JPH03160992A - Carrier for immobilization of enzyme and production of immobilized enzyme - Google Patents

Carrier for immobilization of enzyme and production of immobilized enzyme

Info

Publication number
JPH03160992A
JPH03160992A JP1298961A JP29896189A JPH03160992A JP H03160992 A JPH03160992 A JP H03160992A JP 1298961 A JP1298961 A JP 1298961A JP 29896189 A JP29896189 A JP 29896189A JP H03160992 A JPH03160992 A JP H03160992A
Authority
JP
Japan
Prior art keywords
group
enzyme
carrier
immobilization
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1298961A
Other languages
Japanese (ja)
Other versions
JP3037349B2 (en
Inventor
Hideki Yokomichi
秀季 横道
Kazuhiro Nakamura
和広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1298961A priority Critical patent/JP3037349B2/en
Publication of JPH03160992A publication Critical patent/JPH03160992A/en
Application granted granted Critical
Publication of JP3037349B2 publication Critical patent/JP3037349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an immobilized enzyme having excellent ester synthesis and exchange activities and high durability by contacting an aqueous solution of a lipase with a carrier consisting of an ampholytic ion exchange resin having a specific cation exchange group and a specific anion exchange group. CONSTITUTION:An aqueous solution of a lipase is made to contact with a carrier for the immobilization of enzyme. The carrier used in the above process is composed of an ampholytic ion exchange resin having carboxyalkyl group or alkenyl group (alkyl or alkenyl is a 2-6C straight or branched-chain group which may have substituents) and/or phosphate group as cation exchange group and having primary amino group, secondary amino group, tertiary amino group and/or quaternary ammonium group as the anion exchange group. The carrier can be used in the form of powder, granule, fiber, sponge, etc., preferably as a porous material having large specific surface area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酵素固定化用担体、並びに油脂及び脂肪酸誘
導体のエステルの合成及び交換反応に適した固定化酵素
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carrier for immobilizing an enzyme, and a method for producing an immobilized enzyme suitable for the synthesis and exchange reaction of esters of fats and oils and fatty acid derivatives.

x スf ルli (D 合戊反応は、アルコールト脂
肪酸からアルコール脂肪酸エステルの合戒、モノグリセ
リド、ポリグリセリン脂肪酸エステル、糖エステルとい
った多価アルコール脂肪酸エステルの合或、ゲラニルブ
チレイトといった香料の製造方法として重要な技術であ
る。
x Sf Ruli (D Synthesis reaction is the synthesis of alcohol fatty acid esters from alcohol fatty acids, the synthesis of polyhydric alcohol fatty acid esters such as monoglycerides, polyglycerin fatty acid esters, and sugar esters, and the production method of fragrances such as geranyl butyrate. This is an important technology.

他方、油脂類のエステル交換反応は、マーガリン・ショ
ートニング等の食用加工油脂の改質等に水素添加と並ぶ
重要な技術である。
On the other hand, transesterification of oils and fats is an important technology along with hydrogenation for the modification of edible processed oils and fats such as margarine and shortening.

〔従来の技術及び発明が解決しようとする課題〕近年、
各方面で酵素としてリパーゼを利用した油脂及びエステ
ル類の合或・交換反応の研究或いは工業化が活発化して
きている。これはリパーゼが穏和な条件下で反応するこ
と、位置選択性、アルキル選択性を持つことを利用した
ものである。しかし、これらの反応はリパーゼ本来の加
水分解反応と異なり、水分の限定された系でのみ進みう
る反応である。一方、リバーゼ3〜 のエステル合或、交換活性を増大せしめるためには、酵
素として水分を必要とする。例えば、特開昭55−71
797号公報に開示された低水分系の反応では十分な反
応速度が得られず、また反応速度を増大させるために必
要以上の水分を与えると、エステルの分解反応が優先的
に進行するという問題点がある。また特開昭60−19
495号公報、及び特開昭60−203196号公報に
開示された如く、反応を多水分系の分解工程と水分を除
去する合或工程の二段階に分けて行う方法の提案もある
が、後者の合或反応速度は通常のエステル交換速度に比
して十分であるとは言えず、工程操作の複雑化も避けら
れない。
[Problems to be solved by conventional techniques and inventions] In recent years,
BACKGROUND ART Research and industrialization of combination and exchange reactions of fats and oils and esters using lipase as an enzyme are becoming active in various fields. This takes advantage of the fact that lipase reacts under mild conditions and has regioselectivity and alkyl selectivity. However, these reactions differ from the hydrolysis reactions inherent to lipase, and can proceed only in a system with limited moisture. On the other hand, in order to increase the esterification or exchange activity of Reverse 3~, water is required as an enzyme. For example, JP-A-55-71
In the low-moisture system reaction disclosed in Publication No. 797, a sufficient reaction rate cannot be obtained, and if more water than necessary is added to increase the reaction rate, the ester decomposition reaction proceeds preferentially. There is a point. Also, JP-A-60-19
As disclosed in Japanese Patent No. 495 and Japanese Patent Application Laid-Open No. 60-203196, there have been proposals for a method in which the reaction is divided into two stages: a step of decomposing a polyhydric system and a step of removing water. It cannot be said that the reaction rate of this reaction is sufficient compared to the usual rate of transesterification, and the process operation becomes unavoidably complicated.

以上の問題点を解決し、かつリパーゼを効率的に使用す
る目的で、リパーゼを固定化する試みが行われてきた。
In order to solve the above problems and use lipase efficiently, attempts have been made to immobilize lipase.

リパーゼの固定化により期待される利点は次の通りであ
る。即ち、(i>従来リパーゼを水溶液の状態で使用す
ると油中に均一に混合・分散することが困難であったが
、リパーゼを不溶性担体表面に固定化することによ4 り油中に容易に分散可能となり、かつ担体に適当量の水
分を保持できるため、低水分下でのエステル合或・交換
反応が行いやすくなる。Gi)触媒としてコストの高い
リバーゼの回収再使用がしやすく、エステル合或反応又
は交換反応の工業的実施においても反応装置の連続化が
容易となる等である。
The expected advantages of lipase immobilization are as follows. In other words, (i> Conventionally, when lipase was used in the form of an aqueous solution, it was difficult to mix and disperse it uniformly in oil. However, by immobilizing lipase on the surface of an insoluble carrier, it can be easily mixed and dispersed in oil.) It becomes dispersible and can hold an appropriate amount of moisture in the carrier, making it easier to carry out esterification or exchange reactions in low moisture conditions.Gi) Reverse, which is expensive as a catalyst, can be easily recovered and reused; In the industrial implementation of a certain reaction or exchange reaction, it becomes easy to use a continuous reactor.

しかし、以上のような利点を有する固定化酵素において
も、リパーゼの合或活性増大のために必要な水分量を保
持することと、逆反応である加水分解の抑制とを両立す
るには至っていない。例えば、Journal of 
American Oil Chemist’sSoc
iety,  第60巻,  291 〜294(19
83)  にも、微量な水分を与えた場合加水分解反応
が進行することが指摘されている。また、水に代えてグ
リセリンのような多価アルコールを添加した場合では加
水分解反応はある程度抑制されるが、エステル合戊・交
換反応は極端に遅くなる。また、酵素水分の保持を狙っ
て多孔質担体と高吸水性樹脂をキトサンで包括結合後、
粉砕した担体を5〜 用いる方法(特開昭59−213390号公報)に於い
ても、固定化酵素のエステル合戊・交換反応と分解反応
を両立させるため、二段階反応法(特開昭60−203
196号公報〉を採用している。しかし、このような方
法は操作が煩雑な上に、副生底物のジグリセリドの抑制
が困難であるという欠点がある。
However, even with the above-mentioned advantages of immobilized enzymes, it has not been possible to simultaneously maintain the amount of water necessary for increasing the lipase synthesis activity and suppress hydrolysis, which is the reverse reaction. . For example, Journal of
American Oil Chemist's Soc
iety, Vol. 60, 291-294 (19
83) also pointed out that the hydrolysis reaction progresses when a small amount of water is added. Further, when a polyhydric alcohol such as glycerin is added instead of water, the hydrolysis reaction is suppressed to some extent, but the ester synthesis/exchange reaction becomes extremely slow. In addition, after comprehensively bonding a porous carrier and a super absorbent resin with chitosan in order to retain enzyme moisture,
In the method (Japanese Unexamined Patent Application Publication No. 59-213390) using a crushed carrier, a two-step reaction method (Japanese Unexamined Patent Application Publication No. 60-1988) is used to achieve both the ester synthesis/exchange reaction and the decomposition reaction of the immobilized enzyme. -203
No. 196] is adopted. However, such a method has disadvantages in that the operation is complicated and it is difficult to suppress diglyceride in the by-product bottom material.

以上のように、エステル合戊及び交換反応においては、
よりエステル合或及び交換活性の高い耐久性に優れた固
定化酵素の開発が望まれている。
As mentioned above, in ester synthesis and exchange reactions,
It is desired to develop an immobilized enzyme with higher esterification and exchange activity and excellent durability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、先にリパーゼのエステル合或及びエステル
交換活性を増大させる因子について研究を重ねた結果、
特開昭60−25188号公報に開示されたリパーゼに
油脂を加え加水分解反応をさせながら固定化を行い高活
性な固定化酵素を得る方法において、脂肪酸、脂肪酸誘
導体、アルコール、もしくはリン脂質の共存下で固定化
を行うとエステル合或及びエステル交換活性の6 増大が見られることを見出し特許出願したく特開平1−
153090号)。しかし、このようにして固定化した
酵素も、50℃以上の高温下で長時間使用することによ
り活性が徐々に低下すること、共存の脂肪酸誘導体の脱
落などの問題があった。
As a result of previous research into factors that increase the esterification and transesterification activities of lipase, the present inventor found that
In the method disclosed in JP-A No. 60-25188, in which fats and oils are added to lipase and immobilized while causing a hydrolysis reaction to obtain a highly active immobilized enzyme, the coexistence of fatty acids, fatty acid derivatives, alcohols, or phospholipids is used. He discovered that the esterification and transesterification activities were increased by immobilization under
No. 153090). However, the enzymes immobilized in this manner also have problems such as a gradual decrease in activity when used at high temperatures of 50° C. or higher for a long period of time, and shedding of coexisting fatty acid derivatives.

そこで、酵素と担体との結合を強め、かつ共存脂肪酸誘
導体の脱離を防ぎ、より耐久性が高い固定化方法を見出
すべく種々検討した結果、より好適な担体として特定の
イオン交換基を有する両性イオン交換樹脂を見出し、本
発明を完戊させた。
Therefore, as a result of various studies in order to find a more durable immobilization method that strengthens the bond between the enzyme and the carrier, prevents the desorption of the coexisting fatty acid derivatives, and results in a more suitable carrier, an amphoteric one with a specific ion exchange group, Discovered an ion exchange resin and completed the present invention.

即ち本発明は、陽イオン交換基がカルボキシアルキル基
又はアルケニル基(アルキル基又はアルケニル基が炭素
数2〜6の直鎖又は分岐鎖であり、アルキル基又はアル
ケニル基は置換基を有していても良い)、及び/又はリ
ン酸基であって、陰イオン交換基がl級アミノ基、2級
アミノ基、3級アミノ基、4級アンモニウム基の群から
選ばれる1種もしくは2種以上である両性イオン交換樹
脂よりなることを特徴とする7 酵素固定化用担体、及びこの固定化用担体と、脂質分解
酵素の水溶液とを接触させることを特徴とする固定化酵
素の製造方法を提供するものである。
That is, the present invention provides that the cation exchange group is a carboxyalkyl group or an alkenyl group (the alkyl group or alkenyl group is a straight chain or branched chain having 2 to 6 carbon atoms, and the alkyl group or alkenyl group has a substituent). ), and/or a phosphoric acid group, in which the anion exchange group is one or more selected from the group consisting of a l-class amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. Provided is a carrier for immobilizing an enzyme, characterized in that the carrier is made of a certain amphoteric ion exchange resin, and a method for producing an immobilized enzyme, characterized in that the carrier for immobilization is brought into contact with an aqueous solution of a lipolytic enzyme. It is something.

本発明に係る両性イオン交換樹脂の陽イオン交換基はカ
ルボキシアルキル基又はアルケニル基(アルキル基又は
アルケニル基が炭素数2〜6の直鎖又は分岐鎖であり、
アルキル基又はアルケニル基は置換基を有していてもよ
い)、及び/又はリン酸基であり、樹脂にカルボキシア
ルキル基又はアルケニル基を導入する好適な方法として
は、一般式XR,COON  (Xはハロゲン原子、R
1は炭素数2〜6のアルキレン基又はアルケニレン基)
 l CH.R2CHR3COOH  (XはハロゲX ン原子、R2.R3はアルキレン基又はアルケニレン基
であって、R2とR3の炭素数の和が0〜4である)で
表されるカルボン酸、或いは不飽和結合を有するポリカ
ルボン酸又はその酸無水物を、水酸基、1級アミノ基、
2級アミノ基、イミノ8 基、スルフヒドリル基等を有する合戒樹脂又はその誘導
体とアルカリ化合物の存在下或いは加熱下で反応させる
方法がある。
The cation exchange group of the amphoteric ion exchange resin according to the present invention is a carboxyalkyl group or an alkenyl group (the alkyl group or alkenyl group is a straight chain or branched chain having 2 to 6 carbon atoms,
The alkyl group or alkenyl group may have a substituent), and/or the phosphoric acid group, and a suitable method for introducing a carboxyalkyl group or alkenyl group into the resin includes general formulas XR, COON (X is a halogen atom, R
1 is an alkylene group or alkenylene group having 2 to 6 carbon atoms)
l CH. A carboxylic acid represented by R2CHR3COOH (X is a halogen atom, R2.R3 is an alkylene group or an alkenylene group, and the sum of the carbon numbers of R2 and R3 is 0 to 4), or has an unsaturated bond Polycarboxylic acid or its acid anhydride has a hydroxyl group, a primary amino group,
There is a method in which a resin having a secondary amino group, an imino group, a sulfhydryl group, or a derivative thereof is reacted in the presence of an alkali compound or under heating.

カルボキシアルキル基又はアルケニル基導入に用いられ
る好適なカルボン酸の具体例としては、α−クロルプロ
ピオン酸、β−クロルプロピオン酸等のモノカルボン酸
;マレイン酸、イタコン酸等のポリカルボン酸;無水マ
レイン酸、無水イタコン酸、無水コハク酸等のポリカル
ボン酸の酸無水物が挙げられる。
Specific examples of suitable carboxylic acids used for introducing carboxyalkyl groups or alkenyl groups include monocarboxylic acids such as α-chloropropionic acid and β-chloropropionic acid; polycarboxylic acids such as maleic acid and itaconic acid; maleic anhydride. Examples include acid anhydrides of polycarboxylic acids such as itaconic anhydride and succinic anhydride.

又、リン酸基導入に用いられる好適なリン酸としては、
アルキル基の炭素数が0〜3であるアルキルリン酸基を
有する化合物が挙げられる。
In addition, suitable phosphoric acids used for introducing phosphoric acid groups include:
Examples include compounds having an alkyl phosphoric acid group in which the alkyl group has 0 to 3 carbon atoms.

さらに、炭素数が0〜3であるアルキルスルホン酸基を
用いてスルホン酸基を導入してもよい。
Furthermore, a sulfonic acid group may be introduced using an alkylsulfonic acid group having 0 to 3 carbon atoms.

又、本発明に係る両性イオン交換樹脂の陰イオン交換基
としては、1級アミノ基、2級アミノ基、3級アミノ基
或いは4級アンモニウム基の群から選ばれる1種もしく
は2種以上のものが挙げられ、又、単なるアミノ基では
なく、メ9ー チルグルカミル基、ポリアルキレンポリアミン基、置換
基を有するポリアルキレンポリアミン基等が一部に導入
されている方がよい。
Further, as the anion exchange group of the amphoteric ion exchange resin according to the present invention, one or more types selected from the group of primary amino group, secondary amino group, tertiary amino group, or quaternary ammonium group. In addition, it is preferable that instead of a simple amino group, a meth9-tylglucamyl group, a polyalkylene polyamine group, a polyalkylene polyamine group having a substituent, or the like is partially introduced.

本発明では、陽イオン交換基導入にあたり、上記した陰
イオン交換基を有する市販の陰イオン交換樹脂であれば
何れも好適に用いることができる。
In the present invention, any commercially available anion exchange resin having the above-described anion exchange group can be suitably used for introducing the cation exchange group.

さらには、1級或いは2級のアミン基を有するチタンカ
ップリング剤〈例えば、イソプロピル(N−アミノエチ
ルーアミノエチル)チタネート)によって、上記した陽
イオン交換基を有する市販の陽イオン交換樹脂に陰イオ
ン交換基を導入し、両性イオン交換樹脂とすることもで
きる。
Furthermore, a titanium coupling agent having a primary or secondary amine group (for example, isopropyl (N-aminoethyl-aminoethyl) titanate) can be used to add an anion to a commercially available cation exchange resin having the above-mentioned cation exchange group. An amphoteric ion exchange resin can also be obtained by introducing an ion exchange group.

本発明に係る担体の形状としては、粉末状、穎粒状、繊
維状、スポンジ状等種々あるが、そのいずれでも使用で
きる。そして比表面積の大きい多孔性のものが好適であ
る。特に工程操作上の面からは400〜1000μmの
粒径を有し、細孔径100〜1500人の多孔性樹脂よ
りなるものを10 用いるのが良い。
The carrier according to the present invention has various shapes such as powder, granule, fiber, and sponge, and any of them can be used. A porous material with a large specific surface area is preferable. Particularly from the viewpoint of process operation, it is preferable to use a porous resin having a particle size of 400 to 1000 μm and a pore size of 100 to 1500 μm.

本発明に用いる脂質分解酵素としては、リパーゼ、ホス
ホリパーゼ、コレステロールエステラーゼ、スフィンゴ
ミエリエーゼ及び各種のエステラーゼが挙げられる。こ
れらのうちリパーゼとしては、グリセリドの1,3位に
のみ反応し、位置選択性に優れたリゾプス(Rhizo
pus)属、アスペルギルス(Aspergillus
)属、ムコール(Mu−cour)属、脂肪酸特異性を
有するジオトリケム(Geotrichum)属、特異
性を示さないキャンデイダ(Candida) @、シ
ュードモナス(Pseudomonas)属、ペニシリ
ウム(Penicillium)属、クロモバクテリウ
ム(Chromobacterium)属等の微生物起
源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げ
られる。これらのうち、特に合戊活性の増加し易いリパ
ーゼとしては、中鎖以上のアルキル基に活性位の強いリ
ゾプス属、ムコール属、クロモバクテリウム属起源のリ
パーゼが一層好ましい。コレステロールエステラーゼの
例としては、キャンディダ(Candida)属等の微
生1 1 物起源のものが挙げられる。また、ホスホリパーゼの例
としては、キャベツ、ピーナッツ、ニンジン、大豆、菜
種等の植物やコケ植物由来のホスホリパーゼD1ストレ
プトマイセス属等の微生物起源のホスホリパーゼD1さ
らには酵母由来のホスホリパーゼA1毒蛇由来のホスホ
リパーゼA2などが挙げられる。
Lipid degrading enzymes used in the present invention include lipases, phospholipases, cholesterol esterases, sphingomyelieses, and various esterases. Among these lipases, Rhizopus reacts only with the 1st and 3rd positions of glycerides and has excellent regioselectivity.
pus) genus, Aspergillus
), Mucor, Geotrichum with fatty acid specificity, Candida without specificity, Pseudomonas, Penicillium, Chromobacterium ) and animal lipases such as pancreatic lipase. Among these, as lipases whose synthetic activity is particularly likely to increase, lipases originating from the genus Rhizopus, Mucor, and Chromobacterium, which have strong active positions in medium-chain or higher alkyl groups, are more preferable. Examples of cholesterol esterases include those originating from microorganisms such as the genus Candida. Examples of phospholipases include phospholipase D derived from plants such as cabbage, peanuts, carrots, soybeans, and rapeseed, and moss plants; phospholipase D1 derived from microorganisms such as Streptomyces; phospholipase A1 derived from yeast; and phospholipase A2 derived from viper. Examples include.

酵素の固定化は、前述した多孔性の両性イオン交換樹脂
を使用し、好ましくはこの担体に疎水基を導入したもの
を酵素の安定pHで平衡化し、酵素水溶液と接触させ酵
素を吸着させて行われる。酵素水溶液は炭素数1〜6の
1価アルコール或いは多価アルコールの溶剤や、塩化ナ
トリウム、硫酸アンモニウムなど、一般的に酵素処理剤
として用いられる塩の混合溶液であってもよい。
Enzyme immobilization is carried out by using the aforementioned porous amphoteric ion exchange resin, preferably by introducing a hydrophobic group into this carrier, equilibrating it at a stable pH for the enzyme, and bringing it into contact with an aqueous enzyme solution to adsorb the enzyme. be exposed. The enzyme aqueous solution may be a solvent of monohydric alcohol or polyhydric alcohol having 1 to 6 carbon atoms, or a mixed solution of salts commonly used as enzyme treatment agents, such as sodium chloride and ammonium sulfate.

本発明において固定化を行う温度としては、脂質分解酵
素の失活の起きない温度であればよく、0〜60℃、好
ましくは25〜40℃がよい。また脂質分解酵素水溶液
のpHは脂質分解酵素の変−12 性が起きないような範囲であればよ<、pH3〜9が好
ましい。特に至適pHが酸性とされているリパーゼを用
いる場合に最大の活性を得るには、pH4〜6とするこ
とがよい。また酵素水溶液に用いる緩衝液の種類は特に
限定しないが、一般的な酢酸緩衝液、リン酸緩衝液、ト
リス塩酸緩衝液等を用いることができる。
In the present invention, the immobilization temperature may be any temperature that does not cause deactivation of the lipolytic enzyme, and is preferably 0 to 60°C, preferably 25 to 40°C. The pH of the lipolytic enzyme aqueous solution is preferably within a range that does not cause denaturation of the lipolytic enzyme, preferably from 3 to 9. In particular, when using a lipase whose optimum pH is acidic, the pH is preferably 4 to 6 in order to obtain maximum activity. Further, the type of buffer used in the enzyme aqueous solution is not particularly limited, but general acetate buffer, phosphate buffer, Tris-HCl buffer, etc. can be used.

本発明による酵素の固定化に際して、水溶液中の酵素濃
度は特に規定しないが、固定化効率の点から前記脂質分
解酵素の溶解度以下で、かつ十分な濃度であることが望
ましい。また必要に応じて不溶部を遠心分離により除去
し、上澄を使用しても良い。また酵素と固定化担体の使
用割合(重量比)は固定化担体1部に対して酵素0,O
l〜1部が好ましいが、特にこれに限定されるものでは
ない。
When immobilizing an enzyme according to the present invention, the concentration of the enzyme in the aqueous solution is not particularly specified, but from the viewpoint of immobilization efficiency, it is desirable that the concentration is lower than the solubility of the lipolytic enzyme and is sufficient. Furthermore, if necessary, the insoluble portion may be removed by centrifugation and the supernatant may be used. In addition, the usage ratio (weight ratio) of enzyme and immobilization carrier is 0 for enzyme and 0 for 1 part of immobilization carrier.
1 to 1 part is preferable, but is not particularly limited to this.

本発明の実施に際し更に好ましくは、固定化前の担体に
ついて多官能性試薬を用いて架橋することにより、固定
化酵素の繰り返し使用におけるより一層の耐久性向上を
図ることができる。
More preferably, in carrying out the present invention, the carrier before immobilization is crosslinked using a polyfunctional reagent, thereby further improving the durability of the immobilized enzyme in repeated use.

13 多官能性の架橋試薬としては、グリオキザール、グルタ
ルアルデヒド、マロンアルデヒド、スクシニルアルデヒ
ドなどのポリアルデヒド類が好ましく、ヘキサメチレン
ジチオイソシアネート、N, N’一エチレンビスマレ
イミドなども使用可能である。また、カルボジイミド類
も使用できる。
13 As the polyfunctional crosslinking reagent, polyaldehydes such as glyoxal, glutaraldehyde, malonaldehyde, and succinylaldehyde are preferred, and hexamethylene dithioisocyanate, N, N'-ethylene bismaleimide, etc. can also be used. Carbodiimides can also be used.

また、固定化後にPVA等によって包括し、より一層の
安定性の向上も図ることができる。
Further, after immobilization, it can be wrapped in PVA or the like to further improve stability.

また、固定化前もしくは固定化と同時に両性イオン交換
樹脂を脂肪酸、脂肪酸誘導体、リン脂質、アルコール類
、エーテル類、カルボニル化合物類、並びにハロゲン化
アルキル類から選ばれる1種もしくは2種以上の油溶性
化合物で吸着処理することにより、高活性、高耐久性の
固定化酵素が得られる。その際、不純物の混入を防止す
るため、前処理、即ち揮発性溶剤にこれらの油溶性化合
物を溶解し、この溶液を両性イオン交換樹脂と接触させ
、濾別後乾燥するのが好ましい。前記油溶性化合物と固
定化担体の比率は、固定化担体1重量部に対し油溶性化
合−14 物0.001〜l重量部が適当であるが、これに限定さ
れるものではない。過剰量の前記油溶性化合物は固定化
担体に吸着されず溶液中に遊離して酵素を吸着するため
、固定化担体上への固定化収率の低下を引き起こすこと
になるため有効ではない。適当な吸着温度としては0〜
60℃、好ましくは5〜30℃が適当である。吸着時間
としては5分〜2時間が適当である。以上の温度・時間
は何れもこれらに限定されるものではない。
In addition, before or at the same time as immobilization, the amphoteric ion exchange resin can be infused with one or more oil-soluble compounds selected from fatty acids, fatty acid derivatives, phospholipids, alcohols, ethers, carbonyl compounds, and alkyl halides. By adsorption treatment with a compound, a highly active and highly durable immobilized enzyme can be obtained. At this time, in order to prevent contamination with impurities, it is preferable to perform pretreatment, that is, dissolve these oil-soluble compounds in a volatile solvent, bring this solution into contact with an amphoteric ion exchange resin, filter it, and then dry it. The ratio of the oil-soluble compound to the immobilization carrier is suitably 0.001 to 1 part by weight of the oil-soluble compound-14 per 1 part by weight of the immobilization carrier, but is not limited thereto. An excessive amount of the oil-soluble compound is not adsorbed on the immobilization carrier, but is released into the solution and adsorbs the enzyme, resulting in a decrease in the yield of immobilization on the immobilization carrier, and is therefore not effective. Appropriate adsorption temperature is 0~
A temperature of 60°C, preferably 5 to 30°C is suitable. A suitable adsorption time is 5 minutes to 2 hours. The above temperatures and times are not limited to these.

本発明で両性イオン交換樹脂処理に用いられる脂肪酸と
しては、炭素数4〜24の直鎮状の飽和脂肪酸、不飽和
脂肪酸或いは分岐脂肪酸等が挙げられる。好ましい脂肪
酸としては、例えばオレイン酸、リシノール酸、リノー
ル酸などが挙げられる。
Examples of fatty acids used in the amphoteric ion exchange resin treatment in the present invention include straight saturated saturated fatty acids, unsaturated fatty acids, and branched fatty acids having 4 to 24 carbon atoms. Preferred fatty acids include, for example, oleic acid, ricinoleic acid, and linoleic acid.

本発明で両性イオン交換樹脂処理に用いられる適当な脂
肪酸誘導体としては、モノグリセリド、ジグリセリド、
及びその誘導体、トリグリセリド、或いはプロピレング
リコール、ポリグリセリン等の多価アルコール脂肪酸エ
ステル、l5 蔗糖脂肪酸エステル等の糖エステル、ソルビタン脂肪酸
エステル等の糖アルコールエステル等が挙げられる。
Suitable fatty acid derivatives used in the amphoteric ion exchange resin treatment in the present invention include monoglycerides, diglycerides,
and derivatives thereof, triglycerides, polyhydric alcohol fatty acid esters such as propylene glycol and polyglycerin, sugar esters such as 15 sucrose fatty acid ester, and sugar alcohol esters such as sorbitan fatty acid ester.

本発明で両性イオン交換樹脂処理に用いられるアルコー
ル類としては、炭素数8〜24の直鎖又は分岐鎖の脂肪
族1価アルコール、炭素数2〜6の多価アルコールが挙
げられる。このほかに、フェノール化合物、ステロール
類、炭素数10〜20のテルペンアルコール類、脂溶性
ビタミン類も有効である。
Examples of alcohols used in the amphoteric ion exchange resin treatment in the present invention include linear or branched aliphatic monohydric alcohols having 8 to 24 carbon atoms and polyhydric alcohols having 2 to 6 carbon atoms. In addition, phenolic compounds, sterols, terpene alcohols having 10 to 20 carbon atoms, and fat-soluble vitamins are also effective.

本発明で両性イオン交換樹脂処理に用いられるエーテル
類の例としては、炭素数10〜18のエーテル類、炭素
数12〜18のグリセリルエーテル類、又は炭素数10
〜18のグリシジルエーテル等のグリセリド類似化合物
、ポリオキシ化合物、前記アルコールのシリコン化合物
が挙げられる。
Examples of the ethers used in the amphoteric ion exchange resin treatment in the present invention include ethers having 10 to 18 carbon atoms, glyceryl ethers having 12 to 18 carbon atoms, and ethers having 10 to 18 carbon atoms.
-18 glyceride-like compounds such as glycidyl ether, polyoxy compounds, and silicon compounds of the alcohols mentioned above.

本発明で両性イオン交換樹脂処理に用いられるカルボニ
ル化合物の例としては、炭素数10〜18の脂肪族アル
デヒド類、或いは脂肪族ケトン類等が挙げられる。
Examples of the carbonyl compound used in the amphoteric ion exchange resin treatment in the present invention include aliphatic aldehydes having 10 to 18 carbon atoms, aliphatic ketones, and the like.

■6 本発明で両性イオン交換樹脂処理に用いられるハロゲン
化アルキルの例としては、炭素数8〜l8のアルキルハ
ライド等が挙げられる。
(6) Examples of the alkyl halide used in the amphoteric ion exchange resin treatment in the present invention include alkyl halides having 8 to 18 carbon atoms.

上記の油溶性化合物はいずれも常温で液状であることが
工程操作上好ましいが、これに限定されるものではない
。また、これらは単独で用いてもよいが、適当な組み合
わせにより一層の効果が発揮されることもある。
It is preferable for the above-mentioned oil-soluble compounds to be liquid at room temperature in terms of process operation, but the invention is not limited thereto. Further, although these may be used alone, even more effects may be exhibited by appropriate combinations.

本発明で得られる固定化酵素を用いた脂質類の反応とし
ては、固定化リパーゼを用いるエステル交換反応が挙げ
られ、かかるエステル交換反応としては、例えばエステ
ルと脂肪酸によるアシドリシス反応、エステルとアルコ
ールによるアルコリシス反応、エステル同士によるイン
ターエステル化反応等が挙げられる。
Examples of reactions of lipids using the immobilized enzyme obtained in the present invention include transesterification reactions using immobilized lipase. Examples of such transesterification reactions include acidolysis reactions using esters and fatty acids, and alcoholysis reactions using esters and alcohols. Examples include reactions, interesterification reactions between esters, and the like.

また本発明で得られる固定化酵素を用いたエステル交換
反応の基質の例としては、大豆油、オリーブ油、パーム
油等の植物油脂、牛脂、豚脂、魚油などの動物油脂が挙
げられる。これらの油脂は単独で用いてもよいが、2種
以上の油17 脂を用いるか、油脂と高級脂肪酸あるいは油脂と高級脂
肪酸の低級アルコールエステル間でエステル交換するこ
とが好ましい。特定の油脂と他の油脂、脂肪酸もしくは
その誘導体間でエステル交換する場合、両者の量比は特
定の油脂1重量部に対し他物質は0.05〜20重量部
、好ましくは0.1〜10重量部でないと油脂の改質効
果は得られにくい。特に好ましくは、パーム油等の2位
にオレイン酸残基を多く有する油脂とステアリン酸との
エステル交換である。この反応においてはステアリン酸
の融点が高く、油脂の粘度が高いため、カラム反応で連
続エステル交換反応を無溶剤で行うためには、反応系の
温度を60〜90℃に保つ必要がある。本発明の固定化
酵素はこの目的に好適であり、また得られる油脂はチョ
コレート用として有用なものである。
Examples of substrates for transesterification using the immobilized enzyme obtained in the present invention include vegetable oils such as soybean oil, olive oil, and palm oil, and animal fats and oils such as beef tallow, lard, and fish oil. Although these oils and fats may be used alone, it is preferable to use two or more types of oils or to carry out transesterification between oils and fats and higher fatty acids or between oils and fats and lower alcohol esters of higher fatty acids. When transesterifying a specific fat and oil with another fat, fatty acid, or a derivative thereof, the ratio of the two is 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight of the other substance to 1 part by weight of the specific fat or oil. If it is not in parts by weight, it is difficult to obtain the effect of modifying fats and oils. Particularly preferred is transesterification of an oil or fat having a large number of oleic acid residues at the 2-position, such as palm oil, with stearic acid. In this reaction, the melting point of stearic acid is high and the viscosity of fats and oils is high, so in order to carry out the continuous transesterification reaction in a column reaction without a solvent, it is necessary to maintain the temperature of the reaction system at 60 to 90°C. The immobilized enzyme of the present invention is suitable for this purpose, and the resulting fats and oils are useful for chocolate.

本発明で得られる固定化ホスホリパーゼを用いるエステ
ル交換反応の他の例としては、天然リン脂質と各種脂肪
族アルコール、多価アルコール類、テルペンアルコール
類、糖類、糖アル18 コール類、ステロール類等の他、グアニン、アデニン、
チミン、ウラシル等の塩基とのトランスホスファチジレ
ーション等が挙げられる。
Other examples of transesterification using the immobilized phospholipase obtained in the present invention include transesterification of natural phospholipids and various aliphatic alcohols, polyhydric alcohols, terpene alcohols, sugars, sugar alcohols, sterols, etc. Others, guanine, adenine,
Examples include transphosphatidylation with bases such as thymine and uracil.

更に本発明で得られる固定化酵素を用いたエステル合戊
反応の例としては、通常のメタノール、エタノール、プ
ロパノール、オレイルアルコール等の1価アルコール、
ないしはプロピレングリコール、グリセリン、ソルビト
ール及びポリグリセリン等の多価アルコール、又はゲラ
ニオーノペシトロネロール、メントール等のテルペンア
ルコール、あるいはコレステロール等のステロールと、
炭素数2〜24の脂肪酸とのエステル化反応が挙げられ
る。
Furthermore, examples of ester synthesis reactions using the immobilized enzyme obtained in the present invention include ordinary monohydric alcohols such as methanol, ethanol, propanol, and oleyl alcohol;
or polyhydric alcohols such as propylene glycol, glycerin, sorbitol and polyglycerin, terpene alcohols such as geranionopecitronellol and menthol, or sterols such as cholesterol;
Examples include esterification reactions with fatty acids having 2 to 24 carbon atoms.

エステル合或反応は20℃〜90℃、より好ましくは3
0〜80℃で無溶剤、もしくは炭化水素、エーテル等の
不活性溶剤中で行う。またアルコールと脂肪酸の量はこ
れらの価数、目的物に応じ適宜調整する。例えばジグリ
セリドの合或を目的とする場合はグリセリン1モルに対
し脂肪酸約2モル、モノグリセリドの合或を目的とする
=19 ときはグリセリン1モルに対し脂肪酸約1モルを反応さ
せる。
Ester synthesis or reaction is carried out at 20°C to 90°C, more preferably at 3°C.
It is carried out at 0 to 80°C without a solvent or in an inert solvent such as a hydrocarbon or ether. Further, the amounts of alcohol and fatty acid are adjusted as appropriate depending on their valences and the intended product. For example, when the purpose is to synthesize diglycerides, about 2 moles of fatty acids are reacted with 1 mole of glycerin, and when the aim is to synthesize monoglycerides, about 1 mole of fatty acids is reacted with 1 mole of glycerin.

これらのエステル交換反応、エステル化反応あるいはト
ランスホスファチジレーション等の反応に於いては、固
定化酵素中の水分量も含め、反応系中の水分量を5重量
%以下、好ましくは0.1〜1重量%に保持するのが好
ましい。
In these reactions such as transesterification, esterification, and transphosphatidylation, the amount of water in the reaction system, including the amount of water in the immobilized enzyme, should be 5% by weight or less, preferably 0.1%. It is preferable to keep it at 1% by weight.

尚、本発明で得られる固定化脂質分解酵素は、脂質分解
酵素本来の性質を利用して、油脂或いは各種脂質の加水
分解反応にも好適に利用できる。
The immobilized lipolytic enzyme obtained in the present invention can also be suitably used for hydrolysis reactions of fats and oils or various lipids by utilizing the inherent properties of the lipolytic enzyme.

〔発明の効果〕〔Effect of the invention〕

本発明方法の固定化で得られた固定化脂質分解酵素を用
いた場合、例えば固定化リパーゼを用いた油脂のエステ
ル交換或いはグリセリドのエステル化反応では、耐久性
が顕著に向上することにより、経済的効果が一層増進さ
れる。
When the immobilized lipolytic enzyme obtained by immobilization according to the method of the present invention is used, for example, in the transesterification of fats and oils or the esterification reaction of glycerides using the immobilized lipase, the durability is significantly improved, making it economical. This will further enhance the effectiveness of the project.

さらに、本発明の固定化酵素は耐熱性にも優れることか
ら反応が50〜80℃の温度で実施できるため、反応溶
剤が不要であること、反応速度2〇一 が高まる等の工業的な実施を図る上で大きな経済的効果
が得られる。
Furthermore, since the immobilized enzyme of the present invention has excellent heat resistance, the reaction can be carried out at a temperature of 50 to 80°C, so there is no need for a reaction solvent, and the reaction rate is increased. Great economic effects can be obtained in achieving this goal.

〔実 施 例〕〔Example〕

以下に本発明をエステル交換反応とエステル合或反応に
ついてそれぞれ実施例、比較例をもって詳細に説明する
The present invention will be explained in detail below with reference to Examples and Comparative Examples for transesterification and esterification, respectively.

実施例1 表1に示した市販の陰イオン交換樹脂各Logに、エタ
ノール100mlと水酸化ナトリウム8g及び水6gを
添加し、30分攪拌させた後、βモノクロルプロピオン
酸10gを添加して室温にて5時間反応させた。その後
濾取し、水により洗浄後、0.5M酢酸緩衝液(pH5
)で平衡化を行い、最終的に50mM酢酸緩衝液(pl
l5)で平衡化し、減圧乾燥後、各々を担体として用い
た。この担体5gに2gのリシノール酸を酢酸緩衝液中
で吸着させた場合(C)  と、そのまま担体として使
用した場合(B)  と、β−モノクロルプロピオン酸
処理(以下CE化と略すことがある〉をしていない元の
樹脂そのものを使用した場合(A)につ21一 いて検討を行った。各担体5gにリパーゼ水溶液50−
を加え30℃で2時間攪拌した。リパーゼ水溶液はリバ
ーゼ〔リゾブス・ジャポニカス(Rhizapus j
aponIcus)起源のリパーゼ製剤、商品名“リパ
ーゼ・サイケン100”大阪細菌研究所株式会社製、1
8000 Unit/g〕5 gをpH5. 0の50
mMの酢酸緩衝液45−に溶解し作戒した。該懸濁液よ
り樹脂を濾別し、緩衝液で洗浄した後、水分5%となる
ように常温にて減圧乾燥を行い、固定化リパーゼを得た
Example 1 100 ml of ethanol, 8 g of sodium hydroxide, and 6 g of water were added to each Log of the commercially available anion exchange resin shown in Table 1. After stirring for 30 minutes, 10 g of β-monochloropropionic acid was added and the mixture was heated to room temperature. The mixture was allowed to react for 5 hours. After that, it was collected by filtration, washed with water, and then washed with 0.5M acetate buffer (pH 5).
) and finally equilibrate with 50mM acetate buffer (pl
After equilibration with 15) and drying under reduced pressure, each was used as a carrier. When 2 g of ricinoleic acid was adsorbed onto 5 g of this carrier in an acetate buffer (C), when it was used as a carrier as it was (B), and when it was treated with β-monochloropropionic acid (hereinafter sometimes abbreviated as CE). A study was conducted on the case (A) in which the original resin itself without any additives was used. 5 g of each carrier was mixed with 50-
was added and stirred at 30°C for 2 hours. The lipase aqueous solution is Riberze [Rhizapus japonicus (Rhizapus j
aponIcus), product name “Lipase Saiken 100” manufactured by Osaka Bacteria Research Institute Co., Ltd., 1
8000 Unit/g] 5 g at pH 5. 50 of 0
It was dissolved in 45mM acetate buffer. The resin was filtered from the suspension, washed with a buffer solution, and then dried under reduced pressure at room temperature to a moisture content of 5% to obtain immobilized lipase.

こうして得られた固定化リパーゼ5gを、グリセリン2
3g(水分含量0.8%、花王株式会社製)及びオレイ
ン酸(商品名“ルナック0−L1花王株式会社製)70
.5gと混合し、65℃にて攪拌しながらエステル化反
応を行った。経時的に反応液の一部を試料として取り出
し、基準油脂分析試験法に従って試料の酸価を測定した
。試料の酸価より次式によりエステル化率を求めた。
5 g of the immobilized lipase thus obtained was added to glycerin 2
3g (moisture content 0.8%, manufactured by Kao Corporation) and oleic acid (trade name "Lunac 0-L1, manufactured by Kao Corporation) 70
.. 5 g and an esterification reaction was carried out at 65° C. with stirring. A portion of the reaction liquid was taken out as a sample over time, and the acid value of the sample was measured according to the standard oil and fat analysis test method. The esterification rate was determined from the acid value of the sample using the following formula.

22 ここで、AV.,AV.は各々 AVt:t時間後の試料の酸価 AV。 =反応前の混合試料の酸価 をあらわす。22 Here, AV. , A.V. are each AVt: acid value of sample after t hours A.V. = Acid value of mixed sample before reaction represents.

また、酵素吸着率は、酵素原液の活性から固定化後の濾
液の活性を差し引き、百分率で示した。試験結果を表1
に示す。
Furthermore, the enzyme adsorption rate was expressed as a percentage by subtracting the activity of the filtrate after immobilization from the activity of the enzyme stock solution. Table 1 shows the test results.
Shown below.

23 表 1 固定化リパーゼによるエステル合或反応24一 実施例2 実施例1において、β−モノクロルブロピオン酸に代え
てα−クロルプロピオン酸を10g用いた他は、全て実
施例1と同一条件で担体を調製し、次いで同一の条件で
リパーゼを固定化せしめて固定化リパーゼを調製した。
23 Table 1 Ester synthesis reaction using immobilized lipase 24 - Example 2 All conditions were the same as in Example 1 except that 10 g of α-chloropropionic acid was used in place of β-monochloropropionic acid. A carrier was prepared, and then lipase was immobilized under the same conditions to prepare immobilized lipase.

得られた固定化リパーゼ5gを用い、実施例lのエステ
ル化反応を同様に行い、結果を表2に示した。
Using 5 g of the obtained immobilized lipase, the esterification reaction of Example 1 was carried out in the same manner as in Example 1, and the results are shown in Table 2.

25− 表 2 固定化リパーゼによるエステル合成反応l) 2) Duoliteはデコオライト・インターナショナル社
製品Sumichelateは住友化学工業■製品DI
AIONは三菱化或工業■製品 処理A:市販の陰イオン交換樹脂をそのまま使用する(
表l記載の比較例と同じ) 処理B;市販の樹脂をα−クロルブロピ才ン酸処理し、
陽イオン交換基としてα−メチルカルボキシメチル基を
導入した両性イオン交換樹脂をそのまま使用〈本発明例
)−26 実施例3 実施例1において使用したDuolite A−568
の未処理(A)、処理(B), (C)をそれぞれ10
g用意し、実施例lと同様にして酵素を固定化した。
25- Table 2 Ester synthesis reaction using immobilized lipase l) 2) Duolite is a product of Decoolite International Co., Ltd. Sumichelate is a product of Sumitomo Chemical ■Product DI
AION is manufactured by Mitsubishi Kagaku Kogyo ■Product treatment A: Use commercially available anion exchange resin as is (
Same as the comparative example listed in Table 1) Treatment B: Commercially available resin was treated with α-chloropropylene acid,
Amphoteric ion exchange resin into which an α-methylcarboxymethyl group was introduced as a cation exchange group was used as it was (Example of the present invention)-26 Example 3 Duolite A-568 used in Example 1
10 each of untreated (A), treated (B), and (C)
g was prepared, and the enzyme was immobilized in the same manner as in Example 1.

この固定化酵素10gに対してグリセリン16. 2 
g ,オレイン酸100gを添加し、40℃,減圧度3
mmftgで反応を6時間行った。さらに固定化酵素回
収による繰り返し反応を5回行い、各回の反応の酵素吸
着率を測定した。その結果を表3に示した。表3より(
A)の樹脂そのままで固定化した場合に比べ安定性が顕
著に上昇することがわかる。
16 g of glycerin per 10 g of this immobilized enzyme. 2
g, 100 g of oleic acid was added, 40°C, degree of vacuum 3
The reaction was carried out for 6 hours at mmftg. Furthermore, the reaction was repeated five times by recovering the immobilized enzyme, and the enzyme adsorption rate of each reaction was measured. The results are shown in Table 3. From Table 3 (
It can be seen that the stability is significantly increased compared to the case where the resin in A) is immobilized as is.

表3 固定化リパーゼの安定性 零(A), (B). (C) ;表1における処理方
法A−Cと同じ。
Table 3 Stability of immobilized lipase zero (A), (B). (C); Same as treatment methods A-C in Table 1.

実施例4 実施例3で得られた固定化リパーゼをそれぞれ1g用い
て、パーム油中融点部(沃素価32.5、ジグリセリド
含量4.6%)10gと市販のステアリン酸く商品名“
ルナックS−90”ステアリン酸純度93%、花王株式
会社製)10gを加え、60℃で5時間反応を行った。
Example 4 Using 1 g of each of the immobilized lipases obtained in Example 3, 10 g of palm oil medium melting point (iodine value 32.5, diglyceride content 4.6%) and commercially available stearic acid (trade name)
10 g of Lunac S-90'' (stearic acid purity 93%, manufactured by Kao Corporation) was added, and the reaction was carried out at 60° C. for 5 hours.

反応後、トリグリセリド中に含まれるステアリン酸含量
をガスクロマトグラフィーにより分析し、次式で示され
る平衡値を100%とした反応率を算出した。
After the reaction, the stearic acid content contained in the triglyceride was analyzed by gas chromatography, and the reaction rate was calculated with the equilibrium value expressed by the following formula as 100%.

反応率(t時間後〉= 100X (S.−S.)/ (S,,−S。)上の式
において、St, So, S..は各々SL一時間t
における油脂中のステアリン酸含量 So一反応前の原料油脂中のステアリン酸含量 S〜−1,3ランダム平衡時のステアリン酸含量 を意味する。
Reaction rate (after t hours) = 100X (S.-S.)/(S,,-S.) In the above formula, St, So, S... are each SL one hour t
The stearic acid content in the oil and fat So - Stearic acid content in the raw material oil and fat before reaction S ~ -1,3 means the stearic acid content at random equilibrium.

結果は表4にまとめて示した。(C)の場合5時間以内
に反応が平衡に到達し、副生物の生戊も(^)に比べ少
なかった。
The results are summarized in Table 4. In the case of (C), the reaction reached equilibrium within 5 hours, and the production of by-products was also smaller than in (^).

実施例5 実施例1において使用したDuolite A−568
を10g用意し、lO%の水酸化ナ} +Jウム溶液で
洗浄した後に濾取し乾燥した。この樹脂をアセトン40
−に浸漬させた後、無水イタコン酸2gを添加し1時間
攪拌反応させた。反応後濾取し、実施例lに従って平衡
化した後、減圧乾燥した。
Example 5 Duolite A-568 used in Example 1
10g of was prepared, washed with 10% sodium hydroxide solution, filtered and dried. Add this resin to 40% acetone
- Then, 2 g of itaconic anhydride was added and the mixture was reacted with stirring for 1 hour. After the reaction, it was collected by filtration, equilibrated according to Example 1, and then dried under reduced pressure.

この樹脂に市販リパーゼ〔リゾプスデレマー起源のリパ
ーゼ〈タリパーゼ〉田辺製薬製〕をlog用いた以外は
実施例1と同様な(A), (B), (C)の処理を
行い、固定化リパーゼを得、実施例3と同様にエステル
交換反応を行った。その結果も併せて表4に示した。
This resin was subjected to the same treatments (A), (B), and (C) as in Example 1, except that log of commercially available lipase [lipase originating from Rhizopus deremer (Talipase, manufactured by Tanabe Seiyaku Co., Ltd.)] was used to obtain immobilized lipase. , A transesterification reaction was carried out in the same manner as in Example 3. The results are also shown in Table 4.

実施例6 強カチオン交換樹脂Duolite C−10 10g
を酢酸緩衝液(pH5. 50mM)で平衡化した後、
蒸留水50−に移し、イソプロピルトリ (N−アミノ
エ29 チルーアミノエチル)チタネート2gを添加し結合させ
た。この樹脂を濾取し、酢酸緩衝液(pH5.0. 5
0mM)で洗浄後乾燥した。同緩衝液10〇一に10g
のリバーゼ〔リゾプス・ジャボニカス起源のリパーゼ製
剤、商品名“リバーゼサイケン100”大阪細菌研究所
株式会社製〕を溶解し、そこへこの処理樹脂を添加し、
攪拌固定化を行った。120分後この樹脂を濾取し乾燥
を行い、固定化酵素を得た。
Example 6 Strong cation exchange resin Duolite C-10 10g
After equilibrating with acetate buffer (pH 5.50mM),
The mixture was transferred to 50 liters of distilled water, and 2 g of isopropyltri(N-aminoethyl)titanate was added for binding. This resin was collected by filtration and added to an acetate buffer (pH 5.0.5).
After washing with 0mM), it was dried. 10g per 100ml of the same buffer
[Lipase preparation originating from Rhizopus javonicus, trade name "Riverase Saiken 100" manufactured by Osaka Bacteria Research Institute Co., Ltd.] is dissolved, and this treated resin is added thereto,
Stirring and immobilization were performed. After 120 minutes, this resin was collected by filtration and dried to obtain an immobilized enzyme.

こうして得た固定化酵素(C)  とDuolite 
[:−10そのままを固定化した場合(A) とを、実
施例4に従い比較した。その結果を表4に併せて記載し
た。尚、酵素吸着量は78%と80%でほとんど同じで
あった。
The thus obtained immobilized enzyme (C) and Duolite
[:-10 was immobilized as it was (A) and was compared according to Example 4. The results are also listed in Table 4. Incidentally, the enzyme adsorption amount was almost the same at 78% and 80%.

30 表4 固定化リパーゼのエステル交換反応 (2時間目の反応率)0 本(A)〜(C)は表1における処理方法A−Cに各々
対応する。
30 Table 4 Transesterification reaction of immobilized lipase (reaction rate at 2nd hour) 0 (A) to (C) correspond to treatment methods A to C in Table 1, respectively.

実施例7 実施例1において、β−モノクロルプロピオン酸に代え
てモノクロル酢酸を用い、同様の条件下(但し市販樹脂
としてDuolite A−568を用いた)でカルボ
キシメチル化せしめた樹脂〈CM化樹脂と略すことがあ
る)を得た。
Example 7 In Example 1, monochloroacetic acid was used instead of β-monochloropropionic acid, and a carboxymethylated resin (commercially available resin) was used under the same conditions (however, Duolite A-568 was used as the commercially available resin). (sometimes abbreviated) was obtained.

3 1− CE化樹脂及びCM化樹脂について、実施例1の方法に
従って各々リシノール酸処理をした後、リパーゼの固定
化を行った。得られた固定化酵素100 gをカラムに
充填し、70℃にて、実施例4で用いたステアリン酸と
パーム油中融点部を基質として、ステアリン酸/パーム
油中融点部(重量比)=1.5にて実施例4で規定した
反応率が90%以上を保つ様な流速で通液し、連続反応
を行い、固定化酵素の耐久性を調べ、表5の結果を得た
3 1- The CE resin and the CM resin were each treated with ricinoleic acid according to the method of Example 1, and then lipase was immobilized. 100 g of the obtained immobilized enzyme was packed into a column, and at 70°C, using the stearic acid and palm oil medium melting point used in Example 4 as substrates, stearic acid/palm oil medium melting point (weight ratio) = In 1.5, the reaction rate specified in Example 4 was passed at a flow rate to maintain the reaction rate of 90% or more, a continuous reaction was carried out, and the durability of the immobilized enzyme was investigated, and the results shown in Table 5 were obtained.

表   5 表5に示した如く、連続生産性(耐久性)の面において
、本発明のCE化樹脂に固定化したリパーゼはCM化樹
脂に固定化したリバーゼに32 比べ、耐久性が顕著に向上したことが明らかである。
Table 5 As shown in Table 5, in terms of continuous productivity (durability), the lipase immobilized on the CE resin of the present invention has significantly improved durability compared to the lipase immobilized on the CM resin. It is clear that he did.

Claims (1)

【特許請求の範囲】 1 陽イオン交換基がカルボキシアルキル基又はアルケ
ニル基(アルキル基又はアルケニル基が炭素数2〜6の
直鎖又は分岐鎖であり、アルキル基又はアルケニル基は
置換基を有していても良い)、及び/又はリン酸基であ
って、陰イオン交換基が1級アミノ基、2級アミノ基、
3級アミノ基、4級アンモニウム基の群から選ばれる1
種もしくは2種以上である両性イオン交換樹脂よりなる
ことを特徴とする酵素固定化用担体。 2 両性イオン交換樹脂の陽イオン交換基がカルボキシ
エチル基及び/又はα−メチルカルボキシメチル基であ
る請求項1記載の酵素固定化用担体。 3 脂質分解酵素の水溶液を、請求項1記載の固定化用
担体と接触させることを特徴とする固定化酵素の製造方
法。 4 固定化用担体の陽イオン交換基がカルボキシエチル
基及び/又はα−メチルカルボキシメチル基である請求
項3記載の固定化酵素の製造方法。 5 脂質分解酵素を固定化するにあたり、脂肪酸、脂肪
酸誘導体、リン脂質、アルコール類、エーテル類、カル
ボニル化合物類、並びにハロゲン化アルキル類から選ば
れた1種もしくは2種以上の化合物の存在下で固定化す
ることを特徴とする請求項3又は4記載の固定化酵素の
製造方法。 6 脂質分解酵素がリパーゼ、ホスホリパーゼ、並びに
コレステロールエステラーゼより選ばれたものである請
求項3、4又は5記載の固定化酵素の製造方法。
[Scope of Claims] 1 The cation exchange group is a carboxyalkyl group or an alkenyl group (the alkyl group or alkenyl group is a straight chain or branched chain having 2 to 6 carbon atoms, and the alkyl group or alkenyl group has a substituent) ), and/or a phosphoric acid group, the anion exchange group being a primary amino group, a secondary amino group,
1 selected from the group of tertiary amino group and quaternary ammonium group
A carrier for immobilizing an enzyme, characterized in that it is made of one or more amphoteric ion exchange resins. 2. The carrier for enzyme immobilization according to claim 1, wherein the cation exchange group of the amphoteric ion exchange resin is a carboxyethyl group and/or an α-methylcarboxymethyl group. 3. A method for producing an immobilized enzyme, which comprises bringing an aqueous solution of a lipolytic enzyme into contact with the immobilization carrier according to claim 1. 4. The method for producing an immobilized enzyme according to claim 3, wherein the cation exchange group of the immobilization carrier is a carboxyethyl group and/or an α-methylcarboxymethyl group. 5. When immobilizing lipolytic enzymes, immobilization is carried out in the presence of one or more compounds selected from fatty acids, fatty acid derivatives, phospholipids, alcohols, ethers, carbonyl compounds, and alkyl halides. 5. The method for producing an immobilized enzyme according to claim 3 or 4, wherein the method comprises: 6. The method for producing an immobilized enzyme according to claim 3, 4 or 5, wherein the lipolytic enzyme is selected from lipase, phospholipase, and cholesterol esterase.
JP1298961A 1989-11-17 1989-11-17 Enzyme-immobilizing carrier and method for producing immobilized enzyme Expired - Fee Related JP3037349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298961A JP3037349B2 (en) 1989-11-17 1989-11-17 Enzyme-immobilizing carrier and method for producing immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298961A JP3037349B2 (en) 1989-11-17 1989-11-17 Enzyme-immobilizing carrier and method for producing immobilized enzyme

Publications (2)

Publication Number Publication Date
JPH03160992A true JPH03160992A (en) 1991-07-10
JP3037349B2 JP3037349B2 (en) 2000-04-24

Family

ID=17866425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298961A Expired - Fee Related JP3037349B2 (en) 1989-11-17 1989-11-17 Enzyme-immobilizing carrier and method for producing immobilized enzyme

Country Status (1)

Country Link
JP (1) JP3037349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264070A (en) * 2014-02-26 2016-01-20 江南大学 New bifunctional lipase mutant and uses thereof in flour product processing
CN110616215A (en) * 2019-10-11 2019-12-27 中国科学院南海海洋研究所 Method for immobilizing lipase by using carboxyl resin and immobilized lipase prepared by method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264070A (en) * 2014-02-26 2016-01-20 江南大学 New bifunctional lipase mutant and uses thereof in flour product processing
CN110616215A (en) * 2019-10-11 2019-12-27 中国科学院南海海洋研究所 Method for immobilizing lipase by using carboxyl resin and immobilized lipase prepared by method

Also Published As

Publication number Publication date
JP3037349B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5128251A (en) Immobilized lipolytic enzyme for esterification and interesterification
US6716610B2 (en) Esterification or hydrolysis with substrate treated un-dried immobilized lipolytic enzyme
US7141399B2 (en) Process for the production of diglycerides
JP5242230B2 (en) Method for producing immobilized enzyme
JP2749587B2 (en) Method for producing immobilized enzyme
JP5586855B2 (en) Method for producing monoacylglycerol-rich oil and fat
KR20040004077A (en) A process for preparing an immobilized enzyme
JPH03160992A (en) Carrier for immobilization of enzyme and production of immobilized enzyme
JPS63214184A (en) Immobilized enzyme and production thereof
JP3893107B2 (en) Method for producing fatty acid
JP3813585B2 (en) Method for producing diglyceride
JPH01153090A (en) Immobilized enzyme and method for synthesizing ester using said enzyme
JP2004208539A (en) Method for producing diglyceride
JP3813584B2 (en) Method for producing diglyceride
JPH04258291A (en) Immobilized enzyme and its production
JP4768496B2 (en) Method for producing immobilized enzyme
JP3734972B2 (en) Method for preparing immobilized enzyme
JP3720205B2 (en) Method for producing partial glyceride
JPH0471491A (en) Carrier for immobilizing enzyme and production of immobilized enzyme
JP3893106B2 (en) Method for producing diglyceride
JPH01174384A (en) Method for immobilizing lipid hydrolase
JPH01153097A (en) Method for ester interchange reaction of oil and fat
JPH0427390A (en) Carrier for immobilization of enzyme, immobilized enzyme and production thereof
JPH01153091A (en) Lipid hydrolase and method for ester synthesis and interchange reaction using said enzyme
JP2716909B2 (en) New immobilized carrier for lipolytic enzymes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees