JP5330548B2 - Overvoltage protection circuit for each switch power cycle - Google Patents

Overvoltage protection circuit for each switch power cycle Download PDF

Info

Publication number
JP5330548B2
JP5330548B2 JP2011552296A JP2011552296A JP5330548B2 JP 5330548 B2 JP5330548 B2 JP 5330548B2 JP 2011552296 A JP2011552296 A JP 2011552296A JP 2011552296 A JP2011552296 A JP 2011552296A JP 5330548 B2 JP5330548 B2 JP 5330548B2
Authority
JP
Japan
Prior art keywords
diode
resistor
thyristor
cathode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011552296A
Other languages
Japanese (ja)
Other versions
JP2012519462A (en
Inventor
盧東方
符平凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2012519462A publication Critical patent/JP2012519462A/en
Application granted granted Critical
Publication of JP5330548B2 publication Critical patent/JP5330548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

A cycle-by-cycle over voltage protection circuit (1) for a switching power supply includes a thyristor (SCR), a zener diode (TVS), a first resistor (R1), a second resistor (R2), a second diode (D2) and a second capacitor (C2). The anode of the thyristor (SCR) is connected to an alternating current input terminal (ACIT) and the cathode of the thyristor (SCR) is connected to a load terminal (LDT). The cathode of the zener diode (TVS) is connected to the gate of the thyristor (SCR) and the anode of the zener diode (TVS) is connected to the first resistor (R1) and the second resistor (R2) connected to each other in parallel. The first resistor (R1) is directly connected to the alternating current input terminal (ACIT) and the second resistor is connected to the alternating current input terminal (ACIT) through the second diode (D2) of which the connection direction is converse to that of the zener diode (TVS). The second capacitor (C2) is connected between the cathode of the thyristor (SCR) and the cathode of the zener diode (TVS). A first capacitor (C1) is connected between the load terminal (LDT) and a load ground terminal (LDGT).

Description

本発明は、過電圧保護技術に係り、特にスイッチ電源サイクル毎の過電圧保護回路に係るものである。   The present invention relates to an overvoltage protection technique, and more particularly to an overvoltage protection circuit for each switch power supply cycle.

電源のさまざまな環境条件は比較的複雑で、良くない場合、例え電力網電圧が不安定で、220VACと380VACが判明されがたい場合、電源入力端より高すぎる電圧が入力されるため、電器設備におけるスイッチ電源部分のうちの、エネルギ蓄積コンデンサーなども含める内部部品・部材が、高すぎる電圧を受けて損壊されて、電器全体の正常稼動に悪い影響を与える。そのような場合において電器設備を保護するため、一般的に電源入力端に過電圧保護回路を加える方法を採用する。通常、下記のような複数の保護方法がある。   The various environmental conditions of the power supply are relatively complex, and if not good, even if the grid voltage is unstable and 220 VAC and 380 VAC are difficult to determine, too much voltage will be input from the power input end, so in the electrical equipment Internal parts / members including the energy storage capacitor in the switch power supply are damaged by receiving a voltage that is too high, which adversely affects the normal operation of the entire appliance. In such a case, in order to protect the electrical equipment, a method of adding an overvoltage protection circuit to the power input terminal is generally adopted. There are usually several protection methods:

その1、正特性サーミスタヒューズPTCCと金属酸化物感圧バリスターMOVとを採用して結合保護を行う。図1に示されるように、AV入力端より入力が所定の数値を超えた時点で、感圧バリスターの抵抗値が急速に降下され、ハイパワー回路を形成し、PTCCは、比較的高い電流が通されて急速に発熱することより高インピーダンス状態に転換されて、回路に通される電流を非常に少ないように制限することによって、電源の後続回路を保護する目的を達する。但しその欠点としては、感圧バリスターの使用寿命が比較的短く、反応時間が遅くて、且つ保護が一旦開始されると共に、電源を切断すべきで、PTCCが冷却して低インピーダンス状態に戻れた後で、ようやく稼動が続けられていることが挙げられる。   First, a positive temperature coefficient thermistor fuse PTCC and a metal oxide pressure-sensitive varistor MOV are used to perform coupling protection. As shown in FIG. 1, when the input exceeds a predetermined value from the AV input terminal, the resistance value of the pressure-sensitive varistor is rapidly lowered to form a high power circuit, and the PTCC has a relatively high current. Is switched to a high impedance state rather than being rapidly heated to achieve the purpose of protecting the subsequent circuits of the power supply by limiting the current passed through the circuit to be very low. However, the disadvantage is that the pressure-sensitive varistor has a relatively short service life, a slow reaction time, and once protection is started, the power should be turned off so that the PTCC can cool down and return to a low impedance state. After that, it is finally mentioned that the operation is continuing.

その2、方法2は方法1の改良で、感圧バリスターの変わりに定電圧ダイオードを採用する。図2に示されるように、定電圧ダイオードが感圧バリスターの欠点を克服し、反応時間が非常に速くて、使用寿命も長く、制限電圧の一致性が比較的高く、AV入力端より入力が定電圧ダイオードの制限電圧を超えた時点で、定電圧ダイオードが破壊され、そのインピーダンスが即時に減少され、且つ電圧を定電圧ダイオードの制限電圧に制限されて、ハイパワー回路を形成しており、PTCCは、比較的高い電流が通されて急速に発熱することより高インピーダンス状態に転換されて、回路に通される電流を非常に少ないように制限することによって、電源の後続回路を保護する目的を達する。但しその欠点としては、保護が一旦開始されると共に、電源を切断すべきで、PTCCが冷却して低インピーダンス状態に戻れた後で、ようやく稼動が正常に続けられていることが挙げられる。   Method 2 and method 2 are improvements of method 1 in which a constant voltage diode is used instead of a pressure sensitive varistor. As shown in FIG. 2, the constant voltage diode overcomes the drawbacks of the pressure-sensitive varistor, the reaction time is very fast, the service life is long, the matching of the limiting voltage is relatively high, and the input from the AV input terminal is relatively high When the voltage exceeds the limit voltage of the constant voltage diode, the constant voltage diode is destroyed, its impedance is immediately reduced, and the voltage is limited to the limit voltage of the constant voltage diode, forming a high power circuit. PTCC protects subsequent circuits of the power supply by limiting the current passed through the circuit to be very low by switching to a high impedance state rather than being heated rapidly when a relatively high current is passed. Reach the purpose. However, the disadvantage is that the protection should be started once and the power supply should be turned off, and after PTCC has cooled down and returned to the low impedance state, the operation is finally continued normally.

その3、サイリスターを採用する過電圧保護方法であり、図3に示されるように、AV入力電圧が保護回路の所定電圧まで上昇した時点(R1、R2の抵抗値を変更すれば所定電圧を変更できる)で、トリガーダイオードDSが導通され、サイリスターが導通され、電流がPTCC、サイリスター限流抵抗器R3に通されて、サイリスターがハイパワー回路を形成し、PTCCは、比較的高い電流が通されて急速に発熱することより高インピーダンス状態に転換されて、回路に通される電流を非常に少ないように制限することによって、電源の後続回路を保護する目的を達する。但しその欠点としては、PTCCでの保護が一旦開始されると共に、電源を切断すべきで、PTCCが冷却して低インピーダンス状態に戻れた後で、ようやく稼動が正常に続けられていることが挙げられる。   Third, it is an overvoltage protection method that uses a thyristor. As shown in FIG. 3, when the AV input voltage rises to a predetermined voltage of the protection circuit (the resistance value of R1 and R2 can be changed, the predetermined voltage can be changed). ), The trigger diode DS is turned on, the thyristor is turned on, the current is passed through the PTCC, the thyristor current limiting resistor R3, the thyristor forms a high power circuit, and the PTCC is passed through a relatively high current. The purpose of protecting the subsequent circuits of the power supply is achieved by switching to a high impedance state rather than rapidly generating heat and limiting the current passed through the circuit to be very low. However, the disadvantage is that protection with PTCC should be started once and the power supply should be cut off, and after PTCC has cooled down and returned to a low impedance state, the operation is finally continued normally. It is done.

その4、サイリスターを採用する電圧制限保護方法であり、その原理は図4に示されるように、制御回路は、AV入力電圧の高低によって、比較、演算回路を介して適宜な延遅トリガーパルスを出力してサイリスターの導通時間を制御し、スイッチ電源の後続回路の電圧を最高工作電圧超えないようにさせる。このような保護方法がよいが、但し制御回路が非常に複雑で、且つ実現コストが高いため、小電力スイッチ電源には使用することが適宜ではない。   No.4, a voltage limit protection method that uses thyristors. The principle of the method is as shown in FIG. 4, and the control circuit sends an appropriate delayed trigger pulse via the comparison and arithmetic circuit according to the level of the AV input voltage. Outputs to control the thyristor conduction time so that the voltage of the subsequent circuit of the switch power supply does not exceed the maximum working voltage. Such a protection method is good, but it is not appropriate to use it for a low-power switch power supply because the control circuit is very complicated and the realization cost is high.

その5、リレー過電圧保護を採用し、AV入力電圧が上昇すると共に、整流後のDC電圧も連れて高くなり、該DC電圧が定電圧ダイオードの制限電圧により高くなった時、定電圧ダイオードが破壊され、トランジスタQ1が導通され、リレーが稼動になり、常閉接点がOFFになって、後続の電源回路の電圧を切断し、入力過電圧を保護する目的を達する。該方法が簡単で確実であったが、その欠点としては、電圧フリッカが比較的大きい場合、リレーが時々稼動になり、電源の持続的で安定的に供給することに影響を与えており、該保護回路にはリレーを導入するため、別途リレーを稼動するための電源を提供すべきで、煩雑になり、且つ体積が大きくて、小電力スイッチ電源には使用することが適宜ではないことが挙げられる。   5. Adopting relay overvoltage protection, the AV input voltage rises and the DC voltage after rectification also increases, and when the DC voltage becomes higher due to the limit voltage of the constant voltage diode, the constant voltage diode is destroyed Then, the transistor Q1 is turned on, the relay is activated, the normally closed contact is turned OFF, the voltage of the subsequent power supply circuit is cut off, and the purpose of protecting the input overvoltage is achieved. The method was simple and reliable, but the disadvantage is that when the voltage flicker is relatively large, the relay sometimes becomes active, affecting the continuous and stable supply of power, In order to introduce a relay in the protection circuit, a power source for operating the relay should be provided separately, which is complicated and large in volume and is not appropriate for use in a low power switch power source. It is done.

そこで、本発明の課題は、前記現有技術の問題を解決するため、サイリスターACさい断原理によって、電力網電圧を直接サンプルし、AC入力電圧の高低によって、サイリスターの導通時間を自動的に変更する電源スイッチの過電圧保護回路を提供することである。   Accordingly, an object of the present invention is to provide a power supply that directly samples the power grid voltage according to the thyristor AC cutting principle and automatically changes the conduction time of the thyristor according to the level of the AC input voltage in order to solve the problems of the existing technology. An overvoltage protection circuit for a switch is provided.

前記技術課題を解決するために、本発明は以下の技術手段によって構成した。   In order to solve the technical problem, the present invention is constituted by the following technical means.

スイッチ電源サイクル毎の過電圧保護回路であって、AC入力と負荷の間に1つの過電圧保護回路1が接続され、該過電圧保護回路1は、サイリスターと、定電圧ダイオードと、第1抵抗と、第2抵抗と、第2ダイオードと、第2コンデンサーとを含み、該サイリスターの陽極がAC入力端に接続され、その陰極が負荷端に接続され、該定電圧ダイオードの陰極とサイリスターのゲート極に接続され、定電圧ダイオードの陽極がそれぞれ互いに並列される第1抵抗と第2抵抗に接続され、第1抵抗がAC入力端に直接に接続され、第2抵抗が定電圧ダイオードと逆方向に設置される第2ダイオードと接続されたことによってAC入力端に接続され、第2コンデンサーがサイリスターの陰極と低電圧ダイオードの陰極との間に接続され、負荷端と負荷アース端の間に第1コンデンサーが接続され、さらに、サイリスターの陰極と負荷端との間に、サイリスターと同方向に接続する第1ダイオードが設置され、第1ダイオードの陽極と共用アース端との間に、第3抵抗が接続される。 An overvoltage protection circuit for each switch power cycle, wherein one overvoltage protection circuit 1 is connected between an AC input and a load. The overvoltage protection circuit 1 includes a thyristor, a constant voltage diode, a first resistor, The thyristor has an anode connected to an AC input terminal, a cathode connected to a load terminal, and a cathode of the constant voltage diode and a gate electrode of the thyristor. The anode of the constant voltage diode is connected to the first resistor and the second resistor that are parallel to each other, the first resistor is directly connected to the AC input terminal, and the second resistor is installed in the opposite direction to the constant voltage diode. that is connected to the AC input end by being connected to the second diode, the second capacitor is connected between the cathode of the cathode and a low voltage diode thyristor, the load end Is first condenser connected between the load ground end, further, between the cathode and the load end of the thyristor, the first diode is installed to be connected to a thyristor in the same direction, and the anode of the first diode and the common ground terminal during, Ru third resistor is connected.

前記手段に関して、好ましくは、さらに第3ダイオードを含み、該第3ダイオードが第3抵抗と直列で接続され、その陰極が第3抵抗に接続され、その陽極が共用アース端と接続される。   With regard to said means, preferably further comprising a third diode, said third diode being connected in series with a third resistor, its cathode being connected to the third resistor and its anode being connected to the common earth terminal.

スイッチ電源サイクル毎の過電圧保護回路であって、AC入力と負荷の間に1つの過電圧保護回路1が接続され、該過電圧保護回路1は、第1サイリスターと、第1定電圧ダイオードと、第1抵抗と、第2抵抗と、第1ダイオードと、第1コンデンサーと第2コンデンサーとを含み、該第1サイリスターの陽極がAC入力端に接続され、その陰極が負荷端に接続され、該第1定電圧ダイオードの陰極と第1サイリスターのゲート極に接続され、第1定電圧ダイオードの陽極がそれぞれ互いに並列される第1抵抗と第2抵抗に接続され、第1抵抗がAC入力端に直接に接続され、第2抵抗が第1定電圧ダイオードと逆方向に設置される第1ダイオードと接続されたことによってAC入力端に接続され、第2コンデンサーが第1サイリスターの陰極と第1定電圧ダイオードの陰極との間に接続され、負荷端と負荷アース端の間に第1コンデンサーが接続され、該過電圧保護回路1には、さらに第2ダイオードと第3ダイオードが設置され、第2ダイオードの陽極が共用アース端に接続され、その陰極が負荷端に接続され、第3ダイオードが共用アース端と負荷アース端との接続線上に接続され、第3ダイオードの陽極が第1コンデンサーの陰極に接続され、第3ダイオードの陰極が第2ダイオードの陽極に接続され、AC入力端と負荷アースとの間に、過電圧保護回路が接続され、該過電圧保護回路は、第2サイリスターと、第2定電圧ダイオードと、第抵抗と、第抵抗と、第コンデンサーと、第ダイオードを含み、該第2サイリスターの陽極が負荷アース端に接続され、その陰極がAC入力端に接続され、該第2定電圧ダイオードの陰極が第2サイリスターのゲート極に接続され、第2定電圧ダイオードの陽極がそれぞれ互いに並列される第抵抗と第抵抗に接続され、第抵抗が負荷アース端に直接接続され、第抵抗が第2定電圧ダイオードと逆方向に接続する第ダイオードと接続されたことによって負荷アース端に接続され、第コンデンサーが第2サイリスターの陰極と第2定電圧ダイオードの陰極との間に接続される。 An overvoltage protection circuit for each switch power cycle, wherein one overvoltage protection circuit 1 is connected between an AC input and a load. The overvoltage protection circuit 1 includes a first thyristor, a first constant voltage diode, and a first A resistor, a second resistor, a first diode, a first capacitor, and a second capacitor, the anode of the first thyristor is connected to the AC input terminal, the cathode is connected to the load terminal, and the first The cathode of the constant voltage diode and the gate electrode of the first thyristor are connected, the anode of the first constant voltage diode is connected to the first resistor and the second resistor, respectively, which are parallel to each other, and the first resistor is directly connected to the AC input terminal. The second capacitor is connected to the AC input terminal by being connected to the first diode installed in the opposite direction to the first constant voltage diode, and the second capacitor is connected to the shadow of the first thyristor. And a cathode of the first constant voltage diode, a first capacitor is connected between the load end and the load ground end, and the overvoltage protection circuit 1 further includes a second diode and a third diode. The anode of the second diode is connected to the common ground end, the cathode is connected to the load end, the third diode is connected to the connection line between the common ground end and the load ground end, and the anode of the third diode is the first is connected to the cathode of the capacitor, the cathode of the third diode is connected to the anode of the second diode, between the AC input and the load ground, the overvoltage protection circuit 2 is connected, the overvoltage protection circuit 2, a second and thyristor, a second constant-voltage diode, and a third resistor, a fourth resistor, a third capacitor, a fourth diode, an anode of the second thyristor is connected to the load ground end, Cathode is connected to the AC input ends, the cathode of the second zener diode is connected to the gate electrode of the second thyristor, a third resistor and a fourth resistor anode of the second zener diode are parallel to each other Connected, the third resistor is directly connected to the load ground terminal, the fourth resistor is connected to the fourth diode connected in the opposite direction to the second constant voltage diode, and is connected to the load ground terminal, and the third capacitor is Connected between the cathode of the second thyristor and the cathode of the second constant voltage diode.

このため、本発明はサイリスターACさい断原理によって、電力網電圧を直接サンプルし、AC入力電圧の高低によって、サイリスターの導通時間を自動的に変更して、AC入力電源に対するサイクル毎の制御を達成するため、反応時間が遅いという欠点を避け、電力網電圧のフリッカに対して自動的で、リアルタイムに修正することができて、電源の後続回路の過電圧保護を達成した。   Therefore, the present invention directly samples the power grid voltage according to the thyristor AC cutting principle, and automatically changes the conduction time of the thyristor according to the level of the AC input voltage to achieve cycle-by-cycle control over the AC input power source. Therefore, it avoids the disadvantage of slow reaction time, and can automatically correct in real time against the flicker of the power grid voltage, achieving overvoltage protection of the subsequent circuit of the power supply.

現有技術の第1回路図である。It is a 1st circuit diagram of existing technology. 現有技術の第2回路図である。It is a 2nd circuit diagram of existing technology. 現有技術の第3回路図である。It is a 3rd circuit diagram of existing technology. 現有技術の第4回路図である。It is a 4th circuit diagram of existing technology. 現有技術の第5回路図である。It is a 5th circuit diagram of existing technology. 本発明の単相半波過電圧保護の基本回路図である。It is a basic circuit diagram of single phase half-wave overvoltage protection of the present invention. 本発明の単相半波過電圧保護の展開回路図である。It is a development circuit diagram of the single phase half wave overvoltage protection of the present invention. 本発明の単相全波過電圧保護の基本回路図である。It is a basic circuit diagram of single phase full wave overvoltage protection of the present invention. 本発明の単相全波過電圧保護の展開回路図である。It is a development circuit diagram of the single phase full wave overvoltage protection of the present invention. 本発明の単相半波過電圧保護基本回路の波形説明図である。It is waveform explanatory drawing of the single phase half-wave overvoltage protection basic circuit of this invention. 本発明の単相半波過電圧保護展開回路A点の電圧波形説明図である。It is voltage waveform explanatory drawing of the single phase half-wave overvoltage protection expansion circuit A point of this invention.

以下、図面を合わせて、実施例によって本発明の技術手段についてさらに詳しく説明する。   Hereinafter, the technical means of the present invention will be described in more detail with reference to the drawings.

〔実施例1〕
図6に示される単相半波過電圧保護基本回路は、AC入力と負荷の間に設置され、過電圧保護回路1とダイオードD1と、抵抗R3と、コンデンサーC1とからなり、該単相半波過電圧保護基本回路の構成は、1つのサイリスターSCRと、1つの定電圧ダイオードTVSと、1つの抵抗R3とを含んでおり、該サイリスターSCRの陽極がAC入力端に接続され、その陰極がサイリスターSCRと同方向に設置するダイオードD1と接続されたことによって負荷端に接続され、該定電圧ダイオードTVSの陰極とサイリスターSCRのゲート極に接続され、定電圧ダイオードTVSの陽極がそれぞれ互いに並列される抵抗R1と抵抗R2に接続され、抵抗R1がAC入力端に直接に接続され、抵抗R2が定電圧ダイオードTVSと逆方向に設置されるダイオードD2と接続されたことによってAC入力端に接続され、コンデンサーC2がサイリスターSCRの陰極と定電圧ダイオードTVSの陰極との間に接続され、該抵抗R3がダイオードD1の陽極とAC入力端の間に接続され、負荷入力端と負荷アース端の間にコンデンサーC1が接続される。前記サイリスターSCR、ダイオードD1、コンデンサーC1は電流入力メイン回路を構成し、抵抗R1、定電圧ダイオードTVS、コンデンサーC2、抵抗R3はサイリスターのトリガーパルスを生成する制御回路1を構成し、ダイオードD2、抵抗R2、定電圧ダイオードTVS、コンデンサーC2、抵抗R3はサイリスターのトリガーパルスを生成する制御回路2を構成する。
[Example 1]
The single-phase half-wave overvoltage protection basic circuit shown in FIG. 6 is installed between an AC input and a load, and includes an overvoltage protection circuit 1, a diode D1, a resistor R3, and a capacitor C1. The configuration of the protection basic circuit includes one thyristor SCR, one constant voltage diode TVS, and one resistor R3. The anode of the thyristor SCR is connected to the AC input terminal, and the cathode is connected to the thyristor SCR. The resistor R1 is connected to the load terminal by being connected to the diode D1 installed in the same direction, connected to the cathode of the constant voltage diode TVS and the gate electrode of the thyristor SCR, and the anode of the constant voltage diode TVS is parallel to each other. And resistor R2, resistor R1 is directly connected to the AC input terminal, and resistor R2 is in the opposite direction to constant voltage diode TVS. The capacitor C2 is connected between the cathode of the thyristor SCR and the cathode of the constant voltage diode TVS, and the resistor R3 is connected to the anode of the diode D1 and the AC input. The capacitor C1 is connected between the load input terminal and the load ground terminal. The thyristor SCR, the diode D1, and the capacitor C1 constitute a current input main circuit, and the resistor R1, the constant voltage diode TVS, the capacitor C2, and the resistor R3 constitute a control circuit 1 that generates a trigger pulse for the thyristor, and the diode D2, the resistor R2, the constant voltage diode TVS, the capacitor C2, and the resistor R3 constitute a control circuit 2 that generates a trigger pulse for the thyristor.

本回路の作動原理は、AC入力が正半周期の初期位相に入った時、サイリスターSCRのパルストリガー端としてのA端がローレベル状態を呈し、A点電圧が図11に示されるように、サイリスターSCRがカットオフになった時、Cの電圧がB点より高く、ダイオードD1が逆方向カットオフ状態を呈し、蓄積コンデンサーC1が逆方向から入力回路に放電することができない。正半周期電圧の徐々の上昇に伴い、電流が制御回路1、即ち抵抗R1、定電圧ダイオードTVS、抵抗R3を介して、コンデンサーC2に正方向に充電し、その時、定電圧ダイオードTVSが正方向導通状態になり、ACの入力に伴う正半周期における電圧が徐々に上昇し、A点の電圧も同じように徐々に上昇し、A点の電圧がサイリスターのゲート極トリガー電圧VSCRを越えた際、サイリスターSCRが導通になり、コンデンサーC2の充電が終わっており、コンデンサーC2に対する正方向充電時間がTC2+(図10に示されるように)と称す。サイリスターSCRが導通になった後、A点の電圧が徐々に上昇し、B点の電圧がC点の電圧VC1(電圧C1端の電圧)+0.7V(ダイオードD1の正方向電圧降下)を越えた際、D1が導通になり、電流がメイン回路を介してコンデンサーC1に充電し、C点の電圧VC1が徐々に上昇し、正半周期の電圧が徐々に降下することに連れて、B点の電圧も徐々に降下され、B点の電圧がC点の電圧VC1+0.7Vより低下になった時、D1が締切りになり、コンデンサーC1に対する充電も終わり、コンデンサーC1に対する充電時間がTC1(図10に示されるように)と称す。抵抗R3の抵抗値が非常に高いため、サイリスターSCRを流過する電流がサイリスターの維持電流より小さくて、サイリスターSCRが締切りになり、電流出力メイン回路を切断し、サイリスターSCRの導通時間がTSCR(図10に示されるように)と称す。その時、サイリスターSCRをリアルタイムに流過する電流がその維持電流より大きくて、サイリスターSCRが導通になり、但し入力電圧がゼロに近くまで接近する時、サイリスターSCRが自動的にオフされて、電流出力メイン回路を切断する。 The operating principle of this circuit is that when the AC input enters the initial phase of the positive half cycle, the A terminal as the pulse trigger terminal of the thyristor SCR assumes a low level state, and the A point voltage is as shown in FIG. When the thyristor SCR is cut off, the voltage of C is higher than the point B, the diode D1 exhibits a reverse cut-off state, and the storage capacitor C1 cannot be discharged from the reverse direction to the input circuit. As the positive half-cycle voltage gradually increases, the current charges the capacitor C2 in the positive direction via the control circuit 1, that is, the resistor R1, the constant voltage diode TVS, and the resistor R3. At that time, the constant voltage diode TVS is in the positive direction. becomes conductive, the voltage gradually rises in the positive half cycle due to the AC input voltage at point a is also just as gradually increases, the voltage at point a exceeds the gate electrode trigger voltage V SCR thyristor At this time, the thyristor SCR becomes conductive and the charging of the capacitor C2 is finished, and the forward charging time for the capacitor C2 is referred to as T C2 + (as shown in FIG. 10). After the thyristor SCR becomes conductive, the voltage at the point A gradually rises, and the voltage at the point B becomes the voltage V C1 at the C point (voltage at the end of the voltage C1) +0.7 V (positive voltage drop of the diode D1). When D1 is exceeded, D1 becomes conductive, the current is charged into the capacitor C1 through the main circuit, the voltage V C1 at the point C gradually rises, and the voltage of the positive half cycle gradually falls. When the voltage at the point B is gradually lowered and the voltage at the point B becomes lower than the voltage V C1 +0.7 V at the point C, the D1 is cut off, the charging for the capacitor C1 is completed, and the charging time for the capacitor C1 is completed. Is referred to as T C1 (as shown in FIG. 10). Since the resistance value of the resistor R3 is very high, the current flowing through the thyristor SCR is smaller than the maintenance current of the thyristor, the thyristor SCR is cut off, the current output main circuit is disconnected, and the conduction time of the thyristor SCR is T SCR (As shown in FIG. 10). At that time, the current that flows through the thyristor SCR in real time is larger than the sustain current, and the thyristor SCR becomes conductive. However, when the input voltage approaches to zero, the thyristor SCR is automatically turned off, and the current output Disconnect the main circuit.

コンデンサーC1の充電時間TC1とサイリスターSCRの導通時間TSCRとが正比例になっているため、サイリスターSCRの導通時間が長いほど、コンデンサーC1における電圧VC1が高くなる。サイリスターSCRの導通がゲート極で制御され、ゲート極がトリガー電圧VSCRに達すると、サイリスターSCRが導通になる。A点の電圧VC2がVSCRに達する時間TC2+が長ければ長いほど、サイリスターSCRの導通時間TSCRが小さくなり、蓄積コンデンサーC1における電圧も低くなるため、C2に対する正方向の充電時間TC2+さえよく制御すれば、コンデンサーC1における電圧VC1が安全使用範囲内に収めることができて、負荷回路を保護する目的を達成する。これはすべてAC入力電圧が安定になっていることを条件とする。もしAC入力電圧が突然上昇すれば、制御回路1における充電電流が連れに増大され、ゲート極トリガー電圧VSCRに到達する時間TC2+が短縮され、サイリスターSCRの導通時間TSCRが延長され、コンデンサーC1に対する充電時間TC1が延長され、コンデンサーC1における電圧VC1が対応して増大されるため、さらに制御回路2と協力することによって、制御回路1がコンデンサーC1における充電時間TC1に対する制御を解決するべきである。 Since the charging time of capacitor C1 T C1 and conduction time of the thyristor SCR and T SCR is turned direct proportion, the longer the conduction time of the thyristor SCR, the voltage V C1 is higher in the condenser C1. Conduction of thyristor SCR is gated electrode, the gate electrode reaches the trigger voltage V SCR, thyristor SCR is turned on. The longer the time T C2 + for the voltage V C2 at point A to reach V SCR , the shorter the conduction time T SCR of the thyristor SCR and the voltage at the storage capacitor C1 also lower, so the charging time T C2 + in the positive direction with respect to C2 If well controlled, the voltage V C1 at the capacitor C1 can be kept within the safe use range, thereby achieving the purpose of protecting the load circuit. This is all conditional on the AC input voltage being stable. If the AC input voltage suddenly rises, the charging current in the control circuit 1 increases with time, the time T C2 + for reaching the gate trigger voltage V SCR is shortened, the conduction time T SCR of the thyristor SCR is extended, and the capacitor Since the charging time T C1 for C1 is extended and the voltage V C1 at the capacitor C1 is correspondingly increased, the control circuit 1 solves the control over the charging time T C1 at the capacitor C1 by further cooperation with the control circuit 2 Should do.

AC入力の正半周期において、制御回路2におけるダイオードD2が逆方向カットオフになり、制御回路2が役に立たず、負半周期に入ったばかりで、負電圧が比較的小さいため、定電圧ダイオードTVSが不導通で高抵抗状態に入り、制御回路にはわずかの漏れ電流を有し、A点電圧に対する影響が非常に少なくて、A点における電圧が基本的に変わらない。負電圧の増大と伴い、負電圧が定電圧ダイオードTVSの制限電圧VTVSを超えた時、定電圧ダイオードTVSの抵抗がすぐ減少され、且つ電圧を定電圧ダイオードTVSの制限電圧に制限し、制御回路2において、コンデンサーC2に対する逆方向充電回路を形成して、A点電圧を正電圧から負電圧に変更させ、A点の負電圧がVC2−と称す。コンデンサーC2に対する充電時間がTC2(図10に示されるように)と称す。もしAC入力電圧が増大(AC入力負電圧が増大)すれば、逆方向充電電流も増大され、共時に定電圧ダイオードTVSの破壊時間が繰り上げられるため、コンデンサーC2に対する充電時間TC2−が増加している。C2の充電時間の延長と充電電流の増大によって、A点においてさらに高い負電圧VC2−を形成させた。A点に形成される負電圧VC2−の高低は、AC入力の正半周期における回路1がコンデンサーC2に対する正方向充電時間を影響し、A点の負電圧VC2−が高ければ高いほど、正方向充電時間におけるC2は、サイリスターSCRが導通ゲート制限電圧VSCRをトリガーすることに到達する時間TC2+が長くなり、それによって、サイリスターSCRの導通時間TSCRが短縮されるため、コンデンサーC1に対する充電時間TC1が減少し、コンデンサーC1における電圧VC1も連れに降下されて、負荷に対する保護目的を達成する。 In the positive half cycle of the AC input, the diode D2 in the control circuit 2 is turned off in the reverse direction, the control circuit 2 is useless, and the negative voltage is relatively small just after entering the negative half cycle. It enters a high resistance state with no conduction, has a slight leakage current in the control circuit, has very little influence on the voltage at the point A, and the voltage at the point A is basically unchanged. As the negative voltage increases, when the negative voltage exceeds the limit voltage V TVS of the constant voltage diode TVS, the resistance of the constant voltage diode TVS is immediately reduced, and the voltage is limited to the limit voltage of the constant voltage diode TVS. In circuit 2, a reverse charging circuit for capacitor C2 is formed to change the voltage at point A from a positive voltage to a negative voltage, and the negative voltage at point A is referred to as V C2− . The charging time for capacitor C2 is referred to as T C2 (as shown in FIG. 10). If by the AC input voltage is increased (AC input negative voltage is increased), reverse charging current is also increased, since the breaking time of the constant voltage diode TVS is incremented when co, charging time T C2- increases for capacitors C2 ing. By extending the charging time of C2 and increasing the charging current, a higher negative voltage V C2− was formed at point A. The level of the negative voltage V C2- formed at the point A is such that the circuit 1 in the positive half cycle of the AC input affects the positive charging time for the capacitor C2, and the higher the negative voltage V C2-at the point A, C2 in the forward charge time is a time TC2 + for the thyristor SCR to reach the conduction gate limit voltage V SCR is increased, thereby shortening the conduction time T SCR of the thyristor SCR, and therefore for the capacitor C1. The charging time T C1 is reduced and the voltage V C1 at the capacitor C1 is also lowered to achieve the protection purpose for the load.

逆に、AC入力の負電圧が減少になり、逆方向充電電流が減少されると共に、定電圧ダイオードTVSの破壊される時間が遅延されるため、コンデンサーC2に対する逆方向充電時間TC2−が短縮になり、コンデンサーC2が充電時間の短縮と充電電流の減少のため、A点において比較的低い負電圧VC2の形成をもたらした。結局コンデンサーC2が正方向充電の時においてサイリスターSCRが導通ゲート制限電圧VSCRをトリガーすることに到達する時間が短縮されてしまい、それによって、コンデンサーC1に対する充電時間TC1を増加し、コンデンサーC1の電圧VC1も連れに上昇されて、コンデンサーC1における電圧の安定さを保証した。 Conversely, it a negative voltage of the AC input is reduced, the reverse charging current is reduced, since the time that is breakdown of the constant voltage diode TVS is delayed, reverse charging time T C2- shortening for capacitor C2 The capacitor C2 resulted in the formation of a relatively low negative voltage V C2 at point A due to the shortened charging time and the reduced charging current. Will be eventually reducing the time capacitor C2 is thyristor SCR in case of positive charging is reached to trigger the conduction gate limit voltage V SCR, thereby, increase the charging time T C1 for capacitor C1, the capacitor C1 The voltage V C1 was also raised to ensure the stability of the voltage at the capacitor C1.

一般的に、AC入力電圧の正、負半周期における電圧値が同一なものであり、AC入力の負半周期において、制御回路1における抵抗R1が依然として役割を有するため、コンデンサーC2に対する逆方向充電電流が、AC入力の正半周期において、コンデンサーC2に対する正方向充電電流より大きい。回路1、回路2のうちの部材パラメータを適宜に選択し、AC入力電圧が所定の安全電圧(例え>320AC)を超えた時、A点における電圧がAC入力の正半周期において、サイリスターSCRのゲート制限電圧までに到達できるため、サイリスターの導通ができなくなり、AC入力回路が切断されて、負荷の安全を保護した。   In general, the voltage values in the positive and negative half cycles of the AC input voltage are the same, and the resistor R1 in the control circuit 1 still plays a role in the negative half cycle of the AC input, so that the reverse charging of the capacitor C2 is performed. The current is greater than the positive charge current for capacitor C2 in the positive half cycle of the AC input. When the member parameters of the circuit 1 and the circuit 2 are appropriately selected and the AC input voltage exceeds a predetermined safety voltage (for example,> 320 AC), the voltage at the point A is the half cycle of the AC input. Since the gate limit voltage can be reached, the thyristor cannot be conducted, and the AC input circuit is disconnected to protect the safety of the load.

制御回路1、制御回路2が、AC入力電源に対して電波毎の制御、自動さい断・電圧制限を実現した。突然の電圧上昇に対して、多くても1つの正半周期以内に導通し、ただ1つの正半周期の電圧のみで、コンデンサーC1と負荷は通常完全に消耗してしまい、回路部材まで損壊することに至らないため、負荷の安全を完全に保証した。   The control circuit 1 and the control circuit 2 realize control for each radio wave, automatic cutting and voltage limitation for the AC input power supply. In response to a sudden voltage increase, conduction is made within at most one half cycle, and with only one half cycle voltage, the capacitor C1 and the load are usually completely consumed, and the circuit members are damaged. As a result, the safety of the load was completely guaranteed.

〔実施例2〕
図7に示されるように、1つの単相半波過電圧保護展開回路を提供した。該回路構成は、実施例1の単相半波過電圧保護基本回路の構成と基本的一致しており、さらに1つのダイオードD3を含み、該ダイオードD3の陰極が抵抗R3と直列接続され、その陽極が共用アース端に接続される。該回路は実施例1に比べて、AC入力の正半周期が開始段階において、ただ入力の正半周期の電圧がコンデンサーC1における電圧より高い時のみに、回路1がコンデンサーC2に対する正方向充電を開始し、コンデンサーC2に対する正方向充電時間を遅延すると、サイリスターSCRの導通時間も短縮され、コンデンサーC1に対する充電時間を減少すると、コンデンサーC1の電圧も連れに降下されて、負荷保護の役割を果たせる。抵抗R3がダイオードD3の逆ブロッキングで作用できなくなる。AC入力が負半周期に入った時、ダイオードD3が正方向状態になり、回路2がコンデンサーC2に対する逆方向充電状況は実施例1と同じである。
[Example 2]
As shown in FIG. 7, one single-phase half-wave overvoltage protection deployment circuit was provided. The circuit configuration basically coincides with the configuration of the single-phase half-wave overvoltage protection basic circuit of the first embodiment, and further includes one diode D3. The cathode of the diode D3 is connected in series with the resistor R3, and its anode Is connected to the common ground end. Compared with the first embodiment, the circuit 1 charges the capacitor C2 in the positive direction only when the positive half cycle of the AC input is at the start stage and the voltage of the positive half cycle of the input is higher than the voltage at the capacitor C1. Starting and delaying the forward charging time for the capacitor C2, the conduction time of the thyristor SCR is also shortened, and when the charging time for the capacitor C1 is decreased, the voltage of the capacitor C1 is also lowered to play a role of load protection. Resistor R3 cannot work due to reverse blocking of diode D3. When the AC input enters the negative half cycle, the diode D3 is in the forward direction, and the reverse charging state of the circuit 2 with respect to the capacitor C2 is the same as that of the first embodiment.

〔実施例3〕
図8に示されるように、本発明は1つの単相全波過電圧保護基本回路を提供した。該回路構成は、実施例2の回路をベースにして、AC入力と負荷の間に過電圧保護回路2が接続されており、該単相過電圧保護基本回路2は、サイリスターSCR.1と、定電圧ダイオードTVS.1と、抵抗R1.1と、抵抗R2.1と、抵抗R3.1と、ダイオードD1.1と、ダイオードD2.1と、ダイオードD3.1と、コンデンサーC2.1を含んでおり、該サイリスターSCR.1の陽極が共用アース端に接続され、その陰極がサイリスターSCR.1と同方向に直列するダイオードD1.1と接続されたことによって負荷端に接続され、該定電圧ダイオードTVS.1の陽極とサイリスターSCR.1のゲート極に接続され、定電圧ダイオードTVS.1の陰極がそれぞれ互いに並列される抵抗R1.1と抵抗R2.1に接続され、抵抗R1.1が共用アース端に直接に接続され、抵抗R2.1が定電圧ダイオードTVS.1と同方向に設置されるダイオードD2.1と接続されたことによって共用アース端に接続され、コンデンサーC2.1がサイリスターSCR.1の陰極と定電圧ダイオードTVS.1の陽極との間に接続され、抵抗R3.1とダイオードD3.1とが、ダイオードD1.1の陽極とAC入力端の間に直列接続され、該ダイオードD3.1の陰極がダイオードD3.1に接続され、その陽極がAC入力端に接続される。その作動原理は実施例1と同じである。実施例1と実施例2において、ただAC入力が正半周期のみに入った時にコンデンサーC1に対する充電を行い、本実施例におけるAC入力の正、負半周期には共にコンデンサーC1に対する充電ができて、コンデンサーC1における電圧の安定を向上した。
Example 3
As shown in FIG. 8, the present invention provided one single-phase full-wave overvoltage protection basic circuit. The circuit configuration is based on the circuit of the second embodiment, in which an overvoltage protection circuit 2 is connected between an AC input and a load, and the single-phase overvoltage protection basic circuit 2 includes a thyristor SCR. 1 and the constant voltage diode TVS. 1, resistor R1.1, resistor R2.1, resistor R3.1, diode D1.1, diode D2.1, diode D3.1, and capacitor C2.1, the thyristor SCR. 1 is connected to the common earth terminal, and its cathode is connected to the thyristor SCR. 1 is connected to the load end by being connected to a diode D1.1 in series with the same direction as that of the constant voltage diode TVS. 1 anode and thyristor SCR. 1 is connected to the gate electrode of the constant voltage diode TVS. 1 are connected to resistors R1.1 and R2.1, which are parallel to each other, the resistor R1.1 is directly connected to the common ground terminal, and the resistor R2.1 is connected to the constant voltage diode TVS. 1 is connected to the common earth end by connecting to the diode D2.1 installed in the same direction as the capacitor 1, and the capacitor C2.1 is connected to the thyristor SCR. 1 cathode and constant voltage diode TVS. The resistor R3.1 and the diode D3.1 are connected in series between the anode of the diode D1.1 and the AC input terminal, and the cathode of the diode D3.1 is connected to the diode D3. 1 and its anode is connected to the AC input. The operating principle is the same as in the first embodiment. In the first and second embodiments, the capacitor C1 is charged only when the AC input enters only the positive half cycle, and the capacitor C1 can be charged in both the positive and negative half cycles of the AC input in this embodiment. The stability of the voltage in the capacitor C1 was improved.

〔実施例4〕
図9に示されるように、本発明はさらに1つの単相全波過電圧保護展開回路を提供した。該回路は、過電圧保護1を含み、AC入力端と負荷アース端の間にさらに過電圧保護回路3が接続されており、該過電圧保護基本回路3は、サイリスターSCR.1と、定電圧ダイオードTVS.1と、抵抗R1.1と、抵抗R2.1と、コンデンサーC2.1と、ダイオードD2.1を含んでおり、該サイリスターSCR.1の陽極が負荷アース端に接続され、その陰極がAC入力端に接続され、該定電圧ダイオードTVS.1の陰極とサイリスターSCR.1のゲート極に接続され、定電圧ダイオードTVS.1の陽極がそれぞれ互いに並列される抵抗R1.1と抵抗R2.1に接続され、抵抗R1.1が負荷アース端に直接に接続され、抵抗R2.1が定電圧ダイオードと逆方向に設置されるダイオードD2.1と接続されたことによって負荷アース端に接続され、コンデンサーC2.1がサイリスターSCR.1の陰極と定電圧ダイオードTVS.1の陰極との間に接続され、さらに過電圧保護回路1にダイオードD3.1が設置され、該ダイオードD3.1の陽極が共用アース端に接続され、その陰極が負荷アース端に接続され、さらにダイオードD3が設置され、該ダイオードD3が共用アース端と負荷アース端との接続線上に接続され、ダイオードD3の陽極がコンデンサーC1の陰極に接続し通電され、ダイオードD3の陰極が過電圧保護回路1のうちのダイオードD3.1の陽極に接続し通電される。実施例3の単相全波過電圧保護基本回路と比べて、該回路はAC入力電源の正、負半周期の対称性を利用して、抵抗R3、抵抗R3.1、ダイオードD1、ダイオードD1.1など部品が不用となり、単相全波過電圧保護基本回路の機能を同様に達成し、回路を簡潔化し、コストをタワンした。
Example 4
As shown in FIG. 9, the present invention further provides one single-phase full-wave overvoltage protection deployment circuit. The circuit includes an overvoltage protection 1, and an overvoltage protection circuit 3 is further connected between the AC input terminal and the load ground terminal, and the overvoltage protection basic circuit 3 includes the thyristor SCR. 1 and the constant voltage diode TVS. 1, resistor R1.1, resistor R2.1, capacitor C2.1, and diode D2.1, the thyristor SCR. 1 is connected to the load ground terminal, its cathode is connected to the AC input terminal, and the constant voltage diode TVS. 1 cathode and thyristor SCR. 1 is connected to the gate electrode of the constant voltage diode TVS. 1 is connected to the resistors R1.1 and R2.1, which are parallel to each other, the resistor R1.1 is directly connected to the load ground terminal, and the resistor R2.1 is installed in the opposite direction to the constant voltage diode. Is connected to the load ground end, and the capacitor C2.1 is connected to the thyristor SCR. 1 cathode and constant voltage diode TVS. 1 is connected to the cathode of one, and a diode D3.1 is installed in the overvoltage protection circuit 1, the anode of the diode D3.1 is connected to the common earth terminal, the cathode is connected to the load earth terminal, A diode D3 is installed, the diode D3 is connected to the connection line between the common ground end and the load ground end, the anode of the diode D3 is connected to the cathode of the capacitor C1, and the cathode of the diode D3 is connected to the overvoltage protection circuit 1. It is connected to the anode of our diode D3.1 and energized. Compared with the single-phase full-wave overvoltage protection basic circuit of the third embodiment, the circuit utilizes the symmetry of the positive and negative half cycles of the AC input power supply, and thus the resistor R3, the resistor R3.1, the diode D1, the diode D1. Parts such as No. 1 are no longer needed, the functions of the single-phase full-wave overvoltage protection basic circuit are achieved in the same way, the circuit is simplified, and the cost is increased.

本文に記した具体的な実施例では、本発明の要旨を例で説明した。本発明に関わる同業者が前記実施例についてさまざまな修正、補充、または類似方案で取り替わることができ、但し本発明の要旨を逸脱し、または属される特許請求の範囲で定める範囲を超えることができない。   In the specific embodiments described herein, the gist of the present invention has been described by way of example. The person skilled in the art can replace the above-mentioned embodiments with various modifications, supplements, or similar methods, but deviates from the gist of the present invention or exceeds the scope defined by the appended claims. Can not.

本文では、サイリスターSCR、定電圧ダイオードTVS、抵抗R1、コンデンサーC1、ダイオードD1などの専門用語が多く使われても、そのほかの専門用語使用の可能性を排除しない。このような専門用語の使用は本発明の実質の記載と解釈のみのためであり、それらをいかなる連帯の制限として解釈されることは本発明の要旨を違反することである。   In this text, even if many technical terms such as thyristor SCR, constant voltage diode TVS, resistor R1, capacitor C1, and diode D1 are used, the possibility of using other technical terms is not excluded. The use of such terminology is merely for the purpose of description and interpretation of the invention, and interpreting them as any solidarity limitation violates the spirit of the invention.

Claims (3)

スイッチ電源サイクル毎の過電圧保護回路において、AC入力と負荷の間に1つの過電圧保護回路1が接続され、該過電圧保護回路1は、サイリスターと、定電圧ダイオードと、第1抵抗と、第2抵抗と、第2ダイオードと、第2コンデンサーとを含み、該サイリスターの陽極がAC入力端に接続され、その陰極が負荷端に接続され、該定電圧ダイオードの陰極とサイリスターのゲート極に接続され、定電圧ダイオードの陽極がそれぞれ互いに並列される第1抵抗と第2抵抗に接続され、第1抵抗がAC入力端に直接に接続され、第2抵抗が定電圧ダイオードと逆方向に設置される第2ダイオードと接続されたことによってAC入力端に接続され、第2コンデンサーがサイリスターの陰極と定電圧ダイオードの陰極との間に接続され、負荷端と負荷アース端の間に第1コンデンサーが接続され、さらに、サイリスターの陰極と負荷端との間に、サイリスターと同方向に接続する第1ダイオードが設置され、第1ダイオードの陽極と共用アース端との間に、第3抵抗が接続される、ことを特徴とするスイッチ電源サイクル毎の過電圧保護回路。 In the overvoltage protection circuit for each switch power supply cycle, one overvoltage protection circuit 1 is connected between the AC input and the load. The overvoltage protection circuit 1 includes a thyristor, a constant voltage diode, a first resistor, and a second resistor. And a second diode and a second capacitor, the anode of the thyristor is connected to the AC input terminal, the cathode is connected to the load terminal, the cathode of the constant voltage diode and the gate electrode of the thyristor, The anode of the constant voltage diode is connected to a first resistor and a second resistor that are parallel to each other, the first resistor is directly connected to the AC input terminal, and the second resistor is installed in the opposite direction to the constant voltage diode. It is connected to the AC input end by being connected to the second diode, the second capacitor is connected between the cathode of the cathode and the constant voltage diode thyristor, the load end Is first condenser connected between the load ground end, further, between the cathode and the load end of the thyristor, the first diode is installed to be connected to a thyristor in the same direction, and the anode of the first diode and the common ground terminal during, Ru third resistor is connected, the overvoltage protection circuit of each switch power cycle, characterized in that. さらに第3ダイオードを含み、該第3ダイオードの陰極が第3抵抗と直列で接続され、
その陽極が共用アース端と接続される、ことを特徴とする請求項記載のスイッチ電源サイクル毎の過電圧保護回路。
A third diode, the cathode of the third diode being connected in series with the third resistor;
Its anode is connected to the common ground terminal, the overvoltage protection circuit of each switch power cycle according to claim 1, wherein a.
スイッチ電源サイクル毎の過電圧保護回路において、AC入力と負荷の間に1つの過電圧保護回路1が接続され、該過電圧保護回路1は、第1サイリスターと、第1定電圧ダイオードと、第1抵抗と、第2抵抗と、第1ダイオードと、第1コンデンサーと第2コンデンサーとを含み、該第1サイリスターの陽極がAC入力端に接続され、その陰極が負荷端に接続され、該第1定電圧ダイオードの陰極と第1サイリスターのゲート極に接続され、第1定電圧ダイオードの陽極がそれぞれ互いに並列される第1抵抗と第2抵抗に接続され、第1抵抗がAC入力端に直接に接続され、第2抵抗が第1定電圧ダイオードと逆方向に設置される第1ダイオードと接続されたことによってAC入力端に接続され、第2コンデンサーが第1サイリスターの陰極と第1定電圧ダイオードの陰極との間に接続され、負荷端と負荷アース端の間に第1コンデンサーが接続され、該過電圧保護回路1には、さらに第2ダイオードと第3ダイオードが設置され、第2ダイオードの陽極が共用アース端に接続され、その陰極が負荷端に接続され、第3ダイオードが共用アース端と負荷アース端との接続線上に接続され、第3ダイオードの陽極が第1コンデンサーの陰極に接続され、第3ダイオードの陰極が第2ダイオードの陽極に接続され、AC入力端と負荷アースとの間に、過電圧保護回路が接続され、該過電圧保護回路は、第2サイリスターと、第2定電圧ダイオードと、第抵抗と、第抵抗と、第コンデンサーと、第ダイオードを含み、該第2サイリスターの陽極が負荷アース端に接続され、その陰極がAC入力端に接続され、該第2定電圧ダイオードの陰極が第2サイリスターのゲート極に接続され、第2定電圧ダイオードの陽極がそれぞれ互いに並列される第抵抗と第抵抗に接続され、第抵抗が負荷アース端に直接接続され、第抵抗が第2定電圧ダイオードと逆方向に接続する第ダイオードと接続されたことによって負荷アース端に接続され、第コンデンサーが第2サイリスターの陰極と第2定電圧ダイオードの陰極との間に接続される、ことを特徴とするスイッチ電源サイクル毎の過電圧保護回路。 In the overvoltage protection circuit for each switch power cycle, one overvoltage protection circuit 1 is connected between the AC input and the load. The overvoltage protection circuit 1 includes a first thyristor, a first constant voltage diode, a first resistor, , A second resistor, a first diode, a first capacitor and a second capacitor, the anode of the first thyristor is connected to the AC input terminal, the cathode is connected to the load terminal, and the first constant voltage The cathode of the diode and the gate electrode of the first thyristor are connected, the anode of the first constant voltage diode is connected to the first resistor and the second resistor, respectively, and the first resistor is directly connected to the AC input terminal. The second resistor is connected to the AC input terminal by being connected to the first diode installed in the opposite direction to the first constant voltage diode, and the second capacitor is connected to the first thyristor. And a cathode of the first constant voltage diode, a first capacitor is connected between the load end and the load ground end, and the overvoltage protection circuit 1 further includes a second diode and a third diode. The anode of the second diode is connected to the common ground end, the cathode is connected to the load end, the third diode is connected to the connection line between the common ground end and the load ground end, and the anode of the third diode is the first is connected to the cathode of the capacitor, the cathode of the third diode is connected to the anode of the second diode, between the AC input and the load ground, the overvoltage protection circuit 2 is connected, the overvoltage protection circuit 2, a second and thyristor, a second constant-voltage diode, and a third resistor, a fourth resistor, a third capacitor, a fourth diode, an anode of the second thyristor is connected to the load ground end, Cathode is connected to the AC input ends, the cathode of the second zener diode is connected to the gate electrode of the second thyristor, a third resistor and a fourth resistor anode of the second zener diode are parallel to each other Connected, the third resistor is directly connected to the load ground terminal, the fourth resistor is connected to the fourth diode connected in the opposite direction to the second constant voltage diode, and is connected to the load ground terminal, and the third capacitor is An overvoltage protection circuit for each switch power cycle, wherein the overvoltage protection circuit is connected between a cathode of a second thyristor and a cathode of a second constant voltage diode .
JP2011552296A 2009-04-28 2009-04-28 Overvoltage protection circuit for each switch power cycle Expired - Fee Related JP5330548B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000456 WO2010124413A1 (en) 2009-04-28 2009-04-28 Cycle-by-cycle over voltage protection circuit for switching power supply

Publications (2)

Publication Number Publication Date
JP2012519462A JP2012519462A (en) 2012-08-23
JP5330548B2 true JP5330548B2 (en) 2013-10-30

Family

ID=43031636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552296A Expired - Fee Related JP5330548B2 (en) 2009-04-28 2009-04-28 Overvoltage protection circuit for each switch power cycle

Country Status (3)

Country Link
JP (1) JP5330548B2 (en)
KR (1) KR101171739B1 (en)
WO (1) WO2010124413A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226553B1 (en) * 2010-11-15 2013-01-25 허세경 LED lamp
CN110474291A (en) * 2019-09-20 2019-11-19 国网天津市电力公司 A kind of distribution automation equipment power supply overvoltage protection device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154248A (en) * 1974-11-06 1976-05-13 Mitsubishi Electric Corp KADENATSUHO GOKAIRO
JPS56148129A (en) * 1980-04-15 1981-11-17 Nippon Telegraph & Telephone Arrester circuit
JPS56148131A (en) * 1980-04-21 1981-11-17 Nippon Telegraph & Telephone Lateral surge absorbing circuit
JPH0226190Y2 (en) * 1984-10-26 1990-07-17
FR2583590B1 (en) 1985-06-12 1987-08-07 Cables De Lyon Geoffroy Delore DEVICE FOR PROTECTING AN ELECTRICAL ENERGY LINE AGAINST HIGH TRANSIENT OVERVOLTAGES
DE3640661A1 (en) * 1986-11-28 1988-06-09 Siemens Ag Circuit arrangement for overvoltage protection of a thyristor in the blocking direction
CN2146771Y (en) * 1992-11-16 1993-11-17 蔡礼君 Power-saving fire-proof device for electromagnet and contactor
JP4049961B2 (en) * 1999-12-02 2008-02-20 セコム株式会社 Power protection circuit
CN101552451B (en) * 2008-12-30 2012-01-25 卢东方 Switch power supply cycle-by-cycle wave over-voltage protection circuit
CN201345534Y (en) * 2008-12-30 2009-11-11 卢东方 Switch power supply cycle-by-cycle overvoltage protective circuit

Also Published As

Publication number Publication date
JP2012519462A (en) 2012-08-23
KR101171739B1 (en) 2012-08-07
WO2010124413A1 (en) 2010-11-04
KR20100128353A (en) 2010-12-07

Similar Documents

Publication Publication Date Title
CN101663814B (en) Power cutoff device automatically operated upon occurrence of spark on electric wire
CN108539708B (en) Multiple overcurrent and overvoltage intrinsic safety protection circuit
CN111446851B (en) Power input surge current suppression circuit with power factor correction module
CN101552451B (en) Switch power supply cycle-by-cycle wave over-voltage protection circuit
RU2661311C2 (en) Electronic circuit and method of operation of electronic circuit
CN112152478A (en) Characteristic current generating circuit
CN103730784B (en) A kind of socket eliminating electric spark
CN115276388A (en) Single-tube surge current suppression circuit started by pulse load
JP5330548B2 (en) Overvoltage protection circuit for each switch power cycle
TWI530070B (en) Method and apparatus of inrush current limitation
CN115764812B (en) Automatic protection method for switching power supply and switching power supply
CN205249042U (en) Reduce switching power supply input impulse current's circuit
CN110739672A (en) Surge current control circuit and control method thereof
CN108666972B (en) Leakage protector
WO2018145381A1 (en) Circuit protection device and power supply system
CN207706464U (en) Electric blanket and its safe heating circuit
CN114337220A (en) Starting impact current suppression circuit
CN103631163A (en) Switch circuit for alternating current power supply
Tan et al. Zero standby power high efficiency hot plugging outlet for 380VDC power delivery system
CN103701100A (en) Switching power supply and over-voltage protection circuit thereof
CN203387397U (en) Soft starting circuit structure of large-power photovoltaic inverter auxiliary power supply
CN201345534Y (en) Switch power supply cycle-by-cycle overvoltage protective circuit
CN213094086U (en) Characteristic current generating circuit
CN204145287U (en) Switching power supply protection circuit
CN216598996U (en) Direct current power supply with overvoltage surge and input surge current limiting capability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees