JPH03159090A - Heater circuit and semiconductor heater - Google Patents

Heater circuit and semiconductor heater

Info

Publication number
JPH03159090A
JPH03159090A JP29922789A JP29922789A JPH03159090A JP H03159090 A JPH03159090 A JP H03159090A JP 29922789 A JP29922789 A JP 29922789A JP 29922789 A JP29922789 A JP 29922789A JP H03159090 A JPH03159090 A JP H03159090A
Authority
JP
Japan
Prior art keywords
temperature
heater
thermister
semiconductor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29922789A
Other languages
Japanese (ja)
Inventor
Yasushi Sato
靖 佐藤
Masatada Yodogawa
淀川 正忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP29922789A priority Critical patent/JPH03159090A/en
Publication of JPH03159090A publication Critical patent/JPH03159090A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of rush current and enable a constant temperature exothermic operation in a steady state exothermic operation zone by applying the constitution wherein a specific thermister has a negative resistance temperature coefficient in a temperature zone below Curie temperature, and a positive resistance temperature coefficient in a temperature zone equal to or above the Curie temperature. CONSTITUTION:Power supplies 1 and 2 are constituted with a switch 2, and current limiting resistors 3 and 4 with a semiconductor heater 4. Furthermore, the semiconductor heater 4 includes a thermister comprising a SrTiO3-PbTiO3 semiconductor material. This thermister has a negative resistance temperature coefficient in a temperature zone below Curie temperature. In a low temperature zone immediately after turning on a power supply, therefore, the thermister works as a high resistance body given by the negative resistance temperature coefficient. On the other hand, the thermister has a positive resistance temperature coefficient in a temperature zone equal to or above the Curie temperature. The thermister, therefore, is capable of self-temperature control function in a steady state exothermic operation zone. According to the aforesaid construction, rush current can be restrained and the thermister can operate as a constant temperature exothermic body in the steady state exothermic operation zone.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ヒータ回路及び半導体ヒータに関し、抵抗温
度特性がV特性を示すサーミスタを半導体ヒータとして
用いることにより、突入電流防止機能を有する定温度の
ヒータ回路及び半導体ヒータを提供できるようにしたも
のである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a heater circuit and a semiconductor heater, and uses a thermistor whose resistance-temperature characteristic is V characteristic as the semiconductor heater, thereby achieving a constant temperature that has an inrush current prevention function. Accordingly, it is possible to provide a heater circuit and a semiconductor heater.

〈従来の技術〉 従来、半導体ヒータとして、正の抵抗温度係数を有する
正特性サーミスタを用いたものがよく知られている。正
特性サーミスタは、温度が低い領域では低抵抗を示すが
、温度がキュリー温度近傍に達すると、抵抗値が急激に
増大し、自己発熱温度を自動的に制御する自己温度制御
機能を有するので、安全で信頼性の高い半導体ヒータと
して、各種の熱器具の発熱源として利用されている。
<Prior Art> Conventionally, a semiconductor heater using a positive temperature coefficient thermistor having a positive temperature coefficient of resistance is well known. A positive temperature coefficient thermistor exhibits low resistance in a low temperature range, but when the temperature reaches near the Curie temperature, the resistance value increases rapidly, and it has a self-temperature control function that automatically controls the self-heating temperature. As a safe and highly reliable semiconductor heater, it is used as a heat source for various heating appliances.

〈発明が解決しようとする課題〉 しかしながら、正特性サーミスタは、低温度領域での抵
抗値が低いため、電源投入時の突入電流が大きくなると
いう難点がある。この難点は、例えば、正特性サーミス
タの劣化に伴う過電流保護を考慮して、ヒユーズ等の過
電流保ii1機能部品を付加する場合、これらの過電流
保護機能部品を突入電流を考慮した値に設定する必要が
あり、過電流保護に最適の値のみを1定して決定するこ
とが難しくなるという問題点もある。
<Problems to be Solved by the Invention> However, since the positive temperature coefficient thermistor has a low resistance value in a low temperature region, there is a problem in that the inrush current when the power is turned on increases. This difficulty is, for example, when adding overcurrent protection II1 function parts such as fuses in consideration of overcurrent protection due to deterioration of a positive temperature coefficient thermistor, these overcurrent protection function parts must be set to values that take into account inrush current. There is also the problem that it is difficult to consistently determine only the optimum value for overcurrent protection.

特開昭61−159705号公報は、ヒータ回路として
の用途ではないが、正特性サーミスタの他の重要な用途
である過電流防御素子において、正特性サーミスタに負
特性サーミスタを組合せ、負特性サーミスタによって突
入電流を防止する技術を開示している。しかし、この従
来技術をヒータ回路に転用した場合でも、正負の2種類
のサーミスタの組合せが不可欠であり、部品点数の増大
及び大型化等を招く。
JP-A-61-159705 discloses an overcurrent protection element, which is not used as a heater circuit, but is another important use of a positive temperature coefficient thermistor, by combining a positive coefficient thermistor with a negative coefficient thermistor, and using a negative coefficient thermistor. Discloses technology to prevent inrush current. However, even when this conventional technique is applied to a heater circuit, a combination of two types of positive and negative thermistors is essential, which leads to an increase in the number of parts and an increase in size.

そこで、本発明の課題は、上述する従来の問題点を解決
し、それ自体で突入電流防止作用を確保でき、しかも定
常発熱動作領域では、自己温度制御機能を有して安定に
定温発熱動作をする半導体ヒータ及びヒータ回路を提供
することである。
Therefore, the object of the present invention is to solve the above-mentioned conventional problems, to ensure inrush current prevention effect by itself, and to have a self-temperature control function in the steady-state heating operation region to stably perform constant-temperature heating operation. An object of the present invention is to provide a semiconductor heater and a heater circuit.

く課題を解決するための手段〉 上述する課題解決のため、本発明は、半導体ヒータを有
するヒータ回路であって、 前記半導体ヒータは、5rTiOs−PbTiO3系半
導体素材からなるサーミスタを含み、前記サーミスタは
、キュリー温度よりも低い温度領域で負の抵抗温度係数
を有し、キュリー温度よりも高い温度領域では正の抵抗
温度係数を有すること を特徴とする。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a heater circuit having a semiconductor heater, wherein the semiconductor heater includes a thermistor made of a 5rTiOs-PbTiO3 based semiconductor material, and the thermistor includes a , has a negative temperature coefficient of resistance in a temperature range lower than the Curie temperature, and has a positive temperature coefficient of resistance in a temperature range higher than the Curie temperature.

く作用〉 半導体ヒータは、5rTiOs  PbTiOs系半導
体素材からなるサーミスタを含み、このサーミスタは、
キュリー温度よりも低い温度領域で負の抵抗温度係数を
有するので、電源投入直後の低温度領域では、負の抵抗
温度係数によって与えられる高抵抗体として動作する。
Function> The semiconductor heater includes a thermistor made of a 5rTiOs PbTiOs semiconductor material, and this thermistor has the following properties:
Since it has a negative temperature coefficient of resistance in a temperature range lower than the Curie temperature, it operates as a high resistance element given by the negative temperature coefficient of resistance in the low temperature range immediately after power is turned on.

このため、突入電流が抑制される。Therefore, rush current is suppressed.

しかも、キュリー温度よりも高い温度領域では正の抵抗
温度係数を有するので、定常発熱動作領域では、従来の
正特性サーミスタと同様の自己温度制御機能が得られ、
定温度発熱体として動作する。
Moreover, it has a positive temperature coefficient of resistance in the temperature range higher than the Curie temperature, so in the steady heat generation operation range, it can provide the same self-temperature control function as a conventional positive temperature coefficient thermistor.
Operates as a constant temperature heating element.

上述の負の抵抗温度係数及び負の抵抗温度係数は、単一
のサーミスタで得られるものであるから、負特性サーミ
スタと正特性サーミスタとを組合せる従来技術と異なっ
て、部品点数が少なく、小型になる。
The above-mentioned negative temperature coefficient of resistance and negative temperature coefficient of resistance can be obtained with a single thermistor, so unlike the conventional technology that combines a negative characteristic thermistor and a positive characteristic thermistor, the number of parts is small and the size is small. become.

〈実施例〉 第1図は本発明に係るヒータ回路の電気回路図である0
図において、1は電源、2はスイッチ、3は電流制限用
の抵抗、4は半導体ヒータである。半導体ヒータ4は、
第2図に示すように、キュリー温度Tcよりも低い温度
領域で負の抵抗温度係数を有し、キュリー温度Tcより
も高い温度領域では正の抵抗温度係数を有するV特性を
示すサーミスタ(以下V特性サーミスタと称する)で構
成されている。従って、キュリー温度Tc。
<Example> FIG. 1 is an electrical circuit diagram of a heater circuit according to the present invention.
In the figure, 1 is a power source, 2 is a switch, 3 is a current limiting resistor, and 4 is a semiconductor heater. The semiconductor heater 4 is
As shown in Figure 2, a thermistor (hereinafter referred to as V (referred to as a characteristic thermistor). Therefore, the Curie temperature Tc.

付近で、最も低い抵抗値を示す。It shows the lowest resistance value in the vicinity.

■特性サーミスタは、正の抵抗温度係数を有するBaT
i0.系半導体磁器組成物のバリウムBaを、同じ価数
で近似のイオン半径を有する、ストロンチウムS「と鉛
Pbで置き換え、5rTlOs−PbTiOs系半導体
とすることにより得られる。■特性サーミスタの製造方
法及び電極構造等は、従来より周知の正特性サーミスタ
と同様でよい。
■The characteristic thermistor is BaT, which has a positive temperature coefficient of resistance.
i0. Obtained by replacing barium Ba in the semiconductor ceramic composition with strontium S and lead Pb, which have the same valence and approximate ionic radius, to produce a 5rTlOs-PbTiOs semiconductor. ■Characteristics Thermistor manufacturing method and electrode The structure etc. may be the same as that of a conventionally well-known positive temperature coefficient thermistor.

電源1は、第1図の回路例では直流電源として示しであ
るが、第3図に示すように、交流電源であってもよい。
Although the power supply 1 is shown as a DC power supply in the circuit example of FIG. 1, it may be an AC power supply as shown in FIG.

抵抗3は、■特性サーミスタで構成される半導体ヒータ
2に供給されるパワー制御用として挿入されたものであ
り、その抵抗値Rは熱負荷の容量を考慮して定める。抵
抗3は可変抵抗器または抵抗器以外の電流制御素子もし
くは制御回路によって置換できるし、そのような制御が
不要な場合には省略することも可能である。
The resistor 3 is inserted to control the power supplied to the semiconductor heater 2 constituted by a characteristic thermistor, and its resistance value R is determined in consideration of the heat load capacity. The resistor 3 can be replaced by a variable resistor or a current control element or control circuit other than the resistor, or can be omitted if such control is unnecessary.

次に、第2図の抵抗温度特性図を参照して、第1図及び
第3図に示したヒータ回路の回路動作を説明する。スイ
・ツチ2が開いている状態では、■特性サーミスタでな
る半導体ヒータ4の温度TPは環境温度によって定まる
温度になっておリ、その抵抗値RPは温度TPに対応す
る値となっている。温度T、はキュリー温度Tcよりも
低いものとする。この状態で、スイッチ2を閉じると、
■特性サーミスタでなる半導体ヒータ4に回路電流1v
が流れ、半導体ヒータ4においてRp’lv’なるエネ
ルギーが消費される。半導体ヒータ4はこのジュール熱
によって自己加熱され、温度が上昇する。発生する発熱
ff1pp  (W)は、抵抗3の抵抗値R1半導体ヒ
ータ4の抵抗値RP5電源1の電圧Eに関して、次のよ
うに表わされる。
Next, the circuit operation of the heater circuit shown in FIGS. 1 and 3 will be explained with reference to the resistance temperature characteristic diagram shown in FIG. When the switch 2 is open, the temperature TP of the semiconductor heater 4, which is a thermistor with characteristic (1), is a temperature determined by the environmental temperature, and its resistance value RP is a value corresponding to the temperature TP. It is assumed that the temperature T is lower than the Curie temperature Tc. In this state, when switch 2 is closed,
■Circuit current 1V in semiconductor heater 4 made of characteristic thermistor
flows, and energy Rp'lv' is consumed in the semiconductor heater 4. The semiconductor heater 4 is self-heated by this Joule heat, and its temperature increases. The generated heat ff1pp (W) is expressed as follows with respect to the resistance value R1 of the resistor 3, the resistance value RP5 of the semiconductor heater 4, and the voltage E of the power source 1.

Pp(W)=Rp −E2/ (Rp +R)’(w)
このときの半導体ヒータ4の動作領域は、■特性のうち
、負の抵抗温度係数を有する領域であるので、上述の自
己加熱により、動作点Pは抵抗値R,が低くなる方向に
推移する。このため、半導体ヒータ4に流れる回路電流
Iνが一層増大して、ジュール熱が増え、これが更に半
導体ヒータ4を自己加熱する。この一連の動作により、
半導体ヒータ4の動作点Pはキュリー温度Tcまで加速
度的に推移することとなる。このように、スイッチ2を
閉じて電源1を投入した直後は、負の抵抗温度係数によ
って与えられる高抵抗体として動作するから、突入電流
が半導体ヒータ4のそれ自体の有する特性によって自動
的に抑制される。
Pp(W)=Rp −E2/ (Rp +R)'(w)
Since the operating region of the semiconductor heater 4 at this time is a region having a negative temperature coefficient of resistance in the characteristic (1), the operating point P shifts in a direction in which the resistance value R becomes lower due to the above-mentioned self-heating. Therefore, the circuit current Iv flowing through the semiconductor heater 4 further increases, Joule heat increases, and this further causes the semiconductor heater 4 to self-heat. With this series of actions,
The operating point P of the semiconductor heater 4 changes at an accelerated rate up to the Curie temperature Tc. In this way, immediately after the switch 2 is closed and the power supply 1 is turned on, it operates as a high resistance element given by the negative temperature coefficient of resistance, so that the inrush current is automatically suppressed by the characteristics of the semiconductor heater 4 itself. be done.

上述の加熱作用によって動作点Pがキュリー温度Tcを
越えると、半導体ヒータ4は、正の抵抗温度係数を有す
る領域に入る。この領域では、従来の正特性サーミスタ
において論じられた自己温度制御理論が支配する。即ち
、半導体ヒータ4の自己発熱によりその抵抗値が増える
と、回路電流IVが減少する。結果として半導体ヒータ
4の発熱量が減少し、動作点Pはキュリー温度Tcの方
向に移動する。即ち、半導体ヒータ4で消費されるエネ
ルギーを最大とするように、換言すれば、半導体ヒータ
4の発熱量が最大となるように、自己温度制御機能が働
くこととなる。このときの発熱量P (w)は、抵抗3
の抵抗値R1半導体ヒータ4のキュリー温度Tcでの抵
抗値ROs電源1の電圧εとして、次のように表わされ
る。
When the operating point P exceeds the Curie temperature Tc due to the heating effect described above, the semiconductor heater 4 enters a region having a positive temperature coefficient of resistance. In this area, the self-temperature control theory discussed in conventional positive temperature coefficient thermistors prevails. That is, when the resistance value of the semiconductor heater 4 increases due to self-heating, the circuit current IV decreases. As a result, the amount of heat generated by the semiconductor heater 4 decreases, and the operating point P moves toward the Curie temperature Tc. That is, the self-temperature control function operates so that the energy consumed by the semiconductor heater 4 is maximized, or in other words, the amount of heat generated by the semiconductor heater 4 is maximized. The amount of heat generated P (w) at this time is the resistance 3
The resistance value R1 of the semiconductor heater 4 at the Curie temperature Tc is expressed as follows, where the resistance value ROs is the voltage ε of the power supply 1.

P (w)=Ro−E” / (Ro +R)” (w
)上記式に示されるように、発熱量P (w)はキュリ
ー温度Tcでの抵抗値ROを変えることで可変調整でき
る。また、抵抗3の抵抗値R及び電源1の電圧値Eを変
えることによっても、発熱量P (w)を可変調整でき
る。
P (w)=Ro−E”/(Ro+R)”(w
) As shown in the above formula, the amount of heat generated P (w) can be variably adjusted by changing the resistance value RO at the Curie temperature Tc. Furthermore, by changing the resistance value R of the resistor 3 and the voltage value E of the power source 1, the amount of heat generated P (w) can be variably adjusted.

〈発明の効果〉 以上述べたように、本発明によれば、次のような効果が
得られる。
<Effects of the Invention> As described above, according to the present invention, the following effects can be obtained.

(a)ヒータ回路を構成する半導体ヒータは、5rTi
O,−PbTiO3系半導体素材からなるサーミスタを
含み、サーミスタはキュリー温度よりも低い温度領域で
負の抵抗温度係数を有するので、突入電流を抑制し得る
ヒータ回路及び半導体ヒータを提供できる。
(a) The semiconductor heater constituting the heater circuit is made of 5rTi
Since the thermistor includes a thermistor made of an O,-PbTiO3-based semiconductor material and has a negative temperature coefficient of resistance in a temperature range lower than the Curie temperature, it is possible to provide a heater circuit and a semiconductor heater that can suppress inrush current.

(b)半導体ヒータを構成するサーミスタは、キュリー
温度よりも高い温度領域では正の抵抗温度係数を有する
ので、定常発熱動作領域では、定温度発熱体として動作
するヒータ回路及び半導体ヒータを提供できる。
(b) Since the thermistor constituting the semiconductor heater has a positive temperature coefficient of resistance in a temperature range higher than the Curie temperature, it is possible to provide a heater circuit and a semiconductor heater that operate as a constant temperature heating element in a steady heat generation operation range.

(C)負特性サーミスタと正特性サーミスタとを組合せ
る従来技術と異なって、部品点数が少なく、小型のヒー
タ回路及び半導体ヒータを提供できる。
(C) Unlike the conventional technology in which a negative characteristic thermistor and a positive characteristic thermistor are combined, the number of parts is small, and a small heater circuit and semiconductor heater can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るヒータ回路の電気回路図、第2図
は一ヒータ回路を構成する半導体ヒータの抵抗温度特性
を示す図、第3図は本発明に係るヒータ回路の別の実施
例における電気回路図である。 4・・・半導体ヒータ 第 1 図 第 図 本皮 第 図
FIG. 1 is an electric circuit diagram of a heater circuit according to the present invention, FIG. 2 is a diagram showing resistance temperature characteristics of a semiconductor heater constituting one heater circuit, and FIG. 3 is another embodiment of a heater circuit according to the present invention. FIG. 4... Semiconductor heater 1 Fig. Fig. Main skin Fig.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体ヒータを有するヒータ回路であって、 前記半導体ヒータは、SrTiO_3−PbTiO_3
系半導体素材からなるサーミスタを含み、前記サーミス
タは、キュリー温度よりも低い温度領域で負の抵抗温度
係数を有し、キュリー温度よりも高い温度領域では正の
抵抗温度係数を有すること を特徴とするヒータ回路。
(1) A heater circuit having a semiconductor heater, wherein the semiconductor heater is SrTiO_3-PbTiO_3
The thermistor is characterized in that it has a negative temperature coefficient of resistance in a temperature range lower than the Curie temperature and a positive temperature coefficient of resistance in a temperature range higher than the Curie temperature. heater circuit.
(2)SrTiO_3−PbTiO_3系半導体素材よ
りなるサーミスタを含む半導体ヒータであって、 前記サーミスタは、キュリー温度よりも低い温度領域で
負の抵抗温度係数を有し、キュリー温度よりも高い温度
領域では正の抵抗温度係数を有すること を特徴とする半導体ヒータ。
(2) A semiconductor heater including a thermistor made of a SrTiO_3-PbTiO_3-based semiconductor material, wherein the thermistor has a negative temperature coefficient of resistance in a temperature range lower than the Curie temperature and a positive resistance temperature coefficient in a temperature range higher than the Curie temperature. A semiconductor heater characterized by having a temperature coefficient of resistance of .
JP29922789A 1989-11-17 1989-11-17 Heater circuit and semiconductor heater Pending JPH03159090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29922789A JPH03159090A (en) 1989-11-17 1989-11-17 Heater circuit and semiconductor heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29922789A JPH03159090A (en) 1989-11-17 1989-11-17 Heater circuit and semiconductor heater

Publications (1)

Publication Number Publication Date
JPH03159090A true JPH03159090A (en) 1991-07-09

Family

ID=17869791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29922789A Pending JPH03159090A (en) 1989-11-17 1989-11-17 Heater circuit and semiconductor heater

Country Status (1)

Country Link
JP (1) JPH03159090A (en)

Similar Documents

Publication Publication Date Title
US8383993B2 (en) Temperature control device of electric heater using thermo-sensitive resin and safety device thereof
WO2021031766A1 (en) Voltage limiting circuit
AU1765792A (en) Pulse forming circuits
JPH03159090A (en) Heater circuit and semiconductor heater
CN207706464U (en) Electric blanket and its safe heating circuit
JP5330548B2 (en) Overvoltage protection circuit for each switch power cycle
GB1602734A (en) Electrically-powered heating panels
JPH0323804Y2 (en)
JPS5937849Y2 (en) temperature control device
JP4724838B2 (en) Current control resistor element
JPH03159091A (en) Exothermic body having thermister characteristics
JPS63156938A (en) Electric space heater
JPH02269413A (en) Current limiting device
JP3199177B2 (en) Driving method of overcurrent protection element
JPH01198219A (en) Protective device for motor
KR950003692Y1 (en) Automatic temperature control apparatus
JPH03204907A (en) Heat sensitive resistance element equipped with variable resistor
RU2089935C1 (en) Thyristor regulator of temperature of electric heater
JPS61256584A (en) Excessive temperature rise prevention circuit
CN107949077A (en) Electric blanket and its safe heating circuit
JP2558312B2 (en) Overcurrent detection device
JPS61138483A (en) Electric heating cloth
JPH05250054A (en) Constant current circuit
JPH03230761A (en) Rectifier
JPH02128204A (en) Temperature controller