JPH03159092A - Flat exothermic body - Google Patents

Flat exothermic body

Info

Publication number
JPH03159092A
JPH03159092A JP29792589A JP29792589A JPH03159092A JP H03159092 A JPH03159092 A JP H03159092A JP 29792589 A JP29792589 A JP 29792589A JP 29792589 A JP29792589 A JP 29792589A JP H03159092 A JPH03159092 A JP H03159092A
Authority
JP
Japan
Prior art keywords
exothermic
heat
heating
sheet
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29792589A
Other languages
Japanese (ja)
Other versions
JP2849415B2 (en
Inventor
Hitoshi Hanawa
塙 仁志
Takashi Misawa
三沢 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANAWA NETSUDEN KINZOKU KK
Original Assignee
HANAWA NETSUDEN KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANAWA NETSUDEN KINZOKU KK filed Critical HANAWA NETSUDEN KINZOKU KK
Priority to JP29792589A priority Critical patent/JP2849415B2/en
Publication of JPH03159092A publication Critical patent/JPH03159092A/en
Application granted granted Critical
Publication of JP2849415B2 publication Critical patent/JP2849415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PURPOSE:To obtain an exothermic body generating high temperature heat with a small amount of heating current, and high in the uniformity of thermal distribution over an exothermic surface by overlapping two or more exothermic sheets having the predetermined heating current passage within the surface in parallel with a gap. CONSTITUTION:The flat type exothermic body in the title is constituted with three exothermic sheets 1a to 1c overlaid in parallel with a gap, conductive connection pieces 3a and 3b, and insulating support pieces 4a and 4b. In this case, the current flow passages 2a and 2b of the exothermic sheets 1a to 1c make self-heat generation due to the Joule heat of heating current, and the exothermic sheet 1a receives auxiliary heat from the exothermic sheets 1b and 1c, in addition to self-heat generation. As a result, the exothermic sheet 1a becomes high in temperature with a low heating current value, compared with the case of independent heat generation. Also, the slit 21a of the exothermic sheet 1a and the flow passage 2b of the exothermic sheet 1b are orthogonal with each other, and heat is emitted from the exothermic sheet 1b to the exothermic sheet 1a through the slit 21a of the exothermic sheet 1a, thereby homogenizing substantially the heat emitted from the exothermic sheet la. According to the aforesaid construction, it is possible to obtain a flat type exothermic body 10 of flat temperature distribution and excellence in uniform temperature quality.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加熱電流によって発熱面がジュール発熱する面
状発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a planar heating element whose heating surface generates Joule heat by heating current.

従来の技術 面状発熱体は面としての拡がりをもって発熱面の全面が
発熱する。そのため、面状発熱体は、シート材の熱処理
や、加熱温度の一様性が重視される半導体基板の加熱な
ど、種々の分野で不可欠な加熱熱源とされている。
A conventional technical planar heating element spreads out as a surface and generates heat over the entire surface of the heating surface. Therefore, planar heating elements are considered as an indispensable heating heat source in various fields, such as heat treatment of sheet materials and heating of semiconductor substrates where uniformity of heating temperature is important.

従来の典型的な面状発熱体は、渦巻き状の電熱線を2枚
の金属板で挟んだサンドインチ構造のものである。しか
し、このサンドインチ構造によれば、電熱線と金属板と
の間の熱伝達(熱伝導)が完全でなく1発熱面となる金
属板の面上での温度分布が悪い、しかも、電熱線が加熱
して焼損し易いばかりでなく、均温化のための金属板の
熱容量に起因して、昇温時や降温時の応答特性が遅くな
るという欠点をもっていた。しかも、最近では、100
0℃以上に高温加熱できる面状発熱体の要請が高まって
いる。
A typical conventional planar heating element has a sandwich structure in which a spiral heating wire is sandwiched between two metal plates. However, according to this sandwich structure, heat transfer (thermal conduction) between the heating wire and the metal plate is not perfect, and the temperature distribution on the surface of the metal plate, which is one heating surface, is poor. Not only is it easy to heat up and burn out, but also the response characteristics when the temperature rises or falls is slow due to the heat capacity of the metal plate used for temperature equalization. Moreover, recently, 100
There is an increasing demand for planar heating elements that can be heated to temperatures above 0°C.

そこで、従来のサンドインチ構造の面状発熱体に替えて
、1枚シートで形成した面状発熱体が使用されつつある
。このシート状の面状発熱体は。
Therefore, instead of the conventional sheet heating element having a sandwich-inch structure, a sheet heating element formed from a single sheet is being used. This sheet-shaped heating element is.

モリブデンやカーボンなどの高温耐熱性に富んだ発熱材
料を用い、1枚の発熱材料を平板や円筒に形成して発熱
面を構成し、被加熱物を主として輻射加熱するものであ
る。
A heat-generating material with excellent high-temperature heat resistance such as molybdenum or carbon is used, and a single heat-generating material is formed into a flat plate or a cylinder to constitute a heat-generating surface, and the object to be heated is mainly heated by radiation.

発明が解決しようとする課題 ところが、上記の従来技術によれば、1枚のシートの発
熱材料で形成した面状発熱体は、高温加熱と高速応答の
要請には応えるものの、例えば裏面から無駄な熱放散が
多く、多大な加熱i!流が必要である。しかも、発熱面
内での温度分布の均温性に欠けるという問題があった。
Problems to be Solved by the Invention However, according to the above-mentioned prior art, although a planar heating element formed from a single sheet of heat-generating material meets the demands for high-temperature heating and high-speed response, for example, it produces unnecessary waste from the back side. There is a lot of heat dissipation and a lot of heating i! Flow is necessary. Moreover, there is a problem in that the temperature distribution within the heat generating surface lacks uniformity.

1枚シートの発熱面は、その表裏両面から熱を放散する
からであり、高融点金属やIA素材は高い導電率を持っ
ているからである。加熱電流を少なく抑えるために、1
枚シートの面内にスリットを切り込むことも可能だが、
当然ながらスリット部分は発熱しないので1発熱面の面
内での温度分布が劣悪になってしまう。
This is because the heat generating surface of a single sheet radiates heat from both the front and back surfaces, and the high melting point metal and IA material have high electrical conductivity. In order to keep the heating current low, 1
It is also possible to cut slits within the plane of the sheet, but
Naturally, since the slit portion does not generate heat, the temperature distribution within one heating surface becomes poor.

本発明は、従来技術が未解決に残していた上記の課題に
鑑み、少ない加熱電流で高温に発熱し、しかも、発熱面
の温度分布の均温性に優れた面状発熱体を提供すること
を1」的とする。
In view of the above-mentioned problems left unsolved by the prior art, the present invention provides a planar heating element that generates heat at a high temperature with a small heating current and has excellent uniformity of temperature distribution on the heating surface. Let 1 be the target.

課ifiを解決するための手段 本発明は、上記の目的を達成するために、加熱電流の流
路が面内に定められている2以上の発熱面を間隔をあけ
て平行に重ねることにより、面状発熱体を構成するもの
である。また、平行に重ねた発熱面の内の少なくとも1
の発熱面には、その発熱面上での周辺部分の温度が中央
部分の温度よりも高温に発熱する流路を設けるものであ
る。
Means for Solving the Issues The present invention achieves the above object by stacking two or more heating surfaces in parallel with a space between them, each of which has a heating current flow path defined within the surface. This constitutes a planar heating element. In addition, at least one of the heating surfaces stacked in parallel
The heat generating surface is provided with a flow path that causes the temperature of the peripheral portion of the heat generating surface to be higher than the temperature of the central portion.

作    用 上記の構成によれば、加熱電流のジュール熱によって自
己発熱した発熱面は、熱を周囲に放散し、平行に重なる
他の発熱面を加熱(補助加熱)する。
Function According to the above configuration, the heat generating surface that self-generates heat due to the Joule heat of the heating current radiates heat to the surroundings and heats other heat generating surfaces that overlap in parallel (auxiliary heating).

そして、該他の発熱面は自己のジュール発熱に加えて補
助加熱を受け、少ない加熱電流でも容易に高温になる。
The other heating surface receives auxiliary heating in addition to its own Joule heating, and easily reaches a high temperature even with a small heating current.

しかも、平行に向きあった発熱面の間では、上記の自己
発熱と補助加熱により1両者がほぼ同等の温度で熱を輻
射しあうとともに、お互いが他の発熱面からの熱輻射に
対しては、熱を反射しあう作用をする。そして、平行に
向きあった発熱面同志が協調して発熱し1面状発熱体か
ら外部へ漏れる無駄な熱損失を防ぎながら発熱面の面内
での熱的均衡を保つ働きをする。
Furthermore, between the heating surfaces facing parallel to each other, both sides radiate heat to each other at approximately the same temperature due to the above-mentioned self-heating and auxiliary heating, and each side is resistant to heat radiation from other heating surfaces. , act to reflect heat. The parallel heating surfaces cooperate to generate heat, and work to maintain thermal balance within the plane of the heating surfaces while preventing wasteful heat loss from leaking to the outside from the one-plane heating element.

また1発熱面に形成された、周辺部分が中央部分より高
温に加熱する発熱面の流路は、面状発熱体の発熱血縁端
からの熱放散に対して、それを補うように作用し1発熱
面の面上での温度分布を均温化する働きをする。
In addition, the flow path of the heat generating surface, in which the peripheral portion is heated to a higher temperature than the central portion, acts to compensate for heat dissipation from the heat generating edge of the planar heating element. It works to equalize the temperature distribution on the heat generating surface.

実施例 以下、本発明のいくつかの実施例について、図面を参照
して説明する。なお、以下の図面の説明において、同一
要素には同一符号を付し、その説明の重複をさけている
Embodiments Hereinafter, some embodiments of the present invention will be described with reference to the drawings. In addition, in the following description of the drawings, the same elements are given the same reference numerals to avoid duplication of the description.

第1図は1本発明の第一の実施例の要部構成を示す構造
図であり、同図(2)は一部を切り欠いた上面図、同図
(ハ)は側面図を示している8図において、面状発熱体
10は1間隔をあけて平行に重ねた3枚の発熱面1 (
la、 lb、lc)と、発熱面1 (la、 lb、
lc)を電気的に直列接続する導電性の接続コマ3(3
a、3b)と、発熱面1 (la、1b、lc)を3−
間隔に支持する絶縁性の支持コマ4 (4a、 4b)
により構成されている6発熱面1 (la、 lb、 
Ic)は、−辺の長さが約100−の概ね正方形の板状
体であり、板厚が3wmの炭素/炭素繊維複合材料(以
下、c/c)の板材から切り出されている。そして1発
熱面1 (la、1b、lc)には、幅が3w11のス
リット21 (21a、 21b、21c)が切り込ま
れ1発熱面1 (1a、 lb、 lc)の面上には、
ジグザグ状の加熱電流流路2(2a、2b、2c)が形
成されている。発熱面1 (la、1b、lc)の電気
抵抗値は、1000℃に加熱した時、約0.3Ωである
。面状発熱体10全体での抵抗値は、約1Ωである。そ
して、発熱面1a、1cに接続されている電極5(5a
、sb)経由で面状発熱体10に加熱電流を流したとこ
ろ、電流値が35Aのとき、発熱面1aの温度は100
0℃になった。
FIG. 1 is a structural diagram showing the main part configuration of the first embodiment of the present invention, FIG. 1 (2) is a partially cutaway top view, and FIG. In Figure 8, the planar heating element 10 consists of three heating surfaces 1 (
la, lb, lc) and heating surface 1 (la, lb,
conductive connecting piece 3 (3
a, 3b) and heating surface 1 (la, 1b, lc) as 3-
Insulating support pieces 4 (4a, 4b) supported at intervals
6 heating surfaces 1 (la, lb,
Ic) is a generally square plate-like body with a side length of approximately 100 mm, and is cut from a plate of carbon/carbon fiber composite material (hereinafter referred to as C/C) with a plate thickness of 3wm. A slit 21 (21a, 21b, 21c) with a width of 3w11 is cut into each heat generating surface 1 (la, 1b, lc), and on the surface of each heat generating surface 1 (1a, lb, lc),
A zigzag heating current flow path 2 (2a, 2b, 2c) is formed. The electrical resistance value of the heat generating surfaces 1 (la, 1b, lc) is approximately 0.3Ω when heated to 1000°C. The resistance value of the sheet heating element 10 as a whole is about 1Ω. Then, the electrodes 5 (5a
, sb), when a heating current is passed through the sheet heating element 10, when the current value is 35A, the temperature of the heating surface 1a is 100.
The temperature has reached 0℃.

この実施例の構成によれ゛ば、発熱面i (Ia、1b
、lc)の流路2(2a、2b、2c)は、加熱電流の
ジュール熱により自己発熱する。そして、発熱面1aは
According to the configuration of this embodiment, the heating surface i (Ia, 1b
, lc), the flow paths 2 (2a, 2b, 2c) self-heat by Joule heat of the heating current. And the heat generating surface 1a.

発熱面1aの自己発熱に加えて発熱面1b、1cからも
補助加熱を受ける。このため、発熱面1aは1発熱面1
b、1cなしで発熱面1aのみが単独で発熱する場合に
比べ、低い加熱電流値で高温になる。−ちなみに、発熱
面1b、1cを取付けずに発熱面1aのみに加熱電流を
加えた場合には1発熱面1aを1ooo”cに加熱する
ために、65A以上の加熱電流が必要であった。
In addition to the self-heating of the heat-generating surface 1a, auxiliary heating is also received from the heat-generating surfaces 1b and 1c. Therefore, the heating surface 1a is 1 heating surface 1
Compared to the case where only the heat generating surface 1a generates heat independently without b and 1c, the temperature becomes high with a lower heating current value. -By the way, when heating current was applied only to the heating surface 1a without attaching the heating surfaces 1b and 1c, a heating current of 65 A or more was required to heat one heating surface 1a to 1ooo''c.

そして、上記のように1本発明によれば面状発熱体の加
熱電流を少なくできるので、電極5(5a、5b)に要
求される許容電流定格を低減でき、電極の構造を簡素化
できる。しかも、加熱電流を供給する電源装置や制御装
置の負担や定格を大幅に軽減することもできる。
As described above, according to the present invention, the heating current of the planar heating element can be reduced, so the allowable current rating required for the electrodes 5 (5a, 5b) can be reduced, and the structure of the electrodes can be simplified. Moreover, the burden and rating of the power supply device and control device that supply the heating current can be significantly reduced.

また、上記の実施例の構成によれば、発熱面1aのスリ
ット21aと発熱面1bの流路2bは直交している。そ
して、発熱面1aのスリット21aを通過して発熱面1
bから熱が発熱面1aの面上に放射する。その結果、実
質的に発熱面1aから放射する熱を均質化し、発熱面l
a上に設置される図示されぬ被加熱物を均温で加熱して
加熱l、うを生じない。
Further, according to the configuration of the above embodiment, the slit 21a of the heat generating surface 1a and the flow path 2b of the heat generating surface 1b are perpendicular to each other. Then, the heat generating surface 1 passes through the slit 21a of the heat generating surface 1a.
Heat is radiated from b onto the heat generating surface 1a. As a result, the heat radiated from the heat generating surface 1a is substantially homogenized, and the heat radiating from the heat generating surface 1a is substantially homogenized.
An object to be heated (not shown) placed on top (a) is heated at a uniform temperature so that heating does not occur.

さらにまた、発熱面1bは発熱面1aが輻射する熱の一
部を反射して発熱面1aにもどす、同様に1発熱面1c
も発熱面1bの輻射熱を反射して発熱面1bにもどす。
Furthermore, the heat generating surface 1b reflects a part of the heat radiated by the heat generating surface 1a and returns it to the heat generating surface 1a.Similarly, the heat generating surface 1c
also reflects the radiant heat from the heat generating surface 1b and returns it to the heat generating surface 1b.

その結果、発熱面1aは累積的な反射を受けて短時間で
高温になる。
As a result, the heat generating surface 1a receives cumulative reflection and becomes hot in a short time.

発熱面1cの温度を発熱面1a、 lbより低くするで
とで外部への熱の放散(損失)を抑えることもできる。
By making the temperature of the heat generating surface 1c lower than that of the heat generating surfaces 1a and lb, it is also possible to suppress heat dissipation (loss) to the outside.

すなわち、上記の実施例の説明では、発熱面1 (la
、1b、lc)の抵抗値は同じとして例示したが、これ
らの発熱面1 (la、 lb、 lc)の抵抗値を違
えることで可能である0発熱面1cの抵抗値を発熱面l
Oの抵抗値より小さく設定すれば、発熱面Lcの加熱温
度は、発熱面1aの加熱温度よりも低くなる。その結果
1発熱面1cがら外部に放散する熱量を少なくでき、面
状発熱体の発熱効率を一段と高くすることができる。
That is, in the description of the above embodiment, the heat generating surface 1 (la
, 1b, lc) are the same, but it is possible to change the resistance value of the heating surface 1c by changing the resistance value of the heating surface 1 (la, lb, lc).
If it is set smaller than the resistance value of O, the heating temperature of the heat generating surface Lc will be lower than the heating temperature of the heat generating surface 1a. As a result, the amount of heat dissipated to the outside from one heating surface 1c can be reduced, and the heating efficiency of the planar heating element can be further increased.

次に第2図に示す構造図を参照して第二の実施例を説明
する。なお、同図0は上面図、同図(b)は側面図を示
している。そして、この第二の実施例の構造が第一の実
施例の構成と異なる主な点は。
Next, a second embodiment will be described with reference to the structural diagram shown in FIG. Note that FIG. 0 shows a top view, and FIG. 0 shows a side view. What are the main points in which the structure of this second embodiment differs from that of the first embodiment?

発熱面1d、 leが2枚の円板で形成されており、し
かも、発熱面1e↓こは中央部分を中空部とするC字状
の流路2eが形成されている点である。なお、発熱面1
d、 leは板厚が3mのc/c板がら切り出された外
径が約90+no+の円板である。そして、発熱面1d
にはスリット21dが切り込まれてジグザグパターンの
流路2dが形成されている。
The heating surfaces 1d and 1e are formed of two discs, and the heating surface 1e is formed with a C-shaped flow path 2e with a hollow central portion. In addition, heating surface 1
d and le are disks with an outer diameter of about 90+no+ cut out from a C/C plate with a thickness of 3 m. And the heating surface 1d
A slit 21d is cut in to form a flow path 2d in a zigzag pattern.

この第二の実施例の構成によれば1発熱面1dの流路2
dは発熱面1eの流路2eと直列に接続している。
According to the configuration of this second embodiment, the flow path 2 of the 1 heat generating surface 1d
d is connected in series with the flow path 2e of the heat generating surface 1e.

発熱面1eの流路2eは、加熱電流によってドーナツ状
に発熱する。そして、発熱面1dの周辺部分を補助加熱
する働きをする。このため1発熱面1dは自己発熱に加
えて発熱面1eからも熱を受け、発熱面ldの縁端部分
で生じる放散を補うことになる。その結果、発熱面1e
が無い場合には、発熱面1dの面上温度分布が激しく山
なりであったが1発熱を備えたことにより温度分布が均
温化し、平坦な温度分布が得られた。なお、発熱面1d
の中央部に開いた中空部分は、発熱板1dの中央部分か
らの熱の放散を容易にし、該中央部分の温度を下げて温
度分布を一段と平坦化する働きをしている。
The flow path 2e of the heat generating surface 1e generates heat in a donut shape due to the heating current. Then, it functions to auxiliary heat the peripheral portion of the heat generating surface 1d. Therefore, the heat generating surface 1d receives heat from the heat generating surface 1e in addition to self-heating, thereby supplementing the radiation generated at the edge portion of the heat generating surface ld. As a result, the heating surface 1e
When there was no heat generation surface, the temperature distribution on the surface of the heat generating surface 1d was extremely hilly, but by providing one heat generation, the temperature distribution became uniform and a flat temperature distribution was obtained. In addition, the heating surface 1d
The hollow portion opened at the center of the heating plate 1d facilitates the dissipation of heat from the center of the heat generating plate 1d, lowers the temperature of the center, and further flattens the temperature distribution.

次に第3図を参照して、本発明の第三の実施例について
説明する.なお1図面(a)は平行に重ねて設けられる
1の発熱体1fの上面図,同図(ハ)は上記■の発熱体
Ifと平行に設けられる他Q発熱体1gの上面図を示し
ている。
Next, referring to FIG. 3, a third embodiment of the present invention will be described. Note that drawing 1 (a) is a top view of heating element 1 f that is provided in parallel and superimposed, and drawing (c) is a top view of heating element 1 g that is provided parallel to heating element If of above (■). There is.

この第三の実施例の構成が第2の実施例の構成と異なる
主な点は、次の通りである.すなわち、第1に、発熱面
If, Igには渦巻状のスリット21f、21gが切
り込まれているとと、第2に、発熱面1gの中央部分に
は幅の広い流路2 g lが形成されていることである
.なお、上記の幅の広い流路2g lを除き,他の流路
2f、2gは、幅が等しく形成されている。そして、図
法の発熱面if、1gは互い多こ平行に間隔をあけて積
み重ねられ、これらの発熱面1f、Igの流路2f、2
g (2g″)は図示されぬ接続コマで直列に接続され
ている。
The main points in which the configuration of this third embodiment differs from the configuration of the second embodiment are as follows. That is, firstly, spiral slits 21f and 21g are cut into the heat generating surfaces If and Ig, and secondly, a wide channel 2gl is formed in the center of the heat generating surface 1g. It is being formed. Note that, except for the wide channel 2gl, the other channels 2f and 2g are formed to have the same width. The heating surfaces if and 1g of the projection are stacked parallel to each other at intervals, and the flow paths 2f and 2 of these heating surfaces 1f and Ig are stacked parallel to each other at intervals.
g (2g'') are connected in series by a connecting piece (not shown).

この第三の実施例の構成によれば、加熱電流の供給を受
けた発熱面1gは,中央部分の幅の広い流路2g′を除
いて、その周辺をとり巻く流路2gのみが高温に発熱す
る.そして、発熱面1gは,それに重なる発熱面Ifの
周辺部分を集中的に補助加熱する.一方、発熱面1gの
中央部分では、流路2g+の幅が広く抵抗値も小さい.
このため、中央部分の流路2g″は、高温には発熱せず
、もっばら発熱面1fからの熱を受けてその一部を発熱
面!fに反射する働きをする。その結果、発熱面Ifの
温度分布は平坦になる。この第三の実施例によれば、発
熱面1gの中央部分に設けた流路2g′は、発熱面if
の熱を外部に逃さず反射する。そして、面状発熱体の裏
面への熱の拡りを抑え、発熱体周囲の断熱構造を簡易化
可能にする効果がある。
According to the configuration of the third embodiment, in the heat generating surface 1g supplied with heating current, except for the wide channel 2g' in the central portion, only the channel 2g surrounding it becomes high temperature. I get a fever. The heat generating surface 1g intensively auxiliary heats the peripheral portion of the heat generating surface If overlapping with it. On the other hand, in the central part of the heat generating surface 1g, the width of the flow path 2g+ is wide and the resistance value is small.
Therefore, the flow path 2g'' in the center does not generate heat at a high temperature, but rather receives heat from the heat generating surface 1f and reflects a part of it to the heat generating surface !f.As a result, the heat generating surface The temperature distribution of If becomes flat.According to this third embodiment, the flow path 2g' provided in the center of the heating surface 1g
Reflects the heat without escaping it to the outside. This has the effect of suppressing the spread of heat to the back surface of the planar heating element and simplifying the insulation structure around the heating element.

なお、1−記の本発明の詳細な説明では、発熱面を平面
状としたが、それに限らない。例えば。
In addition, in the detailed description of the present invention in item 1-, the heat generating surface is assumed to be planar, but the invention is not limited thereto. for example.

発熱面を円筒状に形成して同軸状に筒状の発熱面を重ね
ることも可能である。
It is also possible to form the heat generating surfaces in a cylindrical shape and overlap the cylindrical heat generating surfaces coaxially.

さらにまた、発熱面に使用する材料は、c/cに限られ
ず、他の金属(例えば、モリブデンやタングステン)、
カーボン、あるいは、1fri性のセラミックス材料を
用いることもできる。
Furthermore, the material used for the heat generating surface is not limited to C/C, but may also include other metals (for example, molybdenum or tungsten),
Carbon or a 1fri ceramic material can also be used.

いずれにせよ1本発明は上記の実施例の説明に限定され
ることなく、各種の改変が可能である。
In any case, the present invention is not limited to the explanation of the above embodiments, and various modifications can be made.

発明の効果 本発明は以上のように構成したので、少ない加熱電流で
高温に発熱し、しかも、温度分布が平坦で均温性に優れ
た面状発熱体を提供できる。さ−らに、この発明の面状
発熱体は均温化するための金属板を要しないので、無駄
な熱損失が少なく、昇温や降温を高速に行えるという顕
著な効果を奏する。
Effects of the Invention Since the present invention is configured as described above, it is possible to provide a planar heating element that generates heat at a high temperature with a small heating current, has a flat temperature distribution, and is excellent in temperature uniformity. Furthermore, since the planar heating element of the present invention does not require a metal plate for temperature equalization, there is little wasted heat loss and the temperature can be raised or lowered quickly, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(2)、ら)は本発明の第一の実施例の構成図、
第2図(a)、(b)は本発明の第二の実施例の構造図
。 第3図(a)、(b)は本発明の第三の実施例に係る発
熱面の上面図である。 1・・・発熱面、 2・・・流路、 3・・・接続コマ
。 21・・・スリット、  5・・・電極(a) コ0 第  2  図 第  1 ヌ
FIG. 1 (2), et al.) is a configuration diagram of the first embodiment of the present invention,
FIGS. 2(a) and 2(b) are structural diagrams of a second embodiment of the present invention. FIGS. 3(a) and 3(b) are top views of a heat generating surface according to a third embodiment of the present invention. 1... Heat generating surface, 2... Channel, 3... Connection piece. 21...Slit, 5...Electrode (a) 0 Fig. 2 1 N

Claims (2)

【特許請求の範囲】[Claims] (1)加熱電流の流路を面内に定める2以上の発熱面を
間隔をあけて平行に重ねたことを特徴とする面状発熱体
(1) A planar heating element characterized in that two or more heating surfaces that define a heating current flow path within the plane are stacked in parallel with an interval.
(2)少なくとも1の発熱面は、その発熱面上の周辺部
分が中央部分より高温に発熱する加熱電流の流路を形成
していることを特徴とする特許請求項第1項に記載の面
状発熱体。
(2) The surface according to claim 1, wherein the at least one heat generating surface has a peripheral portion on the heat generating surface forming a flow path for a heating current that generates heat at a higher temperature than a central portion. shaped heating element.
JP29792589A 1989-11-16 1989-11-16 Planar heating element Expired - Fee Related JP2849415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29792589A JP2849415B2 (en) 1989-11-16 1989-11-16 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29792589A JP2849415B2 (en) 1989-11-16 1989-11-16 Planar heating element

Publications (2)

Publication Number Publication Date
JPH03159092A true JPH03159092A (en) 1991-07-09
JP2849415B2 JP2849415B2 (en) 1999-01-20

Family

ID=17852867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29792589A Expired - Fee Related JP2849415B2 (en) 1989-11-16 1989-11-16 Planar heating element

Country Status (1)

Country Link
JP (1) JP2849415B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250816A (en) * 2006-03-16 2007-09-27 Nokodai Tlo Kk Crystal growth apparatus
JP2009187948A (en) * 2008-02-08 2009-08-20 Ngk Insulators Ltd Base board heating device
JP2017228361A (en) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 Heating member and electrostatic chuck
WO2018143288A1 (en) * 2017-02-01 2018-08-09 日本特殊陶業株式会社 Holding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250816A (en) * 2006-03-16 2007-09-27 Nokodai Tlo Kk Crystal growth apparatus
JP4631072B2 (en) * 2006-03-16 2011-02-16 農工大ティー・エル・オー株式会社 Crystal growth equipment
JP2009187948A (en) * 2008-02-08 2009-08-20 Ngk Insulators Ltd Base board heating device
JP2017228361A (en) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 Heating member and electrostatic chuck
WO2018143288A1 (en) * 2017-02-01 2018-08-09 日本特殊陶業株式会社 Holding device
JPWO2018143288A1 (en) * 2017-02-01 2019-02-14 日本特殊陶業株式会社 Holding device

Also Published As

Publication number Publication date
JP2849415B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US8073315B2 (en) Radiant heater for heating the building material in a laser sintering device
US11784078B2 (en) Wafer placement apparatus
US6054688A (en) Hybrid heater with ceramic foil serrated plate and gas assist
US20160014848A1 (en) High power-density plane-surface heating element
JPH03159092A (en) Flat exothermic body
US5658479A (en) Positive temperature coefficient thermistor heater and positive temperature coefficient thermistor heater device using the same
JP2018527734A (en) Fuel cell with temperature control system and method for thermal control of cells
US10932323B2 (en) Reflector and susceptor assembly for chemical vapor deposition reactor
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
CN113228823B (en) Heating element with fusing function and heating unit comprising same
KR101186609B1 (en) Thermal radiation heating type linear effusion cell
JPH05343167A (en) Face heating element
JPH02155189A (en) Ptc plate heater
JPH03159093A (en) Flat exothermic body device
JPS61232590A (en) Carbon heater
JPH01211884A (en) Planar heater
JP2014029784A (en) Heater including connection structure consisting of three zone resistors
JP2702612B2 (en) Variable output positive temperature coefficient thermistor heater
JP4289085B2 (en) PTC surface heater and floor heating panel provided with the same
JPH0746628B2 (en) Positive resistance temperature coefficient heating element
JPS59710Y2 (en) constant temperature heating element
JPH04259785A (en) Variable capacity sheet-shaped heating element and manufacture of the same sheet-shaped heating element
JP2003161846A (en) Optical fiber sheet
JPH08148304A (en) Manufacture of positive temperature coefficient thermistor heater
JPH06326022A (en) Manufacture of semiconductor substrate and semiconductor device, and semiconductor manufacturing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees