より厚く端部保護
膜9を被着するとコンタクト孔10はほぼ埋まって保護
膜9の表面は略平坦となる。この後、均一なエッチング
を行うと第9図に示すように、第4図〜第6図に示した
ような残存コンタクト孔12は形戊ざれずに端部保護膜
9−1がコンタクト孔10を満した形状で残存する。こ
の場合は、その上部に被着する電極8は直接拡散層3に
接触しないので、端部保護膜9は絶縁膜ではない導電性
膜を用いる必要がある。
In addition, in the description of the above embodiment, the dimension L of the contact hole 10 is
Although the case where the thickness of the end protective film is smaller than 1/2 of the above is shown, an example in which the thickness is larger is shown below. As shown in FIG. 8, when the end protective film 9 is deposited thicker than 1/2 of the dimension L of the contact hole 10, the contact hole 10 is almost filled and the surface of the protective film 9 becomes approximately flat. After that, when uniform etching is performed, as shown in FIG. 9, the remaining contact hole 12 as shown in FIGS. It remains in a shape that satisfies the following. In this case, since the electrode 8 deposited thereon does not directly contact the diffusion layer 3, it is necessary to use a conductive film instead of an insulating film as the end protection film 9.

タングステンを用いることにより、低抵抗でカバレージ
のよい膜を得ることができる。
By using tungsten, a film with low resistance and good coverage can be obtained.

また、以上述べてきた実施例ではs S+基板1の表面
上の拡散層にコンタクトをとる方法を説明したが、 第
10図に示したようにフィールド酸化膜2上の電極】5
にコンタクトをとる場合も同様に本発明を適用できる。
Furthermore, in the embodiments described above, a method of contacting the diffusion layer on the surface of the sS+ substrate 1 was explained, but as shown in FIG.
The present invention can be similarly applied when contacting a person.

すなわちレジスト5の開口部が電極】5上からはずれて
いると眉間絶縁膜4をエッチングする際フィーノレド酸
化M2がエッチングざれて薄層部】3が形成ざれる。こ
の薄層部上にAJで代表ざれる電極8が被着されると、
Al!からの汚染が侵入したり、実効的なフィールド酸
化膜厚が小さくなることによって素子分離の用をなさな
くなったりする。
In other words, if the opening of the resist 5 is off from above the electrode [5], when etching the glabella insulating film 4, the Finoredo oxide M2 is etched away and a thin layer [3] is formed. When an electrode 8 represented by AJ is deposited on this thin layer,
Al! Contamination from other sources may enter, or the effective field oxide film thickness may become small, rendering device isolation useless.

この部分に本発明を適用した絶縁膜や各結晶Siなどを
埋め込むと上記の欠点を補なうばかりでなく、フィール
ド酸化膜2と層間P3縁膜4の高い段差によって電極8
の切断の誘発を防止できる。
If this part is filled with an insulating film to which the present invention is applied or various crystalline Si, etc., not only will the above-mentioned drawbacks be compensated for, but the electrode 8 will be
This can prevent the induction of amputation.

また以上の本発明の説明ではフィールド絶縁膜2をLO
CO8法によって形成{7た例を示したが、本発明は本
質的にフィールド絶縁膜形成法の如何を問わない。例え
ば第11図に示すようにSi基板を全体に均一に酸化し
てフィールド酸化膜2を得た後,不必要な部分を除去し
、その後拡散層3を得る。ざらに眉間絶縁膜4を被着し
た後,フィールド酸化i2Kかかるコンタクト孔を形成
するフィールド絶縁膜上薄層部13が形成される。これ
が、さらにエッチングされると薄層部13が消失して8
i基板1に直接AJで代表される電極8が被着され、前
述した欠点が生じる。この場合も端部保護膜9−1を本
発明によって被着すれば上記の欠点を除去できる。
In addition, in the above description of the present invention, the field insulating film 2 is
Although an example in which the field insulating film is formed by the CO8 method has been shown, the present invention is not essentially concerned with any method for forming the field insulating film. For example, as shown in FIG. 11, after uniformly oxidizing the entire Si substrate to obtain a field oxide film 2, unnecessary portions are removed, and then a diffusion layer 3 is obtained. After roughly depositing the glabellar insulating film 4, a thin layer 13 on the field insulating film is formed to form a contact hole for field oxidation. When this is further etched, the thin layer part 13 disappears and 8
The electrode 8 represented by AJ is directly adhered to the i-substrate 1, which causes the above-mentioned drawbacks. In this case as well, the above-mentioned drawbacks can be eliminated by applying the end protection film 9-1 according to the present invention.

さらには、第12図に示すように、Si基板1に溝を形
成し、この溝に埋め込んだSI02やSi3N,  や
多結晶Siの一層あるいはこれらの重ね膜で代表される
フィールド充填膜14を用いた場合も同様である。拡散
層端薄層部7に本発明によって、端部保護膜9−1を埋
め込めば同様に上記の欠点を除去できる。
Furthermore, as shown in FIG. 12, a trench is formed in the Si substrate 1, and a field filling film 14 typified by a layer of SI02, Si3N, or polycrystalline Si, or a layered film of these, is embedded in the trench. The same applies if there is. By embedding the end protection film 9-1 in the thin layer end portion 7 of the diffusion layer according to the present invention, the above-mentioned drawbacks can be similarly eliminated.

本発明の説明にはn型の拡散層3の場合を用いたが不純
物の導電型が逆の型を用いてもよい。
Although the present invention has been described using the case of an n-type diffusion layer 3, a type in which the conductivity type of the impurity is opposite may be used.

また、本発明は、デバイスの種類を限定しない。すなわ
ち、拡散屓3がバイボーラトランジスタのエシツタ,ベ
ース,コレクタであってもよいし,MO8}ランジスタ
のソース・ドレインであってもよいし、さらにはCMO
Sなどにおけるウエルにもできることは明らかである。
Furthermore, the present invention does not limit the type of device. That is, the diffusion layer 3 may be the emitter, base, or collector of a bipolar transistor, or the source or drain of a MO8 transistor, or even a CMO transistor.
It is clear that this can also be done in wells such as S.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特に高密度の集積回路のコンタクトが
信頼度高く形成でき、ひいてはざらに高密度の集積回路
の実現をもたら丁ことができるものである。
According to the invention, contacts for particularly high-density integrated circuits can be formed with high reliability, which in turn makes it possible to realize even higher-density integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の電極接続法を説明する図、
第3図〜第12図は本発明の実施例を示す図である。 】・・・・・・シリコン基板、2・・・・・・フィール
ド絶縁膜、3・・・・・・拡散層3,4・・・・・・層
間絶縁膜、5・・・・・・レジスト膜、6・・・・・・
コンタクト部、7・・・・・・拡散層端薄層部、8・・
・・・・電極、9・・・・・・端部保護膜、10・・・
・・・コンタクト孔、11・・・・・・追加拡散層、1
2・・・・・・残存コンタクト孔、13・・・・・・フ
イールド絶縁膜薄層部、 】 4・・・ ・・フィールド充填膜、 遁 4 図 冨 5 図 篤 Z 国 嶌 Z 口 冨 3 図 冨 7 図 8 8 団 万 9 図 冨 lρ ■ 遁 11 周 茅 1z 口
Figures 1 and 2 are diagrams explaining the conventional electrode connection method;
3 to 12 are diagrams showing embodiments of the present invention. ]... Silicon substrate, 2... Field insulating film, 3... Diffusion layers 3, 4... Interlayer insulating film, 5... Resist film, 6...
Contact part, 7...Diffusion layer end thin layer part, 8...
... Electrode, 9 ... End protective film, 10 ...
...Contact hole, 11...Additional diffusion layer, 1
2...Remaining contact hole, 13...Field insulating film thin layer part,] 4...Field filling film, 遁4 Fig. 5 Tutomi Z Kunijima Z Kuchitomi 3 Zutomi 7 Figure 8 8 Danman9 Zutomi lρ ■ Release 11 Shuka 1z Mouth

Claims (1)

【特許請求の範囲】 1、半導体基板と、該半導体基板表面の所定の領域に形
成された不純物領域と、該半導体基板上に形成され、該
不純物領域の上部に開口部を有する絶縁膜と、該開口部
内に充填され、該不純物領域とオーミック接触を有する
タングステンを含む充填物と、該充填物と電気的に接続
された所望の形状を有する導電膜とを含むことを特徴と
する半導体装置。 2、上記半導体基板はSiからなり、上記導電膜はAl
を主体とする金属であることを特徴とする特許請求の範
囲第1項に記載の半導体装置。 3、上記不純物領域は、MOSトランジスタのソース・
ドレインであることを特徴とする特許請求の範囲第1項
又は第2項記載の半導体装置。 4、上記不純物領域は、バイポーラトランジスタのエミ
ッタ、ベースまたはコレクタであることを特徴とする特
許請求の範囲第1項又は第2項記載の半導体装置。 5、上記不純物領域は、CMOSのウェルであることを
特徴とする特許請求の範囲第1項又は第2項記載の半導
体装置。
[Scope of Claims] 1. a semiconductor substrate, an impurity region formed in a predetermined region on the surface of the semiconductor substrate, an insulating film formed on the semiconductor substrate and having an opening above the impurity region; A semiconductor device comprising: a filler containing tungsten that is filled in the opening and has ohmic contact with the impurity region; and a conductive film having a desired shape and electrically connected to the filler. 2. The semiconductor substrate is made of Si, and the conductive film is made of Al.
The semiconductor device according to claim 1, wherein the semiconductor device is made of a metal mainly composed of. 3. The above impurity region is the source of the MOS transistor.
3. The semiconductor device according to claim 1, wherein the semiconductor device is a drain. 4. The semiconductor device according to claim 1 or 2, wherein the impurity region is an emitter, base, or collector of a bipolar transistor. 5. The semiconductor device according to claim 1 or 2, wherein the impurity region is a CMOS well.
JP12670990A 1990-05-18 1990-05-18 Semiconductor device Pending JPH0316124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12670990A JPH0316124A (en) 1990-05-18 1990-05-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12670990A JPH0316124A (en) 1990-05-18 1990-05-18 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8476382A Division JPS58202550A (en) 1982-05-21 1982-05-21 Electrode connecting method

Publications (1)

Publication Number Publication Date
JPH0316124A true JPH0316124A (en) 1991-01-24

Family

ID=14941919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12670990A Pending JPH0316124A (en) 1990-05-18 1990-05-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0316124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583052B2 (en) 2001-09-05 2003-06-24 Hynix Semiconductor Inc. Method of fabricating a semiconductor device having reduced contact resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583052B2 (en) 2001-09-05 2003-06-24 Hynix Semiconductor Inc. Method of fabricating a semiconductor device having reduced contact resistance

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
US6261973B1 (en) Remote plasma nitridation to allow selectively etching of oxide
JPH09120965A (en) Manufacture of semiconductor device
JPH113992A (en) Semiconductor device and manufacture thereof
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
US6221736B1 (en) Fabrication method for a shallow trench isolation structure
JPS62500969A (en) Manufacturing method of semiconductor devices
JP2000514241A (en) Transistor with self-aligned contacts and field insulator and fabrication process for the transistor
JPS59232437A (en) Manufacture of semiconductor device
JPH0316124A (en) Semiconductor device
JPH11214512A (en) Manufacture of semiconductor device
KR100335122B1 (en) Isolation method for semiconductor device
JPS58202550A (en) Electrode connecting method
JPS59149030A (en) Manufacture of semiconductor device
JPS63257244A (en) Semiconductor device and manufacture thereof
TW557539B (en) Method to form shallow trench isolation
JPH0448644A (en) Manufacture of semiconductor device
JPS58102558A (en) Semiconductor device and manufacture thereof
JPH0230113A (en) Semiconductor integrated circuit device
JPS61214536A (en) Manufacture of semiconductor device
JPS61214537A (en) Manufacture of semiconductor device
JPH05198571A (en) Semiconductor device and its manufacture
JPS6265426A (en) Making groove or hole in semiconductor
JPH10242275A (en) Manufacture of semiconductor device
JPH11102960A (en) Manufacture of semiconductor device