JPH03159522A - Time delay leak detector - Google Patents

Time delay leak detector

Info

Publication number
JPH03159522A
JPH03159522A JP1297844A JP29784489A JPH03159522A JP H03159522 A JPH03159522 A JP H03159522A JP 1297844 A JP1297844 A JP 1297844A JP 29784489 A JP29784489 A JP 29784489A JP H03159522 A JPH03159522 A JP H03159522A
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
capacitor
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1297844A
Other languages
Japanese (ja)
Other versions
JP2787118B2 (en
Inventor
Hiromi Koizumi
小泉 博美
Takami Morita
森田 隆實
Hidefumi Odawara
小田原 秀文
Kiichi Omae
喜一 大前
Masaharu Aoki
青木 雅治
Tetsuo Furumoto
哲男 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TENPAALE KOGYO KK
Tempearl Industrial Co Ltd
Original Assignee
TENPAALE KOGYO KK
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TENPAALE KOGYO KK, Tempearl Industrial Co Ltd filed Critical TENPAALE KOGYO KK
Priority to JP1297844A priority Critical patent/JP2787118B2/en
Publication of JPH03159522A publication Critical patent/JPH03159522A/en
Application granted granted Critical
Publication of JP2787118B2 publication Critical patent/JP2787118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily achieve an inertia insensitive function required for a time delay leak detector by coupling the detecting section of a leak detecting function section and the time delay circuit section of an abnormal voltage detecting function section in a complex function leak detector having leak and abnormal voltage detecting functions. CONSTITUTION:A time delay leak detector comprises a leak detecting section for comparing the secondary output voltage from a zero-phase current transformer with a reference value at a comparator 3 and producing an output if the secondary output voltage is higher than the reference value, and a time delay circuit section. A complex function detector, i.e. an integrated circuit 33, for detecting leak and abnormal voltage through said circuitry is employed, driving of the output of an output circuit 5 through a one-shot circuit 5 due to leak is prevented, a capacitor 14 is discharged by the output from the comparator 3 and a delay circuit 15 is operated so that an output circuit 6 is driven after a delay time determined by a resistor 9 and a capacitor 16 and a thyristor 17 is turned ON. By such arrangement, accuracy and stability of delay time are improved and inertia insensitivity is provided.

Description

【発明の詳細な説明】 〔従来の技術〕 従来漏電遮断器には、漏電発生後0.  1秒以内に主
回路を引外し動作する高速形と、0.2秒以上で動作す
る時延形があり、又高速形にも漏電単81能型と漏電及
び異常電圧の両方を検知する複合I能型の両方があり、
各々に各々の検λU回路と部品を用いて製作されていた
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] Conventional earth leakage circuit breakers have a 0. There is a high-speed type that trips the main circuit within 1 second, and a delayed type that operates in 0.2 seconds or more.The high-speed type also has an earth leakage single 81 function type and a composite type that detects both earth leakage and abnormal voltage. There are both I-type and
Each was manufactured using its own detection λU circuit and components.

〔従来技術の問題点〕[Problems with conventional technology]

そのため部品種類が増大し、部品管理が大変繁雑になっ
ていた。
As a result, the number of types of parts has increased, and parts management has become extremely complicated.

又時延形漏電検知器は、ある時間以上規定の漏電が続か
なければ動作してはならないという慣性不動作性能を要
求され、その為に大変複雑な回路構成を用い、CRの積
分回路の時定数を非常に長くとって積分電圧で動作させ
るようにしたものが多く、時延時間は単なるCRの時定
数にたよっていたりして、σj1えば電源電圧等の変動
により安定度やti度に欠けるという問題があった。
Furthermore, time-delayed earth leakage detectors are required to have inertial non-operation performance, meaning that they must not operate unless a specified amount of earth leakage continues for a certain period of time. Many of them have a very long constant to operate with an integral voltage, and the delay time simply depends on the CR time constant, and if σj1, the stability and degree of ti are lacking due to fluctuations in the power supply voltage, etc. There was a problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点に鑑みて成されたもので、その目
的とするところは、時延時間の精度及び安定度が良く慣
性不動作性能を有する時延形の漏電検知器を構成し、更
に漏電検知回路の主要部品である集積回8を、時延形と
、漏電及び異常電圧の両方で動作する複合機能型で共用
することにより部品種類を減らすことにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to configure a time-delay type earth leakage detector with good delay time accuracy and stability and inertial non-operation performance. Furthermore, the integrated circuit 8, which is a main component of the earth leakage detection circuit, is shared by the time-delay type and the multi-function type which operates under both earth leakage and abnormal voltage, thereby reducing the number of parts.

〔目的達成の為に用いた手段〕[Means used to achieve the purpose]

本1牛の発明は、零相変流器の2次出力電圧を比較器で
基準値・と比較し、基準値以上であれば出力を発生する
漏電検出部と、漏電検出部の出力が断続的に連続して発
生していれば、時延用コンデンサを定電流で連続して充
電し、コンデンサの充電電圧がある一定値になったら出
力を発生する慣性不動作性能を有する時延回路部より構
成され、該時延回路部は、常時充電付勢されて基準充電
電圧を満たしている、前記時延用コンデンサとは別途の
コンデンサを、漏電検出部の出力が断続的に連続して発
生している間充放電させて基準充電電圧にもとることを
防止し、基準充TL電圧に満たないことを条件に前記時
延用コンデンサを定電流で連続して充電し、時延用コン
デンサの充電電圧がある一定値になったら出力回5!a
部を駆動して出力を発生させ、時延時間に満たない間に
漏電検出部の出力が発生停止した時は、前記別途コンデ
ンサの放電を停止し充電付勢力により基準電圧まで充電
し、充電電圧が基準電圧に達した時点で時延用コンデン
サの充電電圧を放電させて、出力回路から出力が発生し
ないようにすることにより慣性不動作性能を有するよう
にしたものである。
This invention consists of an earth leakage detection section that compares the secondary output voltage of the zero-phase current transformer with a reference value using a comparator, and generates an output if it exceeds the reference value, and an earth leakage detection section that outputs an intermittent output. A time delay circuit section that has an inertial non-operating performance that continuously charges the time delay capacitor with a constant current and generates an output when the charging voltage of the capacitor reaches a certain constant value. The time delay circuit section includes a capacitor separate from the time delay capacitor, which is constantly energized to charge and satisfies a reference charging voltage, and is connected to a capacitor separate from the time delay capacitor, which is continuously and intermittently generated by the output of the earth leakage detection section. The time delay capacitor is continuously charged with a constant current on the condition that the reference charge TL voltage is not reached by charging and discharging while the voltage is lower than the reference charging voltage. When the charging voltage reaches a certain value, the output is 5! a
If the output of the earth leakage detection part stops occurring before the delay time is reached, the separate capacitor is stopped from discharging and charged to the reference voltage by the charging force, and the charging voltage is increased. When the time delay capacitor reaches the reference voltage, the charging voltage of the time delay capacitor is discharged so that no output is generated from the output circuit, thereby providing inertial non-operation performance.

更に前記漏?[i検出部と時延回路部は、漏電及び異常
電圧検出機能の両方を有する複合機能型漏電検知器用集
饋回Kaの、漏電検出機能部の検出部と異常電圧検出機
能部の時延回路部を結合して構成せしめ、前記集植回路
を時延形石電検知器にも逆用可能としたものである。
Furthermore, the above leak? [i The detection section and the time delay circuit section are the detection section of the earth leakage detection function section and the time delay circuit of the abnormal voltage detection function section of the multifunctional earth leakage detector collection Ka that has both earth leakage and abnormal voltage detection functions. By combining the parts, the above-mentioned concentrating circuit can be used in reverse for a time-delay type stone detector.

第4図は従来の漏雷及び異常電圧の両方で動作する.X
i7i検知器の回路構成例である.ここで33は集積回
路として構成されており、2,  3.  5は漏電を
検知ずるための回路{み成ブロック,8,10,13.
15は異常電圧を検知するための回路構成ブロックで、
第5図は漏電を検出する時の各部の電圧波形、第6図は
異常電圧を検出する時の各部の電圧波形である. 上述の回路構成例・において、まず漏電の検知動作につ
いて説明すると、第4図,第5図において零相変流器1
に発生した2次出力電圧Vilkは、比較増幅器2で増
暢されて、比較器3により基準電圧Vlktと比較され
、VlktよりVilkが下回った時間コンデンサ4を
充電して行き、コンデンサ4の充電電圧VMMがaat
tt値vn+mに至った時ワンショット回路5が動いて
出力回路6をLoutの時間だけ駆動して.  Vou
tの出力電圧でサイリスタ17をトリガーし、トリップ
コイル24を通電して主回路接点開閉b1構25をr′
:i駆動する。
Figure 4 works with both conventional lightning leaks and abnormal voltages. X
This is an example of the circuit configuration of the i7i detector. Here, 33 is configured as an integrated circuit, and 2, 3. 5 is a circuit for detecting electric leakage (consisting of blocks 8, 10, 13.
15 is a circuit configuration block for detecting abnormal voltage;
Figure 5 shows the voltage waveforms of various parts when detecting earth leakage, and Figure 6 shows the voltage waveforms of various parts when detecting abnormal voltage. In the above-mentioned circuit configuration example, to first explain the earth leakage detection operation, the zero-phase current transformer 1 is
The secondary output voltage Vilk generated in VMM is aat
When the tt value reaches vn+m, the one-shot circuit 5 operates and drives the output circuit 6 for a time period of Lout. Vou
The thyristor 17 is triggered by the output voltage of t, the trip coil 24 is energized, and the main circuit contact opening/closing b1 structure 25 is r'
: i Drive.

次に異常電圧検知動作について説明すると、主回路線′
l?i34,35.36に単相3線式電圧の各クLl,
  N,  L2の陽を接続してあるとする.  Ll
側の電圧は抵抗12抵抗l1を通じてダイオード2lで
半波整流されて抵抗11に供給され、L2例の電圧は抵
抗l2抵抗1lを通じてダイオード22で半波整流され
て抵抗11に供給され、LlとL2からの供給電圧Vi
blは、Ll−N,  N−L2間の電圧が等しい、す
なわち正常な場合は第6図Vil+lの左半分の如くひ
とつひとつの電圧の山の高さの等しい全波!!流波形と
なっている.ここで、何らかの原因によりLl−N.N
−L2間の電圧バランスが崩れる、すなわち主回路の線
路の中性Fi!Nが欠相状態となると、Viblは第6
図右半分の如く高い山低い山を交互に繰り返したような
波形となる.このV iblは、第4図の比較器10の
片側に入力され基準電圧vb+tと比較される。Vbl
tは第6図の如<Ll−N.N−L2間の電圧バランス
が崩れた時の高い山を切る電圧に設定されており、第6
図の左半分の正常な状態では比較器lOから出力は発生
しない。Viblがv batを超えると、その間比較
器lOの出力によりl30波形整形回路がそれまで充電
されてVνfの基準電圧を保っていた14のコンデンサ
を放電し、14のコンデンサの充電電位がvvfから下
がると、13の波形整形回路は15の遅延回路を駆動し
、遅延回路は1Gのコンデンサを充電する。前述のVi
blがv batに達しない間は比較器10の出力はな
いので、波形整形回路l3はコンデンサ14を充電して
充電電圧Vνfはvwfにもとそうとするが、第6図の
右半分のように異常電圧の状態が継続すると、コンデン
サl4の充′vi電圧Vレfは充放電を繰り返しいつま
でたってもvwfに達せず、コンデンサl6はVLdの
ように充電され続け、vtdがvtdに達した時、遅延
回路l5は出力回路6を駆動して出力回路6はVout
の電圧にてサイリスタ17をトリガーしてターンONさ
せ、トリップコイル24を通電して主回路接点開閉機構
25を間駆動する.第6図のLtdが時延時間で、通常
、06  数秒程度に設定される.第4図において8は
定電流回路で抵抗9により定められる定電流によりコン
デンサ14.16を充電するようになっており、その為
Ltdの遅延時間精度、及び安定度は、例えば電源電圧
等が変動しても良好なものが得られている。
Next, to explain the abnormal voltage detection operation, the main circuit line
l? i34, 35.36, each single-phase three-wire voltage Ll,
Assume that the positives of N and L2 are connected. Ll
The voltage on the side is half-wave rectified by the diode 2l through the resistor 12 and the resistor l1, and then supplied to the resistor 11.The voltage on the L2 side is half-wave rectified by the diode 22 through the resistor l2 and the resistor 1l, and is supplied to the resistor 11. Supply voltage Vi from
bl is a full wave in which the voltages between Ll-N and N-L2 are equal, that is, the height of each voltage peak is equal, as shown in the left half of Vil+l in Fig. 6 in the normal case! ! It has a flow waveform. Here, due to some reason, Ll-N. N
- The voltage balance between L2 is disrupted, that is, the neutral Fi of the main circuit line! When N is in an open phase state, Vibl becomes the sixth
As shown in the right half of the figure, the waveform looks like alternating high peaks and low peaks. This Vibl is input to one side of the comparator 10 in FIG. 4 and is compared with the reference voltage vb+t. Vbl
t is as shown in FIG. It is set to the voltage that cuts the high peak when the voltage balance between N-L2 collapses, and the 6th
In the normal state shown in the left half of the figure, no output is generated from the comparator IO. When Vibl exceeds v bat, the output of the comparator lO causes the l30 waveform shaping circuit to discharge the 14 capacitors that had been charged and maintained the reference voltage of Vνf, and the charging potential of the 14 capacitors drops from vvf. 13 waveform shaping circuits drive 15 delay circuits, and the delay circuits charge a 1G capacitor. The aforementioned Vi
Since there is no output from the comparator 10 while bl does not reach vbat, the waveform shaping circuit 13 charges the capacitor 14 and attempts to restore the charging voltage Vνf to vwf, but as shown in the right half of FIG. If the abnormal voltage state continues, the charging voltage Vref of capacitor l4 repeats charging and discharging and never reaches vwf, capacitor l6 continues to be charged like VLd, and when vtd reaches vtd , the delay circuit l5 drives the output circuit 6, and the output circuit 6 outputs Vout.
The thyristor 17 is triggered to turn on at a voltage of , and the trip coil 24 is energized to drive the main circuit contact opening/closing mechanism 25. Ltd in Figure 6 is the delay time, which is usually set to about 0.6 seconds. In Fig. 4, 8 is a constant current circuit that charges a capacitor 14.16 with a constant current determined by a resistor 9. Therefore, the delay time accuracy and stability of Ltd are affected by fluctuations in power supply voltage, etc. However, good results have been obtained.

本件発明は、第4図の回路構成による漏電及び、異常電
圧の両方を検知する複合機能形検知器の集積回133を
用い、且つ漏電によりワンショット回路5が出力回路6
を出力駆動しないようにして、比較器3の出力でコンデ
ンサ14を放電し、遅延回路を働かせ、抵抗9、コンデ
ンサ16の値によって定まる遅延時間後に出力回路6を
駆動してサイリスタl7をターンONするようにしたも
のである. 〔発明の実施例の説明〕 第1図に本件発明の時延形漏TL検知器の回路構成の一
実施例を示す。第1図Lこおいて前述の第4図と異なる
ところは、第4図のコンデンサ4の代わりにダイオード
26、コンデンサ27、抵抗28を設けたこと。抵抗9
0代わりに抵抗29とトランジスタ30を第1図のよう
に接続し、トランジスタ30のベースを前述のダイオー
ド26のカソードとコンデンサ27,抵抗28の接続点
に接続したこと。比較回路100入力端子を接地したこ
と。コンデンサl4の代わりにコンデンサ31を設け、
コンデンサ31の電圧側は前述のトランジスタ30のコ
レクタに接続したこと.コンデンサ16の代わりにコン
デンサ32を設けたことであり、且つ抵抗29とコンデ
ンサ32は第1図の如く切り換えるように図示している
が、抵抗29かコンデンサ32のいずれか一方あるいは
両方を第4図の抵抗9,コンデンサ16のように固定と
しても良い。
The present invention uses an integrated circuit 133 of a multifunctional detector that detects both earth leakage and abnormal voltage with the circuit configuration shown in FIG.
The capacitor 14 is discharged by the output of the comparator 3, and the delay circuit is activated. After a delay time determined by the values of the resistor 9 and the capacitor 16, the output circuit 6 is driven and the thyristor 17 is turned on. This is how it was done. [Description of Embodiments of the Invention] FIG. 1 shows an embodiment of the circuit configuration of the time-delayed leakage TL detector of the present invention. The difference between FIG. 1L and FIG. 4 described above is that a diode 26, a capacitor 27, and a resistor 28 are provided in place of the capacitor 4 in FIG. resistance 9
Instead of 0, a resistor 29 and a transistor 30 are connected as shown in FIG. 1, and the base of the transistor 30 is connected to the connection point between the cathode of the diode 26, the capacitor 27, and the resistor 28. The comparator circuit 100 input terminal is grounded. A capacitor 31 is provided in place of capacitor l4,
The voltage side of capacitor 31 is connected to the collector of transistor 30 mentioned above. A capacitor 32 is provided in place of the capacitor 16, and the resistor 29 and capacitor 32 are shown as being switched as shown in FIG. The resistor 9 and capacitor 16 may be fixed.

以上のように構成し第1図の回路の動作について第1図
と第2図を用いて次に説明する。第1図において、零相
変流器lの2次出力電圧Vilkが発生していない、あ
るいはVilkがVlktに達しないものである時はコ
ンデンサ27は抵抗2B+こより完全に放電されており
、電圧は存在してないのでトランジスタ30はOFFと
なっている.トランジスタ30がOFFとなっているの
でコンデンサ31は定電流発生回路から抵抗29を通っ
て常にvwfに充電されている。この状態から零相変流
器lの2次側にVilkが発生すると、Vilkは増幅
器2【こより増幅され比較器3でV Iktと比較され
、V1kの増幅信号がV lktより下回った時だけ比
較器3は出力を発生する.比較器3の出力がある間は、
ダイオード26を通じてコンデンサ27は充電され、V
ilkの増幅信号がV Iktを上回ると比較器3の出
力はなくなるからコンデンサ27の充電電圧は抵抗28
を通じて放電される.ここで抵抗28による放電時定数
は比較的長くとってあり、Vlktを下回るようなVi
lkの増幅信号が連続して入ってくるとコンデンサ27
の充電電圧VMM’は、第2図の如く上昇下降を繰り返
しながらも徐々に上昇するようになっている。VMM’
がトランジスタ300ベースON電圧vmm’に到達す
ると、トランジスタ30のコレクタエミツタ間がONI
,.、コンデンサ31の充電電圧はトランジスタ30を
通して一気に放電し、vwfを割り込む。コンデンサ3
1の充電電圧がvwfを割り込むと、波形整形回路は遅
延回路を駆動しコンデンサ32を抵抗29により定まる
定電流でVtdに示す如く直線的に充電をはじめる。
The operation of the circuit constructed as described above and shown in FIG. 1 will now be described with reference to FIGS. 1 and 2. In FIG. 1, when the secondary output voltage Vilk of the zero-phase current transformer l is not generated or when Vilk does not reach Vlkt, the capacitor 27 is completely discharged from the resistor 2B+, and the voltage is Since it does not exist, transistor 30 is turned off. Since the transistor 30 is off, the capacitor 31 is always charged to vwf from the constant current generating circuit through the resistor 29. When Vilk is generated on the secondary side of zero-phase current transformer l from this state, Vilk is amplified by amplifier 2 and compared with V Ikt by comparator 3, and the comparison is made only when the amplified signal of V1k is lower than V lkt. Unit 3 generates an output. While there is an output from comparator 3,
Capacitor 27 is charged through diode 26, and V
When the amplified signal of ilk exceeds V Ikt, the output of comparator 3 disappears, so the charging voltage of capacitor 27 is
It is discharged through the Here, the discharge time constant due to the resistor 28 is set relatively long, so that Vi
When the amplified signal of lk is input continuously, the capacitor 27
As shown in FIG. 2, the charging voltage VMM' gradually rises while repeatedly rising and falling. VMM'
When the voltage reaches the ON voltage vmm' of the base of the transistor 300, the voltage between the collector and emitter of the transistor 30 becomes ONI.
、. , the charging voltage of the capacitor 31 is discharged at once through the transistor 30 and falls below vwf. capacitor 3
When the charging voltage of 1 falls below vwf, the waveform shaping circuit drives the delay circuit and starts charging the capacitor 32 linearly as indicated by Vtd with a constant current determined by the resistor 29.

一方ワンショット回路5は第2図のVMMがvmmにな
った時に動作するよう設定してあるが、ダイオード26
のアノード側の電圧はトランジスタ30のONするベー
ス電圧v WIm’とダイオード26のONした時のア
ノードカソード間電圧の和となり、且つこの種の半導体
のそれらの電圧は一定であり、vIIIInをそれより
高く設定してあるので永久的に動作せず、従ってワンシ
ョット回路5の出力により出力回路6が駆動されてサイ
リスタl7にトリガー出力が供給されることはない。V
 MM’がvmwt’に到達してトランジスタ30がO
N動作すると、VMM’はvIllII1′より上昇す
ることはなく、Vilkの増輻信号がVlktを上回る
と比較器3の出力はなくなるから、コンデンサ27の充
電電圧は抵抗28を通じて放電しvmm’を下回ること
になろ.IIM’がvmm’を下回るとトランジスタ3
0はOFFL/、再度コンデンサ31は抵抗29を通し
て第2図のVwFの如く充電され始めるが、Vilkが
再びVlktを下回った時、再度コンデンサ27は比較
器3の出力によりダイオード26を通じて充電されはじ
め、再度VMM’がvma+’に到達するとトランジス
タ30がON動作して再びコンデンサ31を放電するか
ら、第2図の如<Vlktを下回るようなVilkの増
幅信号の発生が続く限り、コンデンサ31の充電電圧■
νFは充放電を繰り返してVilkのない又は、Vil
kの増幅信号がVlktを下回らない状態のVνfに到
達することはない。コンデンサ31の充電電圧がvwf
に到達しないので、コンデンサ32は波形整形回路13
により駆動され続ける遅延回路15の働きにより、Vt
dのように連続的に抵抗29により定まる、定電流で充
電され、徐々に電圧が上昇していき、時間ttd後には
vtdに達し、遅延回”IN 1 5は出力回路6を駆
動し、サイリスタl7のゲートにVoutのトリガー電
圧を出力してサイリスタl7をターンONさせ、トリッ
プコイル24を通電して主回路接点開閉機構25を間駆
動する。又、比較器10の入力端はアースラインに接地
してあるので比較器10が波形整形回路l3を動作させ
て、出力回路6からサイリスタl7のゲートにトリガー
信号が発生することはない。V Iktを下回るような
Vilkの増輻信号が連続して発生した場合は以上のよ
うに動作するが、中途でVilkが止まった場合、ある
いはVilkの増幅信号がV lktを下回らないよう
な小さい値になった時は、第3図の如(Vilkが止ま
って後、コンデンサ27は充電されず、VMM’は抵抗
28により放電され続けてvIllff1′に再び到達
することはないから、一旦Vvfがvvfより下がって
から後、抵抗29を通じてコンデンサ31は充電され続
け、いずれvvfに¥+1達し、vvfに到達するとそ
の時点でコンデンサ32の充電は停止し、VLdはvt
dに到達しないから、出力回路6からは出力信号Vou
tは発生しない。
On the other hand, the one-shot circuit 5 is set to operate when the VMM shown in FIG. 2 becomes vmm, but the diode 26
The voltage on the anode side of is the sum of the base voltage vWIm' when the transistor 30 is turned on and the voltage between the anode and cathode when the diode 26 is turned on, and since these voltages of this type of semiconductor are constant, Since it is set high, it will not operate permanently, and therefore the output circuit 6 will not be driven by the output of the one-shot circuit 5 and a trigger output will not be supplied to the thyristor 17. V
MM' reaches vmwt' and transistor 30 turns O.
During N operation, VMM' does not rise above vIllII1', and when the Vilk increase signal exceeds Vlkt, the output of comparator 3 disappears, so the charging voltage of capacitor 27 is discharged through resistor 28 and falls below vmm'. Of course. When IIM' falls below vmm', transistor 3
0 is OFFL/, and the capacitor 31 starts to be charged again through the resistor 29 as shown in FIG. When VMM' reaches vma+' again, the transistor 30 turns on and discharges the capacitor 31 again, so as long as the amplified signal of Vilk, which is less than Vlkt as shown in FIG. 2, continues to be generated, the charging voltage of the capacitor 31 ■
νF repeats charging and discharging until there is no Vilk or there is no Vilk.
The amplified signal of k never reaches Vvf, which is no lower than Vlkt. The charging voltage of capacitor 31 is vwf
Since the capacitor 32 does not reach the waveform shaping circuit 13
Due to the function of the delay circuit 15 that continues to be driven by Vt
d, the voltage is continuously charged with a constant current determined by the resistor 29, and the voltage gradually rises, reaching vtd after time ttd, and the delay circuit IN15 drives the output circuit 6, and the thyristor The trigger voltage Vout is output to the gate of the comparator 10 to turn on the thyristor l7, energizing the trip coil 24 and driving the main circuit contact opening/closing mechanism 25. Also, the input end of the comparator 10 is grounded to the earth line. Therefore, the comparator 10 operates the waveform shaping circuit l3 and a trigger signal is not generated from the output circuit 6 to the gate of the thyristor l7. If this occurs, the operation will be as described above, but if Vilk stops midway, or if the amplified signal of Vilk becomes a small value that does not fall below Vlkt, the operation will be as shown in Figure 3 (when Vilk stops). After that, the capacitor 27 is not charged and VMM' continues to be discharged by the resistor 28 and never reaches vIllff1' again. Therefore, once Vvf falls below vvf, the capacitor 31 continues to be charged through the resistor 29. , eventually reaches vvf by ¥+1, and when vvf is reached, charging of the capacitor 32 stops at that point, and VLd becomes vt
d does not reach the output signal Vou from the output circuit 6.
t does not occur.

以上の動作中漏Ml遮断器の遅延峙間はLtdにより決
まるが、 ttdは第l図中抵抗29及びコンデンサ3
2の値により決定され、第1図の如く抵抗29及びコン
デンサ32の両方又はいずれか一方を切り換えることで
容易に時延時間を切り換えることが出来、叉切り換えの
必要がない場合はいずれち固定としても良い.時延時間
t tdはコンデンサ32を定電流発生回路8により発
生し抵抗29により決まる定主流で充電するので、電源
電圧その他の要因て変動することのない安定した精度の
良いものが得られる. 〔作用及び効果〕 以上の構成により、V lktを下回わるV ilkの
増幅信号が発生し続けている限りコンデンサ31がvv
fまて充電されることはなく、その間コンデンサ32を
定電流で充電し、コンデンサ32の充電電圧が一定値に
達したら出力回路6を駆動して出力を発生するようにし
たから、時延形漏W検知器に必要な慣性不動作性能を容
易に得られると井に、コンデンサ32は定電流で充電さ
れるから、電圧変動その曲の要因にまり時延時間が変動
することはなく、安定度14A度共に良い時延時間を得
られ、漏電検出側の比較器3の出力を積分する積分回路
は、CR並列接続回路と、該CR並列接続の充放電回路
に順方向に接続したダイオード26より構成し、CR並
列接続回路の充電電圧側に能動素子であるトランジスタ
300ベースを接続したから、ダイオード26のアノー
ド電圧はダイオード26の動作アノードカソード間電圧
とトランジスタ30の動作ペースエミッタ間電圧の和を
超えることはなく、且つワンショット回路5の動作電圧
はそれより高い電圧に設定されているから、零相変流器
lの2次出力電圧によりワンショット回路5を通じて出
力回路6を駆動することがなく、且つ異常電圧検出側の
比較器100入力端はアースラインに接続してあるので
該比較器の出力発生はなく、該比較器10の出力により
波形整形回路l3、遅延回路15を通じて出力回路15
を駆動されることはなく、前記積分回路の充′@電圧で
動作するトランジスタ30がON動作することによりコ
ンデンサ31が放電し、定覆流回路7が定電流を発生し
且つ遅延回路15がコンデンサ32を前記定電琉で充電
しはじめるよう構成しkから、漏電検出機能と異常重圧
検出機能を合わせ持つ複合機能型の集積回路を用いて時
延形の1Ti電検知器を構成できて、主たる部品である
集偵回路のf!類を減らせ、更に定電流回路8の電流決
定用抵抗29は前記トランジスタ30のコレクタに接続
したから、コンデンサ31を充電後常時は定電流発生回
路8は駆動されず、漏電を検出しトランジスタ30がO
Nした時だけ定電流を発生するので消費電流も少なく、
該電流決定用抵抗29及びコンデンサ320両方あるい
は一方を切り換えることて時延切換形の漏電検知器をも
容易に構成できるという効果がある。
The delay interval of the above leakage Ml circuit breaker during operation is determined by Ltd, and ttd is the resistor 29 and capacitor 3 in Fig.
The delay time can be easily changed by switching the resistor 29 and/or the capacitor 32 as shown in Fig. Also good. During the delay time ttd, the capacitor 32 is charged with a constant current generated by the constant current generating circuit 8 and determined by the resistor 29, so that a stable and highly accurate charge that does not fluctuate due to power supply voltage or other factors can be obtained. [Operations and Effects] With the above configuration, as long as the amplified signal of V ilk that is lower than V lkt continues to be generated, the capacitor 31 is
During this period, the capacitor 32 is charged with a constant current, and when the charging voltage of the capacitor 32 reaches a certain value, the output circuit 6 is driven to generate an output, so it is a time delay type. In addition, since the capacitor 32 is charged with a constant current, it is possible to easily obtain the inertial non-operation performance required for a W leakage detector, so the time delay does not change due to voltage fluctuations and is stable. The integration circuit that can obtain a good delay time at both 14A and 14A degrees and integrates the output of the comparator 3 on the earth leakage detection side consists of a CR parallel connection circuit and a diode 26 connected in the forward direction to the charge/discharge circuit of the CR parallel connection. Since the base of the transistor 300, which is an active element, is connected to the charging voltage side of the CR parallel connection circuit, the anode voltage of the diode 26 is the sum of the operating anode-cathode voltage of the diode 26 and the operating pace emitter voltage of the transistor 30. , and the operating voltage of the one-shot circuit 5 is set to a higher voltage, so the output circuit 6 can be driven through the one-shot circuit 5 by the secondary output voltage of the zero-phase current transformer l. Moreover, since the input terminal of the comparator 100 on the abnormal voltage detection side is connected to the ground line, no output is generated from the comparator, and the output of the comparator 10 is sent to the output circuit through the waveform shaping circuit 13 and the delay circuit 15 15
The capacitor 31 is discharged by the ON operation of the transistor 30 operated by the charging voltage of the integration circuit, the constant overflow circuit 7 generates a constant current, and the delay circuit 15 32 is configured to start charging with the above-mentioned constant voltage, a time-delay type 1Ti voltage detector can be constructed using a multi-functional integrated circuit that has both an earth leakage detection function and an abnormal pressure detection function, and the main F of the collector circuit which is a component! Furthermore, since the current determining resistor 29 of the constant current circuit 8 is connected to the collector of the transistor 30, the constant current generating circuit 8 is not driven at all times after charging the capacitor 31, and when a leakage is detected, the transistor 30 is activated. O
Current consumption is low because constant current is generated only when N is turned on.
By switching both or one of the current determining resistor 29 and the capacitor 320, a time-delay switching type earth leakage detector can be easily constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本件発明による時延形漏電検知器の一実施例、 第2図は第1図の検知器が検知出力を発生した時の動作
タイムチャート、 第3図は第1図の検知器が検知出力を発生しなかった時
の動作タイムチャート、 第4図は従来の漏電及び異常電圧の両方で検知出力を発
生する複合V&能型漏電検知器の回路構成例、 7J.5図は第4図の検知器が漏電で動作した時の動作
タイムチャート、 第6図は第4図の検知器が異常電圧で動作した時の動作
タイムチャートである. 1・・・・零相変流器、 3・・・・比較器、 6・・・・出力回路、 8・・・・定電流発生回路、 13・・・・波形整形回路、 15・・・・遅延回路、 26・・・・ダイオード、 27・・・・コンデンサ、 28・・・・抵抗、 29・・・・抵抗、 30・・・・能動素子(トランジスタ)、31●・・・
コンデンサ、 32・・・・コンデンサ. 第21!] 第3図
Figure 1 is an embodiment of the time delay type earth leakage detector according to the present invention, Figure 2 is an operation time chart when the detector in Figure 1 generates a detection output, Figure 3 is the detector in Figure 1. Fig. 4 is an example of the circuit configuration of a conventional combined V & function type earth leakage detector that generates a detection output for both earth leakage and abnormal voltage, 7J. Figure 5 is an operation time chart when the detector shown in Figure 4 operates due to electrical leakage, and Figure 6 is an operation time chart when the detector shown in Figure 4 operates due to abnormal voltage. 1... Zero phase current transformer, 3... Comparator, 6... Output circuit, 8... Constant current generation circuit, 13... Waveform shaping circuit, 15...・Delay circuit, 26...Diode, 27...Capacitor, 28...Resistor, 29...Resistor, 30...Active element (transistor), 31●...
Capacitor, 32... Capacitor. 21st! ] Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)零相変流器の2次出力電圧を基準値と比較し基準
値を越えている期間出力を発生す る比較器と、該比較器の出力電圧をCRを 並列に接続した積分回路で積分し、動作値 に至ったことを検知してON動作する能動 素子と、常時は基準充電電圧に充電付勢さ れ前記能動素子がONした時のみ放電され るコンデンサ31と、前記コンデンサ31 の充電電圧が基準充電電圧以下であること を検知して、出力を発生する波形整形回路と、該波形整
形回路の出力を受けてコンデンサ 32に別途定電流発生回路により発生する 電流で充電を開始し、充電電圧が一定値に 達したら出力回路を駆動して検知出力を発 生する遅延回路より構成されることを特徴 とする時延形漏電検知器。
(1) A comparator that compares the secondary output voltage of a zero-phase current transformer with a reference value and generates an output during the period when it exceeds the reference value, and an integrating circuit that connects the output voltage of the comparator in parallel with a CR. An active element that integrates and turns on when it detects that an operating value has been reached, a capacitor 31 that is normally charged to a reference charging voltage and discharged only when the active element is turned on, and a capacitor 31 that is charged. Detecting that the voltage is below the reference charging voltage, a waveform shaping circuit that generates an output, and receiving the output of the waveform shaping circuit, start charging the capacitor 32 with a current generated by a separate constant current generation circuit, A time delay type earth leakage detector comprising a delay circuit that drives an output circuit to generate a detection output when the charging voltage reaches a certain value.
(2)前記比較器と、波形整形回路と、定電流発生回路
と、遅延回路と、出力回路は、 零相変流器の2次出力電圧を基準値と比 較し出力を発生する比較器と、該比較器の 出力を積分し積分値が一定値になったこと を検知して出力回路を駆動するワンショッ ト回路より成る漏電検出機能と、 電路の異常電圧を基準値と比較し出力を 発生する比較器と、比較器の出力を受けて 常時基準充電電圧に充電していたコンデン サ31を放電し、コンデンサ31の充電電 圧が基準電圧以下であることを検知して出 力を発生する波形整形回路と、波形整形回 路の出力を受けてコンデンサ32を別途定 電流発生回路により発生する定電流で充電 し、充電電圧が一定値になった時出力回路 を駆動する遅延回路より成る異常電圧検出 機能とを有する、漏電及び異常電圧検出型 複合機能検知器用集積回路の、漏電検出機 能側の比較器と、異常電圧検出機能側の波 形整形回路と、定電流発生回路と、遅延回 路と、出力回路であることを特徴とする前 記特許請求の範囲第(1)項記載の時延形 漏電検知器。
(2) The comparator, waveform shaping circuit, constant current generation circuit, delay circuit, and output circuit are a comparator that compares the secondary output voltage of the zero-phase current transformer with a reference value and generates an output. , an earth leakage detection function consisting of a one-shot circuit that integrates the output of the comparator, detects when the integrated value becomes a constant value and drives the output circuit, and generates an output by comparing the abnormal voltage in the electrical circuit with a reference value. a comparator that receives the output of the comparator, and a waveform shaping circuit that discharges the capacitor 31 that has been constantly charged to the reference charging voltage in response to the output of the comparator, and generates an output when it detects that the charging voltage of the capacitor 31 is lower than the reference voltage. and an abnormal voltage detection function consisting of a delay circuit that charges the capacitor 32 with a constant current generated by a separate constant current generation circuit in response to the output of the waveform shaping circuit, and drives the output circuit when the charging voltage reaches a constant value. A comparator on the earth leakage detection function side, a waveform shaping circuit on the abnormal voltage detection function side, a constant current generation circuit, a delay circuit, and an output circuit of the integrated circuit for the earth leakage and abnormal voltage detection type multi-function detector, which has The time delay type earth leakage detector according to claim (1), characterized in that:
(3)前記積分回路は、CRを並列接続した充放電回路
に充電電流を供給方向に接続した ダイオードを直列接続したものであり、前 記能動素子はトランジスタで、該トランジ スタのベースを前記CRの並列回路とダイ オードのカソードの接続点に接続し、トラ ンジスタのエミッタはアースライン側に接 続し、コレクタは前記定電流発生回路の電 流決定用抵抗29と、コンデンサ31の充 電電圧側に接続して、前記ワンショット回 路の動作電圧は前記トランジスタがONし た時の積分回路のダイオードのアノード側 の電位より高く設定され、前記異常電圧検 出機能例の比較器の入力端はアースライン に接続して、前記漏電検出機能側の比較器 の出力を前記異常電圧検出機能側の波形整 形回路に接続せしめたことを特徴とする、 前記特許請求の範囲第(1)項、第(2) 項記載の時延形漏電検知器。
(3) The integrating circuit is a charging/discharging circuit in which CRs are connected in parallel, and diodes connected in the direction of supplying charging current are connected in series, and the active element is a transistor, and the base of the transistor is connected in parallel with the CRs. It is connected to the connection point between the circuit and the cathode of the diode, the emitter of the transistor is connected to the earth line side, and the collector is connected to the current determining resistor 29 of the constant current generating circuit and the charging voltage side of the capacitor 31. The operating voltage of the one-shot circuit is set higher than the potential on the anode side of the diode of the integrating circuit when the transistor is turned on, and the input terminal of the comparator of the abnormal voltage detection function example is connected to the earth line to detect the leakage current. The time delay type according to Claims (1) and (2), characterized in that the output of the comparator on the detection function side is connected to the waveform shaping circuit on the abnormal voltage detection function side. Earth leakage detector.
(4)前記定電流発生回路の電流決定用抵抗29及びコ
ンデンサ32の両方あるいはいず れか一方を切り換えるようにしたことを特 徴とする前記特許請求の範囲第(1)項記 載の時延形漏電検知器。
(4) Time-delayed earth leakage detection according to claim (1), characterized in that either or both of the current determining resistor 29 and the capacitor 32 of the constant current generating circuit are switched. vessel.
JP1297844A 1989-11-15 1989-11-15 Time delay type leak detector Expired - Fee Related JP2787118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297844A JP2787118B2 (en) 1989-11-15 1989-11-15 Time delay type leak detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297844A JP2787118B2 (en) 1989-11-15 1989-11-15 Time delay type leak detector

Publications (2)

Publication Number Publication Date
JPH03159522A true JPH03159522A (en) 1991-07-09
JP2787118B2 JP2787118B2 (en) 1998-08-13

Family

ID=17851883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297844A Expired - Fee Related JP2787118B2 (en) 1989-11-15 1989-11-15 Time delay type leak detector

Country Status (1)

Country Link
JP (1) JP2787118B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285786A (en) * 1997-03-31 1998-10-23 Tempearl Ind Co Ltd Leakage detector
JP2005268097A (en) * 2004-03-19 2005-09-29 Fuji Electric Fa Components & Systems Co Ltd Ground-fault interrupter
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
CN103474956A (en) * 2013-09-09 2013-12-25 昆山奥德鲁自动化技术有限公司 Leakage protector with judgment function
JP2018133254A (en) * 2017-02-16 2018-08-23 河村電器産業株式会社 Earth leakage circuit breaker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285786A (en) * 1997-03-31 1998-10-23 Tempearl Ind Co Ltd Leakage detector
JP2005268097A (en) * 2004-03-19 2005-09-29 Fuji Electric Fa Components & Systems Co Ltd Ground-fault interrupter
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
CN103474956A (en) * 2013-09-09 2013-12-25 昆山奥德鲁自动化技术有限公司 Leakage protector with judgment function
JP2018133254A (en) * 2017-02-16 2018-08-23 河村電器産業株式会社 Earth leakage circuit breaker

Also Published As

Publication number Publication date
JP2787118B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5337206A (en) Three phase power monitor
US5089947A (en) Power supply circuit featuring minimum parts count
JP2003224968A (en) Switching power circuit
JP2819255B2 (en) Multi-standard AC / DC converter
EP0130254A1 (en) Power supply for a circuit interrupter
JPS5931284B2 (en) circuit protection device
JPH03159522A (en) Time delay leak detector
US4999566A (en) Current converter comprising current responsive, self oscillating, switching regulator
JPH0832126B2 (en) Power supplies for circuits and disconnectors
US10983149B2 (en) Inrush current test device
US3548318A (en) Ramp function generator
JP3335838B2 (en) Circuit breaker
JP3122247B2 (en) AC circuit breaker
US4424558A (en) Freely commutating chopper circuit
JP2943330B2 (en) Self-oscillation type DC-DC converter
SU828247A1 (en) Device for control of switch of sequential electric braking of synchronous generator
JPS58364Y2 (en) Tripping circuit for circuit breakers
JP3389603B2 (en) Switching power supply
JP4156386B2 (en) Earth leakage detector
JP2596134Y2 (en) Switching power supply
JP2703769B2 (en) Tokinobu ground fault detector
JPS639279Y2 (en)
JP2501902B2 (en) Anti-time circuit
SU1171919A1 (en) Device for controlling semiconductor devices of static converter
JPS582155Y2 (en) Thyristor gate signal generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees