JPH03158167A - Artificial lung - Google Patents

Artificial lung

Info

Publication number
JPH03158167A
JPH03158167A JP1298696A JP29869689A JPH03158167A JP H03158167 A JPH03158167 A JP H03158167A JP 1298696 A JP1298696 A JP 1298696A JP 29869689 A JP29869689 A JP 29869689A JP H03158167 A JPH03158167 A JP H03158167A
Authority
JP
Japan
Prior art keywords
mesh
fluid
membrane member
hollow fibers
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1298696A
Other languages
Japanese (ja)
Inventor
Kiyohide Ishikawa
石川 清秀
Satoru Sakai
覚 酒井
Hiroshi Yoshikawa
宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1298696A priority Critical patent/JPH03158167A/en
Publication of JPH03158167A publication Critical patent/JPH03158167A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To improve gas exchange ability, to suppress the occurrence of channelling and to reduce incurring of a pressure loss by a method wherein first fluid is caused to flow through a hollow fiber and second fluid is caused to flow in a direction extending substantially at right angles with the axial direction of a hollow fiber in a reticulate membrane member. CONSTITUTION:Since gaps enough for the flow of blood in the direction of an axis X-Y through meshes of a reticulate membrane member 3 are provided, blood flowing in a blood inflow chamber 11 flows through the reticulate membrane member 3 in a direction extending substantially at right angles with each hollow fiber 4. Since blood flows through a gap between the warp and weft of the hollow fiber in a direction extending at right angles with the hollow fiber, the blood is brought into a turbulent flow state in the vicinity of the hollow fiber and therefore, excellent gas exchange ability is provided. This constitution suppresses the occurrence of channelling without the increase of the number of the hollow fibers and the increase of the effective length thereof, reduces incurring of a pressure loss, and reduces the size of an artificial lung.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、中空糸を用い、血液に酸素を付加し、炭酸ガ
スを除去する人工肺に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an artificial lung that uses hollow fibers to add oxygen to blood and remove carbon dioxide gas.

[従来の技術] この種の人工肺として、従来5次に示すようなものが挙
げられる。
[Prior Art] As this type of artificial lung, there are conventional artificial lungs as shown below.

例えば、複数本の中空糸を集束した中空糸束を、ハウジ
ング内に配設し、中空糸の端部を開口した状態で中空糸
束の端部に隔壁を設けるとともに、これを介してハウジ
ングの端部に中空糸束の端部を固定し、各中空糸内には
第1の流体として血液を流すとともに中空糸の外側には
第2の流体として酸素含有ガスを流すようにした、いわ
ゆる内部潅流型の人工肺が公知である。
For example, a hollow fiber bundle made up of a plurality of hollow fibers is placed inside a housing, and a partition wall is provided at the end of the hollow fiber bundle with the ends of the hollow fibers open. The end of the hollow fiber bundle is fixed at the end, and blood flows as a first fluid inside each hollow fiber, and oxygen-containing gas flows as a second fluid outside the hollow fiber. Perfusion type oxygenators are known.

又、中空糸の内側に酸素含有ガスを流し、中空糸の外側
に血液を流すようにした、いわゆる外部)筐流型の人工
肺も公知である。
Furthermore, a so-called external casing flow type oxygenator is also known, in which oxygen-containing gas is allowed to flow inside the hollow fibers, and blood is allowed to flow outside the hollow fibers.

これら、いずれの人工肺にあっても、中空糸の膜壁を介
し、血液中の炭酸ガスと酸素含有ガス中の酸素とのガス
交換による物質移動が行なわれる。
In any of these artificial lungs, mass transfer occurs through gas exchange between carbon dioxide gas in the blood and oxygen in the oxygen-containing gas through the membrane wall of the hollow fiber.

[発明が解決しようとする課題] ところで、上記の従来型人工肺では、中空糸の軸方向に
沿って、中空糸の内外を平行に、かつ対向状態で両方の
処理流体が流れる構成のため、層流状態となり、血液と
酸素含有ガスの両流体間のガス交換が有効になされず、
ガス交換能が十分に得られない問題があった。
[Problems to be Solved by the Invention] By the way, in the above-mentioned conventional oxygenator, since both processing fluids flow in parallel inside and outside the hollow fibers and in opposing states along the axial direction of the hollow fibers, Laminar flow occurs, and gas exchange between the blood and oxygen-containing gases is not effective.
There was a problem that sufficient gas exchange capacity could not be obtained.

この問題を解消しようとすれば、例えば、中空糸の本数
を増やしたり、その有効長さを長(したりして、その有
効膜面積を大きくする必要がある。しかしながら、例え
ば、本数を多(すると、中空糸膜の外側を流れる流体は
ますます、中空糸束の内部まで到達し難くなり、その周
面部に偏って流れる、いわゆるチャンネリングが発生す
るおそれがあり、ガス交換能を向上させる点では不十分
である。
In order to solve this problem, it is necessary to increase the effective membrane area by increasing the number of hollow fibers or by increasing their effective length. As a result, it becomes increasingly difficult for the fluid flowing outside the hollow fiber membrane to reach the inside of the hollow fiber bundle, and there is a risk that so-called channeling, in which the fluid flows biased toward the peripheral surface, may occur. That is not enough.

また、有効長さを長くする場合には、内部潅流型のもの
では、中空糸の内側に血流を流通させるのに、所定の圧
力を付与する必要があるので、長くした分だけ圧力損失
が大きくなり、血液に弊害をもたらすおそれがあり、こ
れも問題となるところであった。
In addition, when increasing the effective length, with internal perfusion type fibers, it is necessary to apply a certain pressure to circulate blood inside the hollow fiber, so the pressure loss is reduced by the length. This was also a problem because it could become large and cause harmful effects on the blood.

一方、外部潅流型のものでは、人工肺の上流側にポンプ
を設けることなく、落差のみで流れて循環可能となり、
上記圧力損失の問題は少ないが、有効長さを長くした分
、人工肺が大型化し、それだけ体外において流れる血液
量が多(なってプライミングボリュームが増大する問題
があった。
On the other hand, with the external perfusion type, there is no need to install a pump upstream of the oxygenator, and circulation is possible by using only the head.
Although the above-mentioned problem of pressure loss is small, the longer effective length makes the oxygenator larger and the amount of blood flowing outside the body increases accordingly (therefore, the priming volume increases).

本発明は、かかる問題点に鑑みてなされたものであって
、その目的は、中空糸の内側を流れる第1の流体の方向
に対し、その外側を流れる第2の流体の方向を該中空糸
の軸方向に対して実質的に直交するように構成して、第
2の流体の層流状態を解消するとともに中空糸の本数を
増やしたり、その有効長さを長くしたりすることな(、
ガス交換能を向上し得るとともに、チャンネリングを抑
制し、圧力損失を低減し、更にプライミングボリューム
も減少させ得る人工肺を提供するにある。
The present invention has been made in view of such problems, and an object of the present invention is to change the direction of the second fluid flowing outside the hollow fiber with respect to the direction of the first fluid flowing inside the hollow fiber. The hollow fibers are configured to be substantially orthogonal to the axial direction of the hollow fibers, thereby eliminating the laminar flow state of the second fluid and without increasing the number of hollow fibers or lengthening their effective length.
An object of the present invention is to provide an artificial lung that can improve gas exchange ability, suppress channeling, reduce pressure loss, and further reduce priming volume.

[課題を解決するための手段1 上記本発明の目的を達成するために、本発明においては
、中空糸の膜壁を介して第1及び第2の流体間相互の物
質移動を行なうために複数の中空糸を縦横に組合わせる
とともに積層してなるメツシュ状膜部材を備え、前記中
空糸内部に前記第1の流体を流し、該メツシュ状膜部材
中の中空糸の軸方向に対して実質的に直交する方向に前
記第2の流体を流通させる構成を特徴とする人工肺を提
案するものである。
[Means for Solving the Problems 1] In order to achieve the above object of the present invention, in the present invention, a plurality of fluids are used to perform mutual mass transfer between the first and second fluids via the membrane wall of the hollow fiber. A mesh-like membrane member formed by combining hollow fibers vertically and horizontally and stacking them, the first fluid flowing inside the hollow fibers, substantially in the axial direction of the hollow fibers in the mesh-like membrane member. The present invention proposes an artificial lung characterized by a configuration in which the second fluid is caused to flow in a direction perpendicular to .

又、本発明に係る人工肺の構成として、第1の流体の流
入口および流出口と、第2の流体の流入口および流出口
を備えたハウジングと、該ハウジングに固定されるとと
もに前記メツシュ状膜部材中の各中空糸端部を開口させ
るメツシュ状膜部材の側面に設けられた隔壁とを備え、
第1の流体の流入口より流入した第1の流体が該隔壁部
分に開口した中空糸内を流通して該第1の流体の流出口
へと流体密に連通するとともに、第2の流体の流入口よ
り流入した第2の流体が前記メツシュ状膜部材の対応す
る一方のメツシュ開口端より他方のメツシュ開口端へ、
該メツシュ状膜部材のメツシュの目を通して流れるとと
もに該第2の流体の流出口へと流体密に連通してなるも
のが提案される。
The artificial lung according to the present invention includes a housing having a first fluid inlet and an outlet, a second fluid inlet and an outlet, and a housing fixed to the housing and the mesh-shaped and a partition wall provided on the side surface of the mesh-like membrane member that opens each hollow fiber end in the membrane member,
The first fluid flowing in from the first fluid inlet flows through the hollow fibers opened in the partition wall portion and communicates with the first fluid outlet in a fluid-tight manner. The second fluid flowing in from the inflow port passes from the corresponding one mesh opening end of the mesh-like membrane member to the other mesh opening end,
It is proposed that the mesh-like membrane member flows through the mesh openings and is in fluid-tight communication with the second fluid outlet.

又、本発明に係る人工肺におけるメツシュ状膜部材とし
ては、各側面に前記隔壁が設けられるとともに、互いに
隣接する一対の側面が前記第1の流体の流入口に対向す
るとともに他方の互いに隣接する一対の側面が前記第1
の流体の流出口に対向してなる構成のものや、あるいは
中空糸を互いに、又は中空糸と中実糸とを互いに織成な
いしは編成して形成されてなるものが提案される。
Further, in the mesh-like membrane member in the oxygenator according to the present invention, the partition wall is provided on each side surface, and a pair of mutually adjacent side surfaces faces the inlet for the first fluid, and the other side surface is adjacent to each other. a pair of side surfaces are the first
A structure in which the fibers face the fluid outlet, or a structure in which hollow fibers or hollow fibers and solid fibers are woven or knitted together have been proposed.

更に又、該メツシュ状膜部材の具体的構成として、該メ
ツシュ状膜部材の縦糸および横糸の一方の糸をなす中空
糸をガス交換用多孔質膜で形成するとともに他方の糸を
なす中空糸を熱交換用非多孔質膜で形成する構成や、該
メツシュ状膜部材のメツシュのピッチを、該メツシュ状
膜部材の層方向に沿って異ならしめる構成、更には、該
メツシュ状膜部材のメツシュの目位置を層方向に対し横
方向に偏位させてなる構成などが提案される。
Furthermore, as a specific configuration of the mesh-like membrane member, the hollow fibers forming one of the warp and weft threads of the mesh-like membrane member are formed of a porous membrane for gas exchange, and the hollow fibers forming the other thread are formed of a porous membrane for gas exchange. A configuration in which a non-porous membrane for heat exchange is used, a configuration in which the mesh pitch of the mesh-shaped membrane member is varied along the layer direction of the mesh-shaped membrane member, and a configuration in which the mesh of the mesh-shaped membrane member is A configuration in which the eye position is shifted laterally with respect to the layer direction has been proposed.

又、前記第1の流体を酸素含有ガスとし、前記第2の流
体を血液とする構成のもの、あるいは逆に、前記第1の
流体を血液とし、前記第2の流体を酸素含有ガスとする
構成のものが提案される。
Further, the first fluid may be an oxygen-containing gas and the second fluid may be blood, or conversely, the first fluid may be blood and the second fluid may be an oxygen-containing gas. The composition is proposed.

[作 用1 上記構成の本発明に係る人工肺では、複数の中空糸を縦
横に組合わせるとともに積層してなるメツシュ状膜部材
を設け、中空糸内部に第1の流体を流すとともに、第2
の流体を、該メツシュ状膜部材中の中空糸の軸方向に対
して実質的に直交する方向に、例えば、該メツシュ状膜
部材の一方のメツシュ開口端より他方のメツシュ開口端
へ向けてメツシュの目を通して流すようにし、各中空糸
内を流れる第1の流体に対し直交する態様でガス交換を
行なう。
[Function 1] In the oxygenator according to the present invention having the above configuration, a mesh-like membrane member is provided in which a plurality of hollow fibers are combined vertically and horizontally and laminated, and a first fluid flows inside the hollow fibers, and a second fluid flows inside the hollow fibers.
The fluid is applied to the mesh in a direction substantially perpendicular to the axial direction of the hollow fibers in the mesh-like membrane member, for example, from one mesh opening end of the mesh-like membrane member to the other mesh opening end. The first fluid flows through the hollow fibers, and gas exchange is performed in a manner perpendicular to the first fluid flowing within each hollow fiber.

従って、メツシュの目を通して流れる流体は各中空糸に
相互の間隙を直交する方向で通るので5前記第2の流体
を例えば血液とすれば、その血液が乱流状態になり、こ
れによりガス交換能が著しく向上し、従って、例えば中
空糸の本数を増やしたり、その有効長さを長くしたりす
る必要もな(、チャンネリングを抑制し、圧力損失も低
減し、人工肺の小型化が可能となり、プライミングボリ
ュームを減少させることができる。
Therefore, the fluid flowing through the eyes of the mesh passes through the gaps between the hollow fibers in a direction perpendicular to each other. 5 If the second fluid is blood, for example, the blood becomes turbulent, which improves gas exchange. Therefore, there is no need to increase the number of hollow fibers or increase their effective length (channeling can be suppressed, pressure loss can be reduced, and the size of the oxygenator can be made smaller. , the priming volume can be reduced.

〔実施例] 本発明の人工肺の一実施例を、第1図乃至第6図に基づ
いて説明する。
[Example] An example of the artificial lung of the present invention will be described based on FIGS. 1 to 6.

図において、lは箱体状をなす人工肺のハウジング、1
aはそのハウジングと一体に形成された膨出部である。
In the figure, l is a box-shaped oxygenator housing, 1
a is a bulge formed integrally with the housing.

該膨出部1aは第4図に示すように横断面において楕円
形状をなしている。3はメツシュ状膜部材で、矩形状ブ
ロックをなし、ハウジングl内の中央部に支持されてい
る。
As shown in FIG. 4, the bulging portion 1a has an elliptical shape in cross section. Reference numeral 3 denotes a mesh-like membrane member, which forms a rectangular block and is supported at the center within the housing l.

メツシュ状膜部材3は、多数の中空糸4を縦横に組合わ
せるとともに層状態に形成したものである。その中空糸
4の組合わせの態様は、中空糸の縦糸と横糸を手織状に
織成あるいは編成して、これを多層に積み上げた構成、
あるいは中空糸を平行配置した層を直交する角度で互い
違いに積層して全体でメツシュ状にした構成等、種々の
構成が考^られる。
The mesh-like membrane member 3 is formed by combining a large number of hollow fibers 4 vertically and horizontally and forming layers. The combination of the hollow fibers 4 includes a configuration in which the warp and weft of the hollow fibers are woven or knitted in a hand-woven manner and stacked in multiple layers.
Alternatively, various configurations can be considered, such as a configuration in which layers of parallel hollow fibers are alternately laminated at orthogonal angles to form a mesh-like structure.

このように層されたメツシュ状膜部材3はメツシュの一
方(下方)の開口端3aより他方(上方)の開口端3b
までの間、中空糸4で形成されたメツシュの目の間を、
第2の流体が該メツシュ状膜部材の軸線X−X線に沿っ
て流通可能となっている。
The mesh-like membrane member 3 layered in this way has one (lower) opening end 3a of the mesh and the other (upper) opening end 3b of the mesh.
Until then, between the eyes of the mesh formed by the hollow fiber 4,
A second fluid is allowed to flow along the axis line X--X of the mesh-like membrane member.

メツシュ状膜部材3の4つの側面には枠状をなして隔壁
6が設けられている。
Frame-shaped partition walls 6 are provided on four side surfaces of the mesh-like membrane member 3.

この隔壁6は、例えばポリウレタンを素材とし、これに
前記側面部分な一側面ずつディッピングすることにより
得られる。この際、中空糸4の端部は、隔壁6と同様の
素材で目止めした後に、ディッピングされるようになっ
ており、隔壁6の硬化後に、それの外周部を適宜の切断
具によりスライスすることにより、中空糸4の端部が開
口状態に維持される。
The partition wall 6 is made of polyurethane, for example, and is obtained by dipping one side of the polyurethane. At this time, the ends of the hollow fibers 4 are sealed with the same material as the partition walls 6 and then dipped, and after the partition walls 6 have hardened, the outer periphery thereof is sliced with an appropriate cutting tool. As a result, the ends of the hollow fibers 4 are maintained in an open state.

この隔壁6が第5図に示すようにハウジング1及びその
膨出部1aの内周縁部に取付けられ、これによって、ハ
ウジング1内にメツシュ状膜部材3が設置される。
As shown in FIG. 5, this partition wall 6 is attached to the inner peripheral edge of the housing 1 and its bulging portion 1a, and thereby the mesh-like membrane member 3 is installed within the housing 1.

第4図に示すように、設定状態において、互いに隣接す
る一方の一対の側面3c、3dにある隔壁6aと、他方
の一対の側面3e、3fにある隔壁6bとは、ハウジン
グ1に嵌合した該メツシュ状膜部材3の角部3gのとこ
ろで気密に仕切られている。
As shown in FIG. 4, in the set state, the partition wall 6a on one pair of adjacent side surfaces 3c and 3d and the partition wall 6b on the other pair of side surfaces 3e and 3f are fitted into the housing 1. The corner portion 3g of the mesh-like membrane member 3 is airtightly partitioned.

各中空糸4は、その内側を、第1の流体を構成する酸素
含有ガスが流れ、その外側を、第2の流体を構成する血
液が流れ、中空糸4の膜壁を介して両流体間で血液中の
炭酸ガスと酸素含有ガス中の酸素とのガス交換による物
質移動がなされるようにしてあり、本実施例における人
工肺は外部潅流型のものである。
Each hollow fiber 4 has an oxygen-containing gas constituting the first fluid flowing through the inside thereof, and blood constituting the second fluid flowing through the outside thereof, and between the two fluids through the membrane wall of the hollow fiber 4. The oxygenator in this embodiment is of an external perfusion type.

第4図に示すように、ハウジング1の内部は、ガス流入
ロアに連通ずる酸素含有ガス流入室8と、ガス流出口9
に連通ずるガス流出室10とにそれぞれ区側されている
。そして、酸素含有ガスは矢印Aで示すようにガス流入
ロア、ガス流入室8へと入り、ここからメツシュ状膜部
材3の隔壁6aのところで開口した各中空糸4内に入り
、前記軸線X−Xと直交する各中空糸の軸方向に沿って
他方の隔壁6bのところよりガス流出室10へ入り、ガ
ス流出口9より外方に導出される。
As shown in FIG. 4, the inside of the housing 1 includes an oxygen-containing gas inflow chamber 8 communicating with the gas inflow lower, and a gas outlet 9.
The gas outlet chambers 10 and 10 are respectively separated from each other. Then, the oxygen-containing gas enters the gas inflow lower and gas inflow chamber 8 as shown by arrow A, and from there enters each hollow fiber 4 opened at the partition wall 6a of the mesh-like membrane member 3, and flows along the axis X- The gas enters the gas outflow chamber 10 from the other partition wall 6b along the axial direction of each hollow fiber orthogonal to X, and is led out from the gas outflow port 9.

一方、メツシュ状膜部材3の各々の開口端3a、3bと
、ハウジングlの内壁蘭との間には、それぞれ血液流入
室11及び血液流出室12が形成され、その各室に対応
して血液流入室11と連通ずる血液導入口13.血液流
出室12と連通する血液導出口14がそれぞれ設けられ
ている。そして、血液は第5図において矢印Bで示すよ
うに血液導入口13より流入室11へ入り、ここからメ
ツシュ状膜部材3のメツシュの目を通って軸線x−xに
沿い流れ、血液流出室12に送り出されるとともに血液
導出口14より外部へ導出される。
On the other hand, a blood inflow chamber 11 and a blood outflow chamber 12 are formed between the opening ends 3a, 3b of the mesh-like membrane member 3 and the inner wall of the housing l, respectively, and the blood flows in a corresponding manner to each chamber. A blood inlet 13 communicating with the inflow chamber 11. A blood outlet 14 communicating with the blood outflow chamber 12 is provided, respectively. Then, the blood enters the inflow chamber 11 from the blood inlet 13 as shown by arrow B in FIG. 12 and is led out from the blood outlet 14.

上記構成によれば、メツシュ状膜部材3のメツシュの目
を通って軸線X−x方向には、血液が流れる十分な間隙
が形成されているので、血液流入室11に流入した血液
は、メツシュ状膜部材3内を各中空糸4に対して実質的
に直交した方向に流れる。そして、血液は、中空糸4の
縦糸、横糸の間隙を、中空糸と直交する方向で通るので
、中空糸付近において、乱流状態になり、このために、
ここで、優れたガス交換能を発揮し得る。
According to the above configuration, a sufficient gap is formed in the direction of the axis X-x through the mesh of the mesh-like membrane member 3, so that the blood flowing into the blood inflow chamber 11 flows through the mesh. It flows through the membrane member 3 in a direction substantially perpendicular to each hollow fiber 4 . Since the blood passes through the gaps between the warp and weft of the hollow fibers 4 in a direction perpendicular to the hollow fibers, a turbulent flow occurs near the hollow fibers.
Here, excellent gas exchange ability can be exhibited.

従って、中空糸の本数を増やしたり、その有効長さを長
くしたりすることなく、チャンネリングを抑制し、圧力
損失も低減し、人工肺の小型化が可能となり、ブライミ
ングポリニームを減少させることができる。
Therefore, without increasing the number of hollow fibers or lengthening their effective length, channeling can be suppressed, pressure loss can be reduced, the oxygenator can be made smaller, and brimming polyneme can be reduced. be able to.

上記実施例において、メツシュ状膜部材3の中空糸4は
、縦糸として、例えばポリプロピレン製の疎水性の中空
糸膜を用い、横糸として親水性を付与した中空糸膜また
は中実糸を用いれば、よりブライミングが容易となる。
In the above embodiment, for the hollow fibers 4 of the mesh-like membrane member 3, if a hydrophobic hollow fiber membrane made of, for example, polypropylene is used as the warp, and a hollow fiber membrane or solid fiber imparted with hydrophilicity is used as the weft, Briming becomes easier.

又、メツシュ状膜部材3を構成する中空糸4のうち、例
えば、縦糸をガス交換用多孔質膜で形成し、横糸を熱交
換用非多孔質膜で形成すれば、ガス交換と熱交換を一度
になすことができるので、プライミングポリニームの減
少の効果が一段と向上する。
Further, among the hollow fibers 4 constituting the mesh-like membrane member 3, for example, if the warp threads are formed of a porous membrane for gas exchange and the weft threads are formed of a non-porous membrane for heat exchange, gas exchange and heat exchange can be performed. Since it can be done all at once, the effect of reducing the priming polyneme is further improved.

更に、メツシュ状膜部材3のメツシュのピッチを積層し
た層方向に沿って異ならしめ、例えば、ピッチが1.O
n+mのものと、0.7+mmのものとを交互に積層す
る構成も考えられる。あるいは、このメツシュの目を横
方向に偏位した状態で積層する構成、例えば中空糸の軸
方向の角度を少しずつずらして積層したり、横方向に平
行にずらして積層する構成も考えられる。
Furthermore, the pitch of the mesh of the mesh-like membrane member 3 is varied along the direction of the laminated layers, for example, the pitch is 1. O
A configuration in which layers of n+m and layers of 0.7+mm are alternately laminated is also considered. Alternatively, it is also possible to consider a structure in which the meshes are laminated with their meshes deviated in the lateral direction, such as a structure in which the axial angles of the hollow fibers are shifted little by little, or a structure in which the meshes are stacked while being shifted in parallel to the lateral direction.

上述のような種々の構成により、−層、良好な乱流効果
が得られ、ガス交換能の向上が一層図れる。
With the various configurations described above, a favorable turbulent flow effect can be obtained, and the gas exchange performance can be further improved.

以上実施例を挙げて本発明を説明したが、本発明は上記
実施例に限定されるものではなく、本発明の要旨を変更
しない範囲で種々変更可能である。
Although the present invention has been described above with reference to Examples, the present invention is not limited to the above-mentioned Examples, and can be modified in various ways without changing the gist of the present invention.

例えば、上記実施例では、外部潅流型の人工肺について
説明したが、内部潅流型のものでも勿論、適用可能であ
り、この場合には、特に、人工肺の小型化が可能になり
、圧力損失の低減をなし得、血液に弊害をもたらすよう
な過大な圧力を防止し得る。
For example, in the above embodiment, an external perfusion type oxygenator was described, but an internal perfusion type oxygenator is of course also applicable. of the blood, and can prevent excessive pressure that may be harmful to the blood.

次に本発明者は、上記実施例の効果を確認するために以
下の実験を行なった。
Next, the inventor conducted the following experiment to confirm the effects of the above embodiment.

(実験例) まず、前記実施例と同様の構成の人工肺を用意した。こ
こにおいて、中空糸4を膜厚的50μmのポリプロピレ
ン製の多孔質中空糸とし、これを平織で織成してメツシ
ュ状膜部材の各層のメツシュを形成し、このメツシュの
ピッチを1 mm、積層枚数を186枚、有効膜面積を
0.4m”、第4図に示す、その有効長さβを30mm
、充填率を40%、第5図に示す、メツシュ状膜部材3
の高さhを94.3mm、第4図に示す、隔壁6の厚さ
tを15mm、その材質をポリウレタン、ハウジング1
の素材をポリカーボネート製とした。
(Experimental Example) First, an oxygenator having the same configuration as in the above example was prepared. Here, the hollow fiber 4 is a porous hollow fiber made of polypropylene with a membrane thickness of 50 μm, and this is woven in a plain weave to form the mesh of each layer of the mesh-like membrane member, the pitch of this mesh is 1 mm, and the number of laminated sheets is 186 sheets, the effective membrane area is 0.4 m'', and the effective length β is 30 mm as shown in Figure 4.
, the filling rate is 40%, and the mesh-like membrane member 3 shown in FIG.
The height h of the partition wall 6 shown in FIG. 4 is 94.3 mm, the thickness t of the partition wall 6 is 15 mm, the material thereof is polyurethane,
The material is made of polycarbonate.

なお、充填率とは、単位体積当りの中空糸(中空糸の内
部空間を含む)の占める割合をいう。
Note that the filling rate refers to the proportion of hollow fibers (including the internal space of the hollow fibers) per unit volume.

次に、上記人工肺13を第6図に示す実験回路中に配設
した。この実験回路は、人工肺13の上流側及び下流側
にそれぞれタンク14.14を設け、上流側のタンク1
4と人工肺13との間に位置したローラポンプ15によ
り、血液を該人工肺13へ矢印Bに沿い送り込む構成と
しである。
Next, the artificial lung 13 was placed in the experimental circuit shown in FIG. This experimental circuit includes tanks 14 and 14 provided on the upstream and downstream sides of the oxygenator 13, and a tank 1 on the upstream side.
Blood is pumped into the oxygenator 13 along the arrow B by a roller pump 15 located between the oxygenator 4 and the oxygenator 13.

血液としては、ヘパリン加生血を用い、そのヘマトクリ
ット値Ht:35.1%、血温を37℃とした。
Heparinized blood was used as the blood, and its hematocrit value Ht was 35.1%, and the blood temperature was 37°C.

酸素含有ガスは矢印Aに沿って人工肺13へ送り込まれ
る。人工肺13に近接して上流側及び下流側の各位置1
6.17でサンプリングを行ない、血流量、ガス流量及
び酸素飽和度につき、同一サンプルで2回ずつ計測した
。その結果を表1に示す。
Oxygen-containing gas is sent into the artificial lung 13 along arrow A. Each position 1 on the upstream side and downstream side close to the oxygenator 13
Sampling was performed at 6.17, and blood flow, gas flow rate, and oxygen saturation were measured twice for the same sample. The results are shown in Table 1.

表  1 上記表1の結果で明らかなように5十分な酸素添加能が
得られた。
Table 1 As is clear from the results in Table 1 above, a sufficient oxygen addition ability was obtained.

[発明の効果] 以上説明したように、本発明に係る人工肺によれば中空
糸を縦横に組合わせるとともに積層してなるメツシュ状
膜部材のメツシュの一方の開口端一方の開口端から他方
の開口端へとメツシュの目を通して、第2の流体を各中
空糸の軸方向に対して実質的に直交する方向に流すよう
にしたので、中空糸内部に流れる第1の流体との優れた
ガス交換能を発揮し、これにより例えば、中空糸の本数
を増やしたり、その有効長さを長くしたりすることなく
、チャンネリングを抑制し、圧力損失も低減し、人工肺
の小型化に伴ってプライミングボリュームを減少させる
ことができる等、種々の効果を有する。
[Effects of the Invention] As explained above, according to the oxygenator according to the present invention, the mesh of the mesh-like membrane member formed by combining hollow fibers vertically and horizontally and laminating them can be connected from one open end to the other. Since the second fluid is allowed to flow in a direction substantially perpendicular to the axial direction of each hollow fiber through the mesh holes toward the open end, excellent gas flow between the first fluid and the first fluid flowing inside the hollow fibers is achieved. This enables, for example, to suppress channeling and reduce pressure loss without increasing the number of hollow fibers or lengthening their effective length. It has various effects such as being able to reduce the priming volume.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の人工肺の一実施例を示す外観正面図、
第2図は第1図の側面図、第3図は第1図の平面図、第
4図は第1図の4−4線横断面区、第5図は第3図の5
−5線縦断面図、第6図は実験回路である。
FIG. 1 is an external front view showing an embodiment of the artificial lung of the present invention;
Fig. 2 is a side view of Fig. 1, Fig. 3 is a plan view of Fig. 1, Fig. 4 is a cross-sectional section taken along line 4-4 in Fig. 1, and Fig. 5 is a sectional view of Fig. 3.
The longitudinal sectional view taken along line -5 and FIG. 6 is an experimental circuit.

Claims (9)

【特許請求の範囲】[Claims] (1)中空糸の膜壁を介して第1及び第2の流体間相互
の物質移動を行なうために複数の中空糸を縦横に組合せ
るとともに積層してなるメッシュ状膜部材を備え、前記
中空糸内部に前記第1の流体を流し、該メッシュ状膜部
材中の中空糸の軸方向に対して実質的に直交する方向に
前記第2の流体を流通させることを特徴とする人工肺。
(1) A mesh-like membrane member formed by combining a plurality of hollow fibers vertically and horizontally and stacking them in order to perform mutual mass transfer between the first and second fluids through the membrane wall of the hollow fibers, An artificial lung characterized in that the first fluid is caused to flow inside the fibers, and the second fluid is caused to flow in a direction substantially perpendicular to the axial direction of the hollow fibers in the mesh membrane member.
(2)第1の流体の流入口および流出口と、第2の流体
の流入口および流出口を備えたハウジングと、該ハウジ
ングに固定されるとともに前記メッシュ状膜部材中の各
中空糸端部を開口させるメッシュ状膜部材の側面に設け
られた隔壁とを備え、第1の流体の流入口より流入した
第1の流体が該隔壁部分に開口した中空糸内を流通して
該第1の流体の流出口へと流体密に連通するとともに、
第2の流体の流入口より流入した第2の流体が前記メッ
シュ状膜部材の対応する一方のメッシュ開口端より他方
のメッシュ開口端へ、該メッシュ状膜部材のメッシュの
目を通して流れるとともに該第2の流体の流出口へと流
体密に連通してなる請求項第1項に記載の人工肺。
(2) A housing having a first fluid inlet and an outlet and a second fluid inlet and an outlet, and each hollow fiber end portion in the mesh membrane member that is fixed to the housing. a partition wall provided on a side surface of the mesh-like membrane member that opens the first fluid, and the first fluid flowing in from the first fluid inlet flows through the hollow fibers opened in the partition wall portion, and in fluid-tight communication with the fluid outlet;
The second fluid flowing in from the second fluid inlet flows from the corresponding one mesh opening end of the mesh membrane member to the other mesh opening end through the mesh openings of the mesh membrane member. 2. The oxygenator according to claim 1, which is in fluid-tight communication with the second fluid outlet.
(3)前記メッシュ状膜部材は各側面に前記隔壁が設け
られるとともに、互いに隣接する一対の側面が前記第1
の流体の流入口に対向するとともに他方の互いに隣接す
る一対の側面が前記第1の流体の流出口に対向してなる
請求項第2項に記載の人工肺。
(3) The mesh-like membrane member is provided with the partition walls on each side, and a pair of adjacent side surfaces are connected to the first side.
3. The oxygenator according to claim 2, wherein a pair of side surfaces facing the fluid inlet and the other adjacent to each other face the first fluid outlet.
(4)前記メッシュ状膜部材は、中空糸を互いに、又は
中空糸と中実糸とを互いに織成ないしは編成して形成さ
れてなる請求項第1項ないし第3項のいずれか1に記載
の人工肺。
(4) The mesh membrane member is formed by weaving or knitting hollow fibers or hollow fibers and solid fibers together. artificial lung.
(5)前記メッシュ状膜部材の縦糸および横糸の一方の
糸をなす中空糸をガス交換用多孔質膜で形成するととも
に他方の糸をなす中空糸を熱交換用非多孔質膜で形成し
てなる請求項第1項ないし第3項のいずれか1に記載の
人工肺。
(5) The hollow fibers forming one of the warp and weft threads of the mesh membrane member are formed from a porous membrane for gas exchange, and the hollow fiber forming the other thread is formed from a non-porous membrane for heat exchange. The artificial lung according to any one of claims 1 to 3.
(6)前記メッシュ状膜部材のメッシュのピッチを、該
メッシュ状膜部材の層方向に沿って異ならしめてなる請
求項第1項ないし第3項のいずれか1に記載の人工肺。
(6) The oxygenator according to any one of claims 1 to 3, wherein the mesh pitch of the mesh membrane member is varied along the layer direction of the mesh membrane member.
(7)前記メッシュ状膜部材のメッシュの目位置を層方
向に対し横方向に偏位させてなる請求項第1項ないし第
3項のいずれか1に記載の人工肺。
(7) The artificial lung according to any one of claims 1 to 3, wherein the mesh position of the mesh of the mesh-like membrane member is offset in the lateral direction with respect to the layer direction.
(8)前記第1の流体は酸素含有ガスであり、前記第2
の流体は血液である請求項第1項ないし第7項のいずれ
か1に記載の人工肺。
(8) The first fluid is an oxygen-containing gas, and the second fluid is an oxygen-containing gas.
8. The artificial lung according to claim 1, wherein the fluid is blood.
(9)前記第1の流体は血液であり、前記第2の流体は
酸素含有ガスである請求項第1項ないし第7項のいずれ
か1に記載の人工肺。
(9) The artificial lung according to any one of claims 1 to 7, wherein the first fluid is blood and the second fluid is an oxygen-containing gas.
JP1298696A 1989-11-15 1989-11-15 Artificial lung Pending JPH03158167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298696A JPH03158167A (en) 1989-11-15 1989-11-15 Artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298696A JPH03158167A (en) 1989-11-15 1989-11-15 Artificial lung

Publications (1)

Publication Number Publication Date
JPH03158167A true JPH03158167A (en) 1991-07-08

Family

ID=17863100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298696A Pending JPH03158167A (en) 1989-11-15 1989-11-15 Artificial lung

Country Status (1)

Country Link
JP (1) JPH03158167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060799A1 (en) * 2005-11-24 2007-05-31 Jms Co., Ltd. Hollow fiber membrane type artificial lung
JP2019072611A (en) * 2013-03-15 2019-05-16 マクエット カルディオプルモナリー ゲーエムベーハー Carbon dioxide removal system
JP2021023470A (en) * 2019-08-01 2021-02-22 株式会社ジェイ・エム・エス Artificial lung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060799A1 (en) * 2005-11-24 2007-05-31 Jms Co., Ltd. Hollow fiber membrane type artificial lung
JP2007143614A (en) * 2005-11-24 2007-06-14 Jms Co Ltd Hollow fiber membrane type oxygenator
US8187216B2 (en) 2005-11-24 2012-05-29 Jms Co., Ltd. Hollow fiber membrane-type artificial lung
JP2019072611A (en) * 2013-03-15 2019-05-16 マクエット カルディオプルモナリー ゲーエムベーハー Carbon dioxide removal system
JP2021191539A (en) * 2013-03-15 2021-12-16 マクエット カルディオプルモナリー ゲーエムベーハー Carbon dioxide removal system
JP2021023470A (en) * 2019-08-01 2021-02-22 株式会社ジェイ・エム・エス Artificial lung

Similar Documents

Publication Publication Date Title
JP5168777B2 (en) Hollow fiber membrane oxygenator
CN108025127B (en) Artificial lung
US3612281A (en) Parallel membranous layer type fluid diffusion cell
JP6135769B2 (en) Built-in filter type artificial lung and manufacturing method thereof
CA1163929A (en) Mass transfer apparatus with collapsed semipermeable membrane
KR840008122A (en) Membrane oxygen supply
JPH03158167A (en) Artificial lung
JP6462131B2 (en) Hollow fiber membrane module
US3915650A (en) Blood oxygenator defoaming means
US8147753B2 (en) Heat exchanger for medical use and artificial heart-lung machine
US4786411A (en) Fluid treatment apparatus with semi-permeable membranes
US3488690A (en) Artificial kidney membrane support means
JPH0798061B2 (en) Blood processing equipment
KR20200077581A (en) Membrane bundle layout with spacers
JP5088537B2 (en) Medical heat exchanger and heart-lung machine
CA1118367A (en) Semipermeable membrane mass transfer apparatus having slotted support members
JP7400253B2 (en) artificial lung
JP5088538B2 (en) Medical heat exchanger and heart-lung machine
JP2006314890A (en) Hollow fiber membrane module
US3326380A (en) Dialyzer with various connection means
JP6745027B2 (en) Device for removing microbubbles in blood and cardiopulmonary system
GB2086762A (en) Device for mass transfer between fluids
JP2006289191A (en) Total heat exchange membrane and total heat exchanger
JP5347602B2 (en) Blood processing equipment
JP2021023469A (en) Artificial lung