JPH03159939A - Equipment for producing ultrafine powder - Google Patents

Equipment for producing ultrafine powder

Info

Publication number
JPH03159939A
JPH03159939A JP1296243A JP29624389A JPH03159939A JP H03159939 A JPH03159939 A JP H03159939A JP 1296243 A JP1296243 A JP 1296243A JP 29624389 A JP29624389 A JP 29624389A JP H03159939 A JPH03159939 A JP H03159939A
Authority
JP
Japan
Prior art keywords
ultrafine
equipment
ash
coal
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296243A
Other languages
Japanese (ja)
Inventor
Toshihiko Imamoto
今本 敏彦
Shozo Kaneko
祥三 金子
Katsuyuki Ueda
植田 勝征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1296243A priority Critical patent/JPH03159939A/en
Publication of JPH03159939A publication Critical patent/JPH03159939A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To efficiently obtain ultrafine powder useful as a concrete admixture by combining ultrafine pulverization treatment equipment with ultrahigh-temperature vaporizing treatment equipment and product preparation equipment so as to perform specific action. CONSTITUTION:Ultrafine pulverization treatment equipment (A) is constructed of the first coal combustion ash receiving hopper 9, an ultrafine pulverizer 10 and a classifier 11. Ultrahigh-temperature vaporization treatment equipment (B) is composed of the second ash receiving hopper 13, an ultrahigh-temperature furnace 14, a powdered coal hopper 15 for improving combustion, a primary air fan 16 for conveying the powdered coal for improving combustion, an oxygen production apparatus 17 for oxygen-enriched combustion, a silica fume cooler 18, a collector 19 and a heat recovering device 20. In product preparation equipment (C), the feed rate of ultrafine particles in the ultrafine powder hoppers 12 and 22 is controlled with feeder 23 and 24 for optimum mixing and the particles are fed into a mixer 25. The ultrafine particles produced in the above-mentioned equipment for producing ultrafine powder are rich in silica. On the other hand, molten slag 21 is rich in alumina. Thereby, the aforementioned equipment for producing the ultrafine powder has also function to separate SiO2 and Al2O3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばコンクリート、建設用資材の混和材に
適用されるシリカ超微粒子を石炭燃焼灰建材 から製造する設備や、[用超微粒子珪石、弁柄、ヂクニ
ア等塗料、顔料用超微粒、セラξツクス用超微粒子原料
を石炭燃焼灰から製造する設備等の超微粉製造設備に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to equipment for producing ultrafine silica particles from coal combustion ash building materials, which are applied to concrete and construction material admixtures, and The present invention relates to ultrafine powder production equipment, such as equipment for producing ultrafine powder raw materials for paints, pigments, ceramics, etc., Bengara, Dichnia, etc. from coal combustion ash.

〔従来の技術〕[Conventional technology]

第3図は、石炭焚ボイラ設備の一例を示す概略側面図で
ある。
FIG. 3 is a schematic side view showing an example of coal-fired boiler equipment.

石炭燃焼灰には、石炭の燃焼炉(火炉)の炉底から排出
されるタリンカーアッシュ1と、排ガスと共に火炉後流
に運ばれたのち沈降・堆積したシンダーアッシュ2と、
電気集塵器やハグフィルタで捕集されたフライアッシュ
3がある。一般に石炭灰の発生率(捕集率)は、タリン
カーアッシュ1が約10%、シンダーアッシュ2が約2
0%、フライアッシュ3が約70%と言われており、こ
の比率は石炭の性状(灰の!JI戒、灰の融点、石炭の
粒子径等)、燃焼条件、燃焼状態等により増減するが、
フライアッシュ3が最も多い。第1表にこれらの石炭灰
の性状(代表的なもの)を示す。
Coal combustion ash includes tallinker ash 1 discharged from the bottom of a coal combustion furnace (furnace), and cinder ash 2 that settles and accumulates after being carried to the downstream of the furnace with exhaust gas.
There is fly ash 3 collected by electrostatic precipitators and hag filters. Generally speaking, the generation rate (collection rate) of coal ash is approximately 10% for Talinker Ash 1 and approximately 2% for Cinder Ash 2.
0%, fly ash 3 is said to be about 70%, and this ratio varies depending on the properties of the coal (ash's JI command, melting point of ash, particle size of coal, etc.), combustion conditions, combustion state, etc. ,
Fly ash 3 is the most common. Table 1 shows the properties (typical) of these coal ash.

以下余白 第1表 石炭灰の性状 ?リンカーアッシュlは融点の高いアルミナ(^j!z
03)を含有せず、粒度が大きいのが特徴であり、火炉
から排出される時には塊状となっている。
Below is the margin Table 1 Properties of coal ash? Linker ash l is alumina with a high melting point (^j!z
It is characterized by the fact that it does not contain 03) and has a large particle size, and when it is discharged from the furnace, it is in the form of a lump.

一方、シンダーアッシュ2とフライアッシュ3は、シリ
カ(SiO■)とアルξナ(ANz(h)を主或分とし
、粒度は比較的小さく、燃焼される微粉炭の粒径とほぼ
同じ粒径である。
On the other hand, cinder ash 2 and fly ash 3 mainly contain silica (SiO■) and alumina (ANz(h)), and the particle size is relatively small, almost the same as the particle size of the pulverized coal to be burned. It is.

上記のような石炭燃焼灰は、微粉炭焚火力発電所または
石炭焚燃焼炉から大量に排出される廃棄物であり、その
有効利用方法については従来より種々の研究・検討が行
われ、一部は実用化されている。そのような有効利用方
法は、大きく分けて2つに分類される。その第lは石炭
燃焼灰をそのままの姿(性状)でセメントの原料の一部
として混合添加する方法であり、第2は石炭燃焼灰を焼
威し、コンクリート用の人工骨材として利用する方法で
ある。
The above-mentioned coal combustion ash is a waste product discharged in large quantities from pulverized coal-fired power plants or coal-fired combustion furnaces, and various studies and studies have been conducted on how to use it effectively. has been put into practical use. Such effective usage methods can be broadly classified into two types. The first method is to mix and add coal combustion ash in its original form (properties) as part of the raw materials for cement, and the second method is to burn coal combustion ash and use it as an artificial aggregate for concrete. It is.

従来は、主として第1の方法によりセメント用原料とし
て使用するのが大半であり、その場合石炭燃焼灰の性状
(化学或分、粒度、比表面積、形状等)の灰中の未燃分
量がセメントに不適当なものは利用できず、廃棄物とし
て処理されていた。
Conventionally, most of the coal combustion ash is used as a raw material for cement by the first method, and in this case, the amount of unburned content in the ash due to the properties (chemical fraction, particle size, specific surface area, shape, etc.) of coal combustion ash is Items that were unsuitable for use could not be used and were disposed of as waste.

そこで、石炭燃焼灰の利用拡大を図るため、石炭燃焼灰
を加工する技術が研究されてきた。そして開発されたの
が上記第2の方法であって、石炭燃焼灰を焼威して数閣
程度の人工骨材を製造し、これをコンクリートの骨材と
して利用するものである。
Therefore, in order to expand the use of coal combustion ash, research has been carried out on techniques for processing coal combustion ash. Then, the second method was developed, in which coal combustion ash is incinerated to produce an artificial aggregate of several sizes, and this is used as aggregate for concrete.

一方、大手ゼネコン業界では、高層建築の二−ズから従
来にない超高強度のコンクリートの開発をコンクリート
業界に求めている。超高強度コンクリートを得るために
は、コンクリート混和材としてシリカ系の超微粉を混合
すると有効であることが、これまでの基礎研究で判明し
公知の事実となっている。それによれば、超高強度コン
クリート用混和材としこの超微粒子の役割は、主として
次の3つにある。
On the other hand, the major general construction industry is asking the concrete industry to develop concrete with unprecedented ultra-high strength for the needs of high-rise buildings. Basic research to date has revealed that it is effective to mix ultrafine silica powder as a concrete admixture in order to obtain ultra-high strength concrete, and it is a well-known fact. According to this, the roles of the ultrafine particles as an admixture for ultra-high strength concrete are mainly the following three.

■ コンクリート強度の著しい向上:従来の強度150
〜250kg/cm”に対し300〜1200kg/c
m2が達威される。
■ Significant improvement in concrete strength: conventional strength 150
~250kg/cm”300~1200kg/c
m2 is achieved.

? セメントに骨材(砂、じやり等)と水を練り混ぜた
コンクリートは、その取扱い、施工性も重要であるが、
超微粒を入れたコンクリートは流動特性が改善される。
? Concrete is a mixture of cement, aggregate (sand, jiyari, etc.) and water, and its handling and workability are also important.
Concrete containing ultra-fine particles has improved flow properties.

■ コンクリートの劣化の要因としてアルカリ骨材反応
があるが、超微粒シリカ(SiO■)にアルカリ骨材反
応を抑制する効果があるため、コンクリートの耐久性が
向上する。
■ Alkaline aggregate reaction is a factor in the deterioration of concrete, but ultrafine silica (SiO■) has the effect of suppressing alkaline aggregate reaction, improving the durability of concrete.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように、石炭燃焼灰は、セメントの原料あるいは
コンクリート骨材として有効に活用されてはいるものの
、それだけでは、石炭焚火力発電所または石炭焚燃焼炉
を有する工場等において大量に排出される石炭灰を処理
しきれず、その廃棄のための灰捨場の確保と環境汚染対
策が大きな課題である。
As mentioned above, although coal combustion ash is effectively used as a raw material for cement or concrete aggregate, large amounts of coal combustion ash are emitted from coal-fired power plants or factories with coal-fired combustion furnaces. Coal ash cannot be completely disposed of, and securing an ash dump and countermeasures against environmental pollution are major issues.

一方、前記超高強度コンクリートを得るための超微粉コ
ンクリート混和材は、供給不足であり、かつ性能のより
良い混和材が求められている。
On the other hand, the ultrafine concrete admixture for obtaining the ultra-high strength concrete is in short supply, and an admixture with better performance is being sought.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の従来の課題を解決するために、石炭燃
焼灰を超微粉砕処理する乾式粉砕機を備えた超微粉砕処
理設備と、石炭燃焼灰を超高温気化処理により微粉化す
る超高温気化処理設備と、上記超微粉砕処理設備および
上記超高温気化処理設備によりそれぞれ製造された粒度
の異なる微粉を混合する製品調整設備とを備えたことを
特徴とする超微粉製造設備、ならびに、これに加えて、
上記超高温気化処理設備の排ガスをボイラ火炉または熱
交換器に導く管路を備えたことを特徴とする超微粉製造
設備に係るものである。
In order to solve the above-mentioned conventional problems, the present invention provides ultrafine pulverization equipment equipped with a dry pulverizer for ultrafinely pulverizing coal combustion ash, and ultrafine pulverization equipment for pulverizing coal combustion ash by ultrahigh temperature vaporization. An ultrafine powder production facility comprising a high temperature vaporization facility and a product conditioning facility for mixing fine powders with different particle sizes produced by the ultrafine pulverization facility and the ultrahigh temperature vaporization facility, respectively, and In addition to this,
The present invention relates to an ultrafine powder production facility characterized by being equipped with a conduit for guiding the exhaust gas of the ultrahigh temperature vaporization treatment facility to a boiler furnace or a heat exchanger.

〔作用〕[Effect]

石炭燃焼灰、例えば火炉から生或するタリンカーアッシ
ュは、超微粉砕処理設備の乾式粉砕機で超微粉砕処理さ
れて、超微粉となる。また石炭燃焼灰、例えばシンダー
アッシュとフライアッシュは、超高温気化処理設備にお
いて、超高温気化処理されて超微粉となる。超高温気化
処理および超微粉砕処理で得られた粒度の異なる2種の
超微粉は、それぞれ単独でも利用可能であるが、コンク
リート用混和材として最も適した粒度分布に調合の上使
用することができる。一方、超高温気化処理設備で生成
した溶融スラグは、コンクリート骨材として使用される
Coal combustion ash, for example coal ash produced from a furnace, is ultra-finely pulverized in a dry pulverizer of an ultra-fine pulverizer to become an ultra-fine powder. Further, coal combustion ash, such as cinder ash and fly ash, is subjected to ultra-high temperature vaporization treatment in an ultra-high temperature vaporization treatment facility to become ultra-fine powder. The two types of ultrafine powders with different particle sizes obtained through ultra-high temperature vaporization treatment and ultrafine pulverization treatment can be used individually, but it is best to use them after mixing them into the most suitable particle size distribution as an admixture for concrete. can. On the other hand, molten slag produced in ultra-high temperature vaporization processing equipment is used as concrete aggregate.

また、上記の超微粉砕処理設備では乾式粉砕機による超
微粉砕処理が行なわれているために、湿式粉砕の場合の
ように微粉スラリの乾燥装置及び凝集した微粉を再分散
させる塊砕機を必要とせず、設備が簡単になり、また所
要エネルギーも減少する。
In addition, since the above-mentioned ultrafine pulverization processing equipment uses a dry pulverizer to perform ultrafine pulverization, it requires a drying device for fine powder slurry and a pulverizer to redisperse the aggregated fine powder, as in the case of wet pulverization. This simplifies the equipment and reduces energy requirements.

また更に、前記超高温気化処理設備の排ガスをボイラ火
炉または熱交換器に導くことにより、排熱を回収してエ
ネルギーを有効に活用する。
Furthermore, by guiding the exhaust gas from the ultra-high temperature vaporization treatment equipment to a boiler furnace or a heat exchanger, exhaust heat is recovered and energy is effectively utilized.

〔実施例〕〔Example〕

第1図は本発明の一実施例の系統図である。この実施例
は、例えば石炭焚火力発電所のように、石炭燃焼灰を自
ら排出する石炭焚ボイラまたは石炭焚燃焼炉を有する工
場内に設置される場合の例である。
FIG. 1 is a system diagram of an embodiment of the present invention. This embodiment is an example in which the apparatus is installed in a factory having a coal-fired boiler or coal-fired combustion furnace that discharges coal combustion ash by itself, such as a coal-fired power plant.

設備は大きく分けて、超微粉砕処理設備A、超高温気化
処理設備B、製品調整設備Cの3つの設備から構威され
る。
The equipment is roughly divided into three types: ultrafine pulverization equipment A, ultrahigh temperature vaporization equipment B, and product conditioning equipment C.

石炭燃焼灰のうち、タリンカーアッシュ1は塊状となっ
ているため、超微粉砕処理設備A用に適している。一方
シンダーアッシュ2およびフライアッシュ3は超微粉砕
処理設備Aと超高温気化処理設備Bのどちらにも適して
いる。
Among the coal combustion ashes, Talinker Ash 1 is in the form of lumps and is therefore suitable for use in ultrafine pulverization equipment A. On the other hand, cinder ash 2 and fly ash 3 are suitable for both ultrafine pulverization equipment A and ultrahigh temperature vaporization equipment B.

そこでまず、タリンカーアッシュ1はベルトコンヘア4
により第1の灰貯蔵ホッパ5に搬送される。一方、シン
ダーアッシュ2およびフライアッシュ3はベルトコンベ
ア6,7により、第2の灰貯蔵ホッパ8に搬送される。
So, first of all, Talinkar Ash 1 is Belt Conhair 4
and transported to the first ash storage hopper 5. On the other hand, cinder ash 2 and fly ash 3 are conveyed to a second ash storage hopper 8 by belt conveyors 6 and 7.

超微粉砕処理設備Aは、第1の灰受入れホッパ9、超微
粉砕Ia10、分級機11から構威される。
The ultrafine pulverization processing equipment A is composed of a first ash receiving hopper 9, an ultrafine pulverization Ia 10, and a classifier 11.

第1の灰貯蔵ホッパ5内のタリンカーアッシュ1および
第2の灰貯蔵ホッパ8内のシンダーアッシュ2とフライ
アッシュ3は、第1の灰受入れホッパ9に一旦受入れら
れた後、乾式の超微粉砕機10に送られて乾式粉砕され
、0.1μから10μの範囲の粒子が50%以上を占め
る超微粒子に粉砕され?。超微粉砕機lOから出た乾粉
は、分級機で振り分けられ、約30μ以上の粒子は再び
超微粉砕ialOの入口に戻され再粉砕される。分級機
11を出た超微粒子は一旦第1の超微粒ホッパ12に貯
蔵する。
Talinker ash 1 in the first ash storage hopper 5 and cinder ash 2 and fly ash 3 in the second ash storage hopper 8 are once received in the first ash receiving hopper 9, and then It is sent to the crusher 10 and is dry-pulverized into ultra-fine particles in which particles in the range of 0.1μ to 10μ account for 50% or more. . The dry powder discharged from the ultrafine pulverizer IO is sorted by a classifier, and particles of approximately 30 microns or more are returned to the inlet of the ultrafine pulverizer IALO to be re-pulverized. The ultrafine particles exiting the classifier 11 are temporarily stored in a first ultrafine particle hopper 12.

上記のように、乾式超微粉砕機10を使用することによ
って、湿式粉砕の場合に比して、乾燥装置及び凝集した
超微粒子の再分散のための塊砕機を必要とせずに超微粒
子を得ることができる。
As described above, by using the dry ultrafine pulverizer 10, ultrafine particles are obtained without the need for a drying device and a pulverizer for redispersing aggregated ultrafine particles, compared to the case of wet pulverization. be able to.

超高温気化処理設備Bは、第2の灰受入れホッパ13、
超高温炉14、助燃用の微粉炭ホッパ15、助燃用微粉
炭搬送用の一次空気ファン(PAF)16、酸素富化燃
焼用の酸素製造装置(あるいは酸素ボンベ)17、シリ
カヒューム冷却装置18、捕集装置19、熱回収装!2
0から構威される。
The ultra-high temperature vaporization treatment equipment B includes a second ash receiving hopper 13,
Ultra-high temperature furnace 14, pulverized coal hopper 15 for auxiliary combustion, primary air fan (PAF) 16 for conveying pulverized coal for auxiliary combustion, oxygen production device (or oxygen cylinder) 17 for oxygen-enriched combustion, silica fume cooling device 18, Collection device 19, heat recovery device! 2
Constructed from 0.

第2の灰貯蔵ホッパ8から送られたシンダーアッシュ2
およびフライアッシュ3は、第2の灰受入れホッパ13
に一旦受入れられた後、一次空気ファンl6により超高
温炉14に搬送され、微粉炭ホッパl5からの助燃用微
粉炭とともに、酸素冨化条件(0■濃度2l%以上、通
常約30〜40%)で燃焼する。
Cinder ash 2 sent from second ash storage hopper 8
and fly ash 3 is transferred to the second ash receiving hopper 13
Once received at ) to burn.

?のとき超高温炉内の温度は2000℃ないし3000
゜C(通常は約2600″C)に制御される。気化温度
が比較的高いアルミナ^2■03(融点2015゜C、
気化温度3500゜C)は、溶融スラグ21として炉底
から排出され、冷却されてコンクリート用骨材等の資材
となる。一方、気化温度が比較的低いシリカSiO■(
融点1730゜C、気化温度2230”C)は、超高温
炉l4内で気化し、ガス状のシリカヒュームとして超高
温炉14から排出された後、シリカヒューム冷却装置1
8により冷却され、0.01μから1μの範囲が50%
以上を占める超微粒子として、捕集装置19により捕集
回収され、一旦第2の超微粉ホッパ22に貯蔵される。
? The temperature inside the ultra-high temperature furnace is between 2000℃ and 3000℃.
Alumina^2■03 (melting point 2015°C, which has a relatively high vaporization temperature)
The slag (with a vaporization temperature of 3500° C.) is discharged from the bottom of the furnace as molten slag 21, and is cooled to become a material such as aggregate for concrete. On the other hand, silica SiO■ (
The silica fume (melting point: 1730°C, vaporization temperature: 2230"C) is vaporized in the ultrahigh temperature furnace 14 and discharged from the ultrahigh temperature furnace 14 as gaseous silica fume. The silica fume cooling device 1
Cooled by 8, 50% in the range of 0.01μ to 1μ
The ultrafine particles that account for the above amount are collected and collected by the collection device 19 and temporarily stored in the second ultrafine powder hopper 22 .

次に製品調整設備Cにおいては、第1および第2の超微
粉ホッパ12.22内の超微粒子が、最適調合のため供
給装置23.24で供給量を制御されて、混合機25に
送り込まれる。
Next, in the product adjustment equipment C, the ultrafine particles in the first and second ultrafine powder hoppers 12.22 are fed into the mixer 25 with the supply amount controlled by the feeder 23.24 for optimal blending. .

第1の超微粉ホッパ12の中の超微粉と第2の超微粉ホ
ッパ22の中の超微粉は、粒度が一般にほぼ1桁異なる
が(超高温処理の方が細かい粒子の製?が可能)、超高
強度コンクリートの二−ズに応じて、例えば細密充填の
見地から、重量比5:95ないし95:5の範囲で、両
者の最適な配合が行なわれる。このように、超微粉は混
合機25で十分に分散、混合の仕上げをした後、製品タ
ンク26に送られる。
The ultrafine powder in the first ultrafine powder hopper 12 and the ultrafine powder in the second ultrafine powder hopper 22 generally differ in particle size by approximately one order of magnitude (ultra-high temperature treatment allows for the production of finer particles). Depending on the needs of ultra-high-strength concrete, for example, from the standpoint of close packing, the optimum blending of the two is carried out within a weight ratio of 5:95 to 95:5. In this way, the ultrafine powder is sufficiently dispersed and mixed in the mixer 25 and then sent to the product tank 26.

一方超高温炉14を出た燃焼排ガス(2000゜C〜3
000”C,通常2600゜C)は、ヒューム冷却装置
18で1000゜C以下(通常約800゜C)に冷却さ
れた後、捕集装置19を介して熱回収装置20に送られ
、酸素製造装置17からの酸素富化燃焼空気を加熱した
後、排ガス管路30を経てボイラ火炉27に送られて熱
エネルギーを回収される。
On the other hand, the combustion exhaust gas leaving the ultra-high temperature furnace 14 (2000°C~3
000"C (usually 2600°C) is cooled down to 1000°C or less (usually about 800°C) in a fume cooling device 18, and then sent to a heat recovery device 20 via a collection device 19 where it is used for oxygen production. After heating the oxygen-enriched combustion air from device 17, it is sent via exhaust gas line 30 to boiler furnace 27 for thermal energy recovery.

上記のように超高温気化処理Bでは、酸素冨化による助
燃(助燃用燃料として石炭あるいは重油等を使用)を必
要とするが、この排ガスを石炭焚ボイラまたは石炭焚燃
焼炉に導き熱回収を行うことによって、エネルギーの有
効活用が図られる。
As mentioned above, ultra-high temperature vaporization treatment B requires auxiliary combustion by oxygen enrichment (using coal or heavy oil as the auxiliary fuel), but this exhaust gas is led to a coal-fired boiler or coal-fired combustion furnace for heat recovery. By doing so, you can make effective use of energy.

なお、上記のようにして製造された超微粒子はシリカリ
ッヂ(SiO■が50%以上)である。一方溶融スラグ
2lばアルミナリッチ(Ajz(hが50%以上)であ
る。したがって、この超微粉製造設備はSi02とAN
!03とを分離する機能も兼ね備えているといえる。
The ultrafine particles produced as described above are silica ridges (50% or more of SiO). On the other hand, 2L of molten slag is alumina rich (Ajz (h is 50% or more). Therefore, this ultrafine powder manufacturing equipment
! It can be said that it also has the function of separating it from 03.

次に第2図は本発明の他の実施例の系統図である。この
実施例は、離れた場所にある石炭焚火力発電所あるいは
石炭焚燃焼炉から超微粉製造設備へ、石炭燃焼灰を運搬
して来る場合の例である。
Next, FIG. 2 is a system diagram of another embodiment of the present invention. This embodiment is an example in which coal combustion ash is transported from a remote coal-fired power plant or coal-fired combustion furnace to an ultrafine powder manufacturing facility.

タリンカーアッシュlを搬送したトラック28およびシ
ンダーアッシュ2とフライアッシュ3を搬送したトラッ
ク29から、それぞれの石炭燃焼灰は、ベルトコンベア
30.31により第1の灰貯蔵ホッパ5および第2の灰
貯蔵ホッパ8に貯蔵される。その後は、前記第1の実施
例と同じ工程で超微粉が製造され、製品貯蔵タンク26
に貯蔵される。
Coal combustion ash from the truck 28 that transported the Talinker ash 1 and the truck 29 that transported the cinder ash 2 and fly ash 3 is transferred to the first ash storage hopper 5 and the second ash storage by a belt conveyor 30.31. It is stored in the hopper 8. After that, ultrafine powder is manufactured in the same process as in the first embodiment, and the product storage tank 26
stored in

この実施例の場合超高温炉14を出た排ガスは、シリカ
ヒューム冷却装置I8、捕集装置l9および熱回収装置
20を経て熱交換器32に導かれ、熱エネルギーを有効
に活用された後、煙突33から大気に放出される。
In this embodiment, the exhaust gas leaving the ultra-high temperature furnace 14 is led to the heat exchanger 32 via the silica fume cooling device I8, the collection device I9 and the heat recovery device 20, and after the thermal energy is effectively utilized, It is released into the atmosphere from the chimney 33.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、石炭焚ボイラや石炭燃焼炉から大量に
排出され、従来産業廃棄物として処理に困っていた石炭
燃焼灰を有効に利用し、コンクリート混和材として有用
な超微粉とコンクリート骨材としての溶融スラグとを効
率よく得ることができる。
According to the present invention, coal combustion ash, which is discharged in large quantities from coal-fired boilers and coal-fired furnaces and which has traditionally been difficult to dispose of as industrial waste, is effectively utilized, and ultrafine powder and concrete aggregate useful as concrete admixtures are produced. It is possible to efficiently obtain molten slag.

また、本発明における超微粉処理設備では、乾式粉砕を
行なっているために、湿式の場合におけるように微粉ス
ラリの乾燥装置及び凝集した微粉の再分散用塊砕機等を
必要とせず、設備を簡単にすることができ、また所要エ
ネルギーを減少させることができる。
In addition, since the ultrafine powder processing equipment of the present invention performs dry pulverization, it does not require a drying device for fine powder slurry and a crusher for redispersing aggregated fine powder, etc., as in the case of a wet type, and the equipment can be simplified. It is possible to reduce the amount of energy required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は本発明の
他の実施例の系統図である。第3図は石炭焚ボイラ設備
の一例を示す概略側面図である。 A・・・超微粉砕処理設備、 B・・・超高温気化処理設備、 C・・・製品調整設備、 1・・・タリンカーアッシェ、 2・・・シンダーアッシュ、  3・・・フライアッシ
ュ、4,6.7・・・ベルトコンヘア、 5・・・第1の灰貯蔵ホッパ、 8・・・第2の灰貯蔵ホッパ、 9・・・第1の灰受入れホッパ、 10・・・超微粉砕
機、11・・・分級機、    12・・・第1の超微
粒ホッパ、l3・・・第2の灰受入れホッパ、 14・
・・超高温炉、l5・・・微粉炭ホッパ、16・・・一
次空気ファン(PAF)、17・・・酸素製造装置、 l8・・・シリカヒューム冷却装置、19・・・捕集装
置、20・・・熱回収装置、    2l・・・溶融ス
ラグ、22・・・第2の超微粒ホッパ、23.24・・
・供給装置、25・・・混合機、    26・・・製
品貯蔵タンク、27・・・ポイラ、     28 .
 29・・・トラック、30.31・・・ベルトコンベ
ア、 32・・・熱交換器、33・・・煙突。
FIG. 1 is a system diagram of one embodiment of the present invention, and FIG. 2 is a system diagram of another embodiment of the invention. FIG. 3 is a schematic side view showing an example of coal-fired boiler equipment. A... Ultra-fine pulverization processing equipment, B... Ultra-high temperature vaporization processing equipment, C... Product conditioning equipment, 1... Talinker asche, 2... Cinder ash, 3... Fly ash, 4, 6.7... Belt conveyor, 5... First ash storage hopper, 8... Second ash storage hopper, 9... First ash receiving hopper, 10... Over Fine crusher, 11... Classifier, 12... First ultrafine hopper, l3... Second ash receiving hopper, 14.
... Ultra-high temperature furnace, l5... Pulverized coal hopper, 16... Primary air fan (PAF), 17... Oxygen production device, l8... Silica fume cooling device, 19... Collection device, 20... Heat recovery device, 2l... Molten slag, 22... Second ultrafine hopper, 23.24...
- Supply device, 25... Mixer, 26... Product storage tank, 27... Poiler, 28.
29...Truck, 30.31...Belt conveyor, 32...Heat exchanger, 33...Chimney.

Claims (2)

【特許請求の範囲】[Claims] (1)石炭燃焼灰を超微粉砕処理する乾式粉砕機を備え
た超微粉砕処理設備と、石炭燃焼灰を超高温気化処理に
より微粉化する超高温気化処理設備と、上記超微粉砕処
理設備および上記超高温気化処理設備によりそれぞれ製
造された粒度の異なる微粉を混合する製品調整設備とを
備えたことを特徴とする超微粉製造設備。
(1) Ultrafine pulverization equipment equipped with a dry pulverizer for ultrafinely pulverizing coal combustion ash, ultrahigh temperature vaporization equipment for pulverizing coal combustion ash through ultrahigh temperature vaporization, and the above-mentioned ultrafine pulverization equipment and product conditioning equipment for mixing fine powders of different particle sizes produced by the ultra-high temperature vaporization equipment.
(2)超高温気化処理設備の排ガスをボイラ火炉または
熱交換器に導く管路とを備えたことを特徴とする請求項
(1)に記載の超微粉製造設備。
The ultrafine powder manufacturing equipment according to claim (1), further comprising: (2) a pipe line for guiding exhaust gas from the ultra-high temperature vaporization treatment equipment to a boiler furnace or a heat exchanger.
JP1296243A 1989-11-16 1989-11-16 Equipment for producing ultrafine powder Pending JPH03159939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296243A JPH03159939A (en) 1989-11-16 1989-11-16 Equipment for producing ultrafine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296243A JPH03159939A (en) 1989-11-16 1989-11-16 Equipment for producing ultrafine powder

Publications (1)

Publication Number Publication Date
JPH03159939A true JPH03159939A (en) 1991-07-09

Family

ID=17831041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296243A Pending JPH03159939A (en) 1989-11-16 1989-11-16 Equipment for producing ultrafine powder

Country Status (1)

Country Link
JP (1) JPH03159939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600196A (en) * 2016-01-23 2016-05-25 嘉兴恒创电力设计研究院有限公司嘉善分公司 Ash warehouse system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600196A (en) * 2016-01-23 2016-05-25 嘉兴恒创电力设计研究院有限公司嘉善分公司 Ash warehouse system

Similar Documents

Publication Publication Date Title
JP3364684B2 (en) Sorting fly ash by carbon combustion in a dry boiling fluidized bed
JP4883623B2 (en) Modified fly ash and manufacturing method thereof
CN100556840C (en) Carbide slag 100% substitutes natural calcareous raw material kiln and decomposes the method for producing cement clinker outward
CN106466881B (en) A kind of device and operation method of rotary incineration of refuse flyash microwave sintering haydite
CN102206091A (en) Method for making ceramsite by using sludge
JP7183251B2 (en) Method for modifying fly ash
CN102173608A (en) Method for preparing cement clinker from high-proportion carbide slag through decomposition outside kiln of five-stage preheater
RU2515786C1 (en) Method to process ash and slag wastes of thermal power plants for production of construction products
JPH11511107A (en) Simultaneous production of steam power and cement clinker in the same equipment, products, equipment and usage
US4226831A (en) Apparatus for removal of sulfur from gas
CA2453124C (en) Process for incorporating coal ash into cement clinker
JP2005104792A (en) Manufacturing method of cement using coal ash
JP2592136B2 (en) Ultra fine powder production equipment
JPH03159939A (en) Equipment for producing ultrafine powder
JP3358940B2 (en) Coal ash utilization system
WO2018168637A1 (en) Method for using fly ash
JPH08268740A (en) Cement admixture, production of blended cement and device therefor
JPH0292851A (en) Treatment of fly ash
CN220703541U (en) Coal-based kaolin thermal activation system
JP2665029B2 (en) Method for producing concrete admixture from coal ash
CN114345521B (en) Preparation system for preparing floor gypsum powder from construction waste and use method of preparation system
CN1191207C (en) Method of concurrently burning aluminate, bauxite and aluminium sulfide gel material for generating boiler
JPS60178211A (en) Method of and device for supplying solid fuel
JPH0986981A (en) Production of cement clinker
JPH03159940A (en) Equipment for producing cement