JP2006289191A - Total heat exchange membrane and total heat exchanger - Google Patents

Total heat exchange membrane and total heat exchanger Download PDF

Info

Publication number
JP2006289191A
JP2006289191A JP2005110145A JP2005110145A JP2006289191A JP 2006289191 A JP2006289191 A JP 2006289191A JP 2005110145 A JP2005110145 A JP 2005110145A JP 2005110145 A JP2005110145 A JP 2005110145A JP 2006289191 A JP2006289191 A JP 2006289191A
Authority
JP
Japan
Prior art keywords
total heat
exchange membrane
heat exchange
pocket
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005110145A
Other languages
Japanese (ja)
Inventor
Soichi Mizui
総一 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005110145A priority Critical patent/JP2006289191A/en
Publication of JP2006289191A publication Critical patent/JP2006289191A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total heat exchange membrane not impeding a performance as the total heat exchange membrane even if drying and humidification are repeated at any number of times and withstanding to repeated usage, and a total heat exchanger using it. <P>SOLUTION: The total heat exchange membrane 20 is formed by providing a flat cavity part 27 over the approximately whole area at the inside excepting a plate-like frame 21 of thin thickness and providing fine holes 26c, 26d communicating with the cavity part on the approximately whole surface of front and back surfaces excepting the plate-like frame 21 in a mesh shape. Further, fluid passages for circulating the separate fluid are provided on both surfaces of the total heat exchange membrane 20 to form the total heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、全熱交換膜およびそれを用いた全熱交換器に関する。   The present invention relates to a total heat exchange membrane and a total heat exchanger using the same.

熱交換器のうち、温度の交換すなわち顕熱交換のみならず、湿度の交換すなわち潜熱交換をも行うものを全熱交換器と呼ぶ。全熱交換器は例えば、室内の汚れた空気を廃棄する際に、室内に取り入れる清浄な外気との間で温度交換と湿度交換を同時におこなう必要がある場合などに用いられる。ここで、全熱交換器の熱交換膜には、吸放湿性に優れていることから例えば特許文献1に見るように紙を加工したものが多く用いられている。   Among heat exchangers, those that perform not only temperature exchange, that is, sensible heat exchange, but also humidity exchange, that is, latent heat exchange, are called total heat exchangers. The total heat exchanger is used, for example, when it is necessary to simultaneously exchange temperature and humidity with clean outside air taken into the room when discarding dirty air in the room. Here, as a heat exchange membrane of the total heat exchanger, a paper processed as shown in Patent Document 1 is often used because of its excellent moisture absorption / release properties.

しかし熱交換膜として紙を加工したものを用いた場合、紙の特性に起因して不使用時の乾燥収縮と使用時の加湿膨張とを繰り返すこととなるため、安定した性能を発揮せず、また耐久性が劣る問題があった。
特開平11−189999号公報
However, when paper processed as a heat exchange membrane is used, it will repeat drying shrinkage when not in use and humidification expansion at the time of use due to the characteristics of the paper, so it does not demonstrate stable performance, There was also a problem of poor durability.
Japanese Patent Laid-Open No. 11-189999

そこでこの発明の解決すべき課題は、何度乾燥加湿を繰り返しても、全熱交換膜としての性能に支障をきたすことがなく、繰り返しの使用に耐える全熱交換膜およびそれを用いた全熱交換器を提供することにある。   Therefore, the problem to be solved by the present invention is that a total heat exchange membrane that can withstand repeated use and the total heat using the same without affecting the performance as a total heat exchange membrane, no matter how many times dry humidification is repeated. To provide an exchange.

上記した課題を解決するためこの発明は、厚みの薄い板状体の外周に設けられたフレームを除いた内部のほぼ全域にわたって扁平な空洞部を設け、前記板状体のフレームを除いた表裏面のほぼ全面に前記空洞部と連通する微小孔をメッシュ状に設けた全熱交換膜を形成したのである。   In order to solve the above-described problems, the present invention provides a flat hollow portion over almost the entire area excluding the frame provided on the outer periphery of the thin plate-like body, and the front and back surfaces excluding the plate-like frame. A total heat exchange membrane in which minute holes communicating with the cavity are formed in a mesh shape on almost the entire surface.

前記全熱交換膜の空洞部は、対向するフレームを連結する補強リブによって複数の小部屋に仕切られるのが好ましい。   Preferably, the cavity of the total heat exchange membrane is partitioned into a plurality of small chambers by reinforcing ribs that connect the opposing frames.

前記全熱交換膜は金属または合成樹脂からなるのが好ましい。   The total heat exchange membrane is preferably made of metal or synthetic resin.

またこの発明は、上記した全熱交換膜の一面に沿って一の流体が流通する流体通路を設け、全熱交換膜の他面に沿って他の流体が流通する流体通路を設けて全熱交換器を形成したのである。   The present invention also provides a fluid passage through which one fluid flows along one surface of the total heat exchange membrane, and a fluid passage through which another fluid flows along the other surface of the total heat exchange membrane. An exchange was formed.

前記一の流体が流通する流体通路は第一の板状エレメントに形成され、前記他の流体が流通する流体通路は第二の板状エレメントに形成されるのが好ましい。   Preferably, the fluid passage through which the one fluid flows is formed in the first plate element, and the fluid passage through which the other fluid flows is formed in the second plate element.

全熱交換器において、全熱交換膜の両面に互いに対応する、第一のポケットと第二のポケットおよび第三のポケットと第四のポケットの二対のポケットを設け、一方流体通路は全熱交換膜の一面に設けられた気密な第一のポケットから全熱交換膜に設けられた一の流通孔を経て他面に設けられた気密な第四のポケットにかけて形成され、他方流体通路は全熱交換膜の一面に設けられた気密な第三のポケットから他の流通孔を経て全熱交換膜の他面に設けられた第二のポケットにかけて形成されることにより、互いに隔離され互い違いに連通する2つの流体通路を形成するのが好ましい。   In the total heat exchanger, two pairs of pockets, a first pocket and a second pocket, and a third pocket and a fourth pocket, corresponding to each other on both sides of the total heat exchange membrane, are provided, while the fluid passage has a total heat It is formed from an airtight first pocket provided on one side of the exchange membrane to a gastight fourth pocket provided on the other side through one flow hole provided in the total heat exchange membrane, while the fluid passage is entirely By forming from the airtight third pocket provided on one side of the heat exchange membrane to the second pocket provided on the other side of the total heat exchange membrane through other flow holes, they are isolated from each other and communicated alternately. Preferably, two fluid passages are formed.

第一のポケットと第三のポケットは全熱交換膜の一面に積層される第一の板状エレメントに形成され、第二のポケットと第四のポケットは全熱交換膜の他面に積層される第二の板状エレメントに形成されるのが好ましい。   The first pocket and the third pocket are formed on the first plate element laminated on one side of the total heat exchange membrane, and the second pocket and the fourth pocket are laminated on the other side of the total heat exchange membrane. Preferably, the second plate-like element is formed.

全熱交換膜の一面に第一の板状エレメントを積層し、全熱交換膜の他面に第二の板状エレメントを積層してなるアセンブリを複数積層して全熱交換器を形成するのがよい。   A total heat exchanger is formed by stacking a plurality of assemblies in which the first plate element is laminated on one surface of the total heat exchange membrane and the second plate element is laminated on the other surface of the total heat exchange membrane. Is good.

全熱交換膜を、厚みの薄い板状体のフレームを除いた内部のほぼ全域にわたって扁平な空洞部を設け、前記板状体のフレームを除いた表裏面のほぼ全面に前記空洞部と連通する微小孔をメッシュ状に設けて形成することにより、湿気を含んだ流体側のメッシュ状に形成された微小孔から、扁平な空洞部を通り、乾燥した流体側の微小孔を経て湿気を移すことが出来るため、紙を加工したものと異なり全熱交換膜自体はなんら変化しないため、乾いても性能に支障をきたすことなく繰り返し使用することが出来る。   The entire heat exchange membrane is provided with a flat hollow portion over almost the whole area excluding the thin plate-like frame, and communicates with the hollow portion on almost the entire front and back surfaces excluding the plate-like frame. By forming the micropores in a mesh shape, the moisture is transferred from the micropores formed in the fluid-side mesh containing moisture through the flat cavity and through the dry fluid-side micropores. Therefore, the total heat exchange membrane itself does not change at all, unlike the case where paper is processed, so that even if it is dried, it can be used repeatedly without affecting the performance.

全熱交換膜の空洞部を、対向するフレームを連結する補強リブによって複数の小部屋に仕切ることにより、全熱交換膜の強度が増し耐久性が向上する。   By partitioning the cavity of the total heat exchange membrane into a plurality of small rooms by reinforcing ribs connecting the opposing frames, the strength of the total heat exchange membrane is increased and the durability is improved.

全熱交換膜を金属または合成樹脂とすることにより、紙を加工したものと異なり、熱伝導性、耐久性ともに優れたものと出来る。   By using a metal or a synthetic resin as the total heat exchange membrane, it is possible to achieve excellent thermal conductivity and durability unlike paper processed.

上記した全熱交換膜の一面に沿って一の流体が流通する流体通路を設け、全熱交換膜の他面に沿って他の流体が流通する流体通路を設けて全熱交換器を形成することにより、繰り返しの使用に耐える便利でかつ簡易な構造の全熱交換器を得ることができる。   A fluid passage through which one fluid flows is provided along one surface of the total heat exchange membrane, and a fluid passage through which another fluid flows is provided along the other surface of the total heat exchange membrane to form a total heat exchanger. Thus, a total heat exchanger having a convenient and simple structure that can withstand repeated use can be obtained.

一の流体が流通する流体通路は第一の板状エレメントに形成され、前記他の流体が流通する流体通路は第二の板状エレメントに形成されることにより、全熱交換器の厚みを薄くすることができ、小型化が図られる。   The fluid passage through which one fluid flows is formed in the first plate element, and the fluid passage through which the other fluid flows is formed in the second plate element, thereby reducing the thickness of the total heat exchanger. Therefore, the size can be reduced.

全熱交換器において、全熱交換膜の両面に互いに対応する、第一のポケットと第二のポケットおよび第三のポケットと第四のポケットの二対のポケットを設け、一方流体通路は全熱交換膜の一面に設けられた気密な第一のポケットから全熱交換膜に設けられた一の流通孔を経て他面に設けられた気密な第四のポケットにかけて形成され、他方流体通路は全熱交換膜の一面に設けられた気密な第三のポケットから他の流通孔を経て全熱交換膜の他面に設けられた第二のポケットにかけて形成されることにより、互いに隔離された2つの流体通路を形成し、この2つの流体通路は全熱交換膜を挟んで互い違いに連通するため、熱交換量の調整や圧力の調整および流量の調整を容易におこなうことができる。また、全熱交換器を載置した際の上下方向に関係なく同じ性能を発揮することができる。また、温度関係を均一化することができる。   In the total heat exchanger, two pairs of pockets, a first pocket and a second pocket, and a third pocket and a fourth pocket, corresponding to each other on both sides of the total heat exchange membrane, are provided, while the fluid passage has a total heat It is formed from an airtight first pocket provided on one side of the exchange membrane to a gastight fourth pocket provided on the other side through one flow hole provided in the total heat exchange membrane, while the fluid passage is entirely By forming from an airtight third pocket provided on one side of the heat exchange membrane to a second pocket provided on the other side of the total heat exchange membrane through another flow hole, two isolated from each other Since the fluid passages are formed and the two fluid passages are alternately communicated with the total heat exchange membrane interposed therebetween, it is possible to easily adjust the heat exchange amount, the pressure, and the flow rate. Moreover, the same performance can be exhibited regardless of the vertical direction when the total heat exchanger is placed. Further, the temperature relationship can be made uniform.

前記第一のポケットと第三のポケットを全熱交換膜の一面に積層される第一の板状エレメントに形成し、第二のポケットと第四のポケットを全熱交換膜の他面に積層される第二の板状エレメントに形成することにより、全熱交換器の厚みを薄くすることができ、小型化が図られる。   The first pocket and the third pocket are formed on the first plate element laminated on one surface of the total heat exchange membrane, and the second pocket and the fourth pocket are laminated on the other surface of the total heat exchange membrane. By forming the second plate-like element, the thickness of the total heat exchanger can be reduced, and the size can be reduced.

全熱交換膜の一面に第一の板状エレメントを積層し、全熱交換膜の他面に第二の板状エレメントを積層してなるアセンブリを複数積層して全熱交換器を形成することにより熱交換の効率がさらに向上する。   A total heat exchanger is formed by laminating a plurality of assemblies in which the first plate element is laminated on one surface of the total heat exchange membrane and the second plate element is laminated on the other surface of the total heat exchange membrane. As a result, the efficiency of heat exchange is further improved.

以下、図面を参照しつつこの発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず図1を参照しつつ、この発明にかかる全熱交換器の全体構造について説明する。全熱交換器は、図示のように、第一の板状エレメント10、全熱交換膜20、第二の板状エレメント30からなるアセンブリを複数積層し、これらを一対の側板40、50により気密に挟持することにより形成される。全熱交換器の部材の材質はすべてステンレスであるのが好ましいが、銅、アルミニウム、チタンなどの他の金属や合成樹脂で代替することができる。また、この実施の形態では全熱交換器の形状を平面視方形としたがこれに限られず、円形、楕円形などさまざまな形状にすることができる。   First, the overall structure of the total heat exchanger according to the present invention will be described with reference to FIG. As shown in the figure, the total heat exchanger is formed by stacking a plurality of assemblies including a first plate element 10, a total heat exchange membrane 20, and a second plate element 30, and these are hermetically sealed by a pair of side plates 40 and 50. It is formed by sandwiching between the two. The material of the total heat exchanger is preferably made of stainless steel, but can be replaced with other metals such as copper, aluminum, titanium, or synthetic resin. In this embodiment, the shape of the total heat exchanger is a square in plan view. However, the shape is not limited to this, and various shapes such as a circle and an ellipse can be used.

また、図示のように、第一の側板40は、平坦で側辺中央に膨出部41を有するほぼ長方形の板状体であり、第二の側板50は、ほぼ第一の側板40と同様の構造であるが、加えて第一の板状エレメント10等に流体を流出入させるための貫通孔52を設けたものである。   Further, as shown in the drawing, the first side plate 40 is a flat plate having a flat shape and a bulging portion 41 at the center of the side, and the second side plate 50 is substantially the same as the first side plate 40. In addition, a through-hole 52 is provided to allow fluid to flow into and out of the first plate-like element 10 and the like.

全熱交換器は、これら部材を拡散接合や、ニッケルペーストを用いた接合など公知の方法により接合されて形成される。接合する際には後述するように、隔離された貫通孔をそれぞれの板状体の一定位置に設けると、これを合わせることより正確に位置合わせをおこなうことが可能となる。   The total heat exchanger is formed by bonding these members by a known method such as diffusion bonding or bonding using nickel paste. When joining, as will be described later, if the isolated through-holes are provided at fixed positions of the respective plate-like bodies, alignment can be performed more accurately by combining them.

次に図2(a)から図2(c)を参照しつつ、全熱交換器の内部構造について説明する。図2(a)のように、第一の板状エレメント10は、鏡像関係にある板状体10aと板状体10bとを重ね合わせ接合することにより形成される。   Next, the internal structure of the total heat exchanger will be described with reference to FIGS. 2 (a) to 2 (c). As shown in FIG. 2A, the first plate-like element 10 is formed by superposing and joining a plate-like body 10a and a plate-like body 10b having a mirror image relationship.

図示のように、板状体10a、10bはそれぞれ側辺中央が凹入するほぼ長方形のフレーム11a、11bの中に流体出入口、流体流通路を区画するフレーム11a、11bと同じ厚みの区画リブが張り巡らされている。区画リブは、フレーム11a、11bの両端辺から半円状に延びる半円リブ12a、12bと、両端辺の半円リブ12a、12b同士を連結する楕円リブ13a、13bとからなる。半円リブ12a、12bとフレーム11a、11bに囲まれる部分は流体流通口14a、14bを形成し、楕円リブ13a、13bに囲まれる部分は流体流通口15a、15bを形成する。   As shown in the figure, the plate-like bodies 10a and 10b have partition ribs having the same thickness as the frames 11a and 11b partitioning the fluid inlet / outlet and the fluid flow passage in the substantially rectangular frames 11a and 11b in which the center of each side is recessed. It is stretched around. The partition ribs are composed of semicircular ribs 12a and 12b extending semicircularly from both ends of the frames 11a and 11b, and elliptical ribs 13a and 13b connecting the semicircular ribs 12a and 12b on both ends. The portions surrounded by the semicircular ribs 12a and 12b and the frames 11a and 11b form fluid circulation ports 14a and 14b, and the portions surrounded by the elliptical ribs 13a and 13b form fluid circulation ports 15a and 15b.

また、板状体10a、10bの凹入するフレーム11a、11b側辺中央を取り囲んでフレーム11a、11bと同じ厚みの膨出リブ16a、16bが設けられ、フレーム11a、11bと膨出リブ16a、16bに囲まれる部分は流体出入口17a、17bを形成する。   Further, bulging ribs 16a and 16b having the same thickness as the frames 11a and 11b are provided so as to surround the center sides of the frames 11a and 11b into which the plate-like bodies 10a and 10b are recessed, and the frames 11a and 11b and the bulging ribs 16a are provided. A portion surrounded by 16b forms fluid inlet / outlet ports 17a and 17b.

上述した以外でフレーム11a、11bと半円リブ12a、12bおよび楕円リブ13a、13bに囲まれる大きなポケットは流体流通路18a、18bを形成する。   Except as described above, the large pockets surrounded by the frames 11a and 11b, the semicircular ribs 12a and 12b, and the elliptical ribs 13a and 13b form fluid flow passages 18a and 18b.

また、板状体10a、10bのフレーム11a、11bおよび半円リブ12a、12bおよび楕円リブ13a、13bには、鏡像関係となる溝19a、19bが設けられており、板状体10a、10bを重ね合わせるとリブ上の溝19a、19bも重なり合い流体流通孔19を形成する。   Further, the frames 11a and 11b, the semicircular ribs 12a and 12b, and the elliptical ribs 13a and 13b of the plate-like bodies 10a and 10b are provided with grooves 19a and 19b having a mirror image relation, and the plate-like bodies 10a and 10b are provided. When superposed, the grooves 19 a and 19 b on the ribs also overlap to form the fluid circulation hole 19.

なお、フレーム11a、11bの四辺には、板状体10a等を重ね合わせる際の位置あわせのための貫通孔を隔離した状態で設けてもよい。   In addition, you may provide in the state which isolate | separated the through-hole for the alignment at the time of superimposing the plate-like body 10a etc. on the four sides of the flame | frame 11a, 11b.

図2(b)のように、全熱交換膜20は、鏡像関係にある板状体20aと板状体20bとを重ね合わせ接合することにより形成される。全熱交換膜20の厚みは0.01mmから0.3mmくらいが好ましい。   As shown in FIG. 2B, the total heat exchange membrane 20 is formed by superposing and joining a plate-like body 20a and a plate-like body 20b having a mirror image relationship. The thickness of the total heat exchange membrane 20 is preferably about 0.01 mm to 0.3 mm.

板状体20a、20bはそれぞれほぼ長方形のフレーム21a、21bの中に、フレーム21a、21bと同じ厚みの区画リブが張り巡らされている。区画リブは、フレーム21a、21bの両端辺から半円状に延びる半円リブ22a、22bと、両端辺の半円リブ22a、22b同士を連結する楕円リブ23a、23bとからなる。半円リブ22a、22bとフレーム11a、11bに囲まれる部分は流体流通口24a、24bを形成し、楕円リブ23a、23bに囲まれる部分は流体流通口25a、25bを形成する。   In the plate-like bodies 20a and 20b, partition ribs having the same thickness as the frames 21a and 21b are stretched in substantially rectangular frames 21a and 21b, respectively. The partition rib includes semicircular ribs 22a and 22b extending in a semicircular shape from both ends of the frames 21a and 21b, and elliptical ribs 23a and 23b that connect the semicircular ribs 22a and 22b on both ends. Portions surrounded by the semicircular ribs 22a and 22b and the frames 11a and 11b form fluid circulation ports 24a and 24b, and portions surrounded by the elliptical ribs 23a and 23b form fluid circulation ports 25a and 25b.

上述した以外でフレーム21a、21bと半円リブ22a、22bおよび楕円リブ23a、23bに囲まれる全熱交換部26a、26bは、厚みがフレーム21a、21bおよび半円リブ22a、22bおよび楕円リブ23a、23bよりかなり薄く、また、表裏面を貫通する微小孔26c、26dが全面にメッシュ状に施されている。微小孔26c、26dの径は、0.01mmから0.2mmくらいが好ましく、メッシュの密度としては、微小孔26c、26dが1mmあたり100個から10000個くらいが好ましい。板状体20aと板状体20bとを重ね合わせると、この空間は厚みが薄いため、扁平な空洞部27となる。また全熱交換部26a、26bには、フレーム21a、21bと区画リブを連結する形でフレーム21a、21bと同じ厚みの補強リブ26´a、26´bがはりめぐらされ、容易に陥没等しないようになっている。 Other than the above, the total heat exchanging portions 26a and 26b surrounded by the frames 21a and 21b, the semicircular ribs 22a and 22b, and the elliptical ribs 23a and 23b have a thickness of the frames 21a and 21b, the semicircular ribs 22a and 22b, and the elliptical ribs 23a. , 23b, and fine holes 26c and 26d penetrating the front and back surfaces are meshed. The diameter of the micro holes 26c and 26d is preferably about 0.01 mm to 0.2 mm, and the density of the mesh is preferably about 100 to 10,000 micro holes 26c and 26d per 1 mm 2 . When the plate-like body 20a and the plate-like body 20b are overlapped with each other, this space becomes thin, so that the flat hollow portion 27 is formed. In addition, reinforcing ribs 26'a and 26'b having the same thickness as the frames 21a and 21b are connected to the total heat exchanging portions 26a and 26b so as to connect the frames 21a and 21b and the partition ribs, so that they are not easily depressed. It is like that.

また、板状体20a、20bの凹入するフレーム21a、21b側辺中央を取り囲んでフレーム21a、21bと同じ厚みの膨出リブ28a、28bが設けられ、フレーム21a、21bと膨出リブ28a、28bに囲まれる部分は流体出入口29a、29bを形成する。   Further, bulging ribs 28a and 28b having the same thickness as the frames 21a and 21b are provided so as to surround the center sides of the frames 21a and 21b into which the plate-like bodies 20a and 20b are recessed, and the frames 21a and 21b and the bulging ribs 28a, The portion surrounded by 28b forms fluid inlets / outlets 29a and 29b.

なお、フレームフレーム21a、21bの四辺には、板状体20a等を重ね合わせる際の位置あわせのための貫通孔を隔離した状態で設けてもよい。   In addition, you may provide in the state which isolated the through-hole for the alignment at the time of superimposing the plate-like body 20a etc. on the four sides of the frame frames 21a and 21b.

図2(c)のように、第二の板状エレメント30は、鏡像関係にある板状体30aと板状体30bとを重ね合わせ接合することにより形成される。図からわかるように、第二の板状エレメント30は、第一の板状エレメントと天地を逆にした形状である。したがって第一の板状エレメント10と同一の部材が用いられる。   As shown in FIG. 2C, the second plate-like element 30 is formed by overlapping and joining a plate-like body 30a and a plate-like body 30b that are in a mirror image relationship. As can be seen from the figure, the second plate element 30 has a shape in which the first plate element and the top and bottom are reversed. Therefore, the same member as the first plate element 10 is used.

図示のように、板状体30a、30bはそれぞれ側辺中央が凹入するほぼ長方形のフレーム31a、31bの中に流体出入口、流体流通路を区画するフレーム31a、31bと同じ厚みの区画リブが張り巡らされている。区画リブは、フレーム31a、31bの両端辺から半円状に延びる半円リブ32a、32bと、両端辺の半円リブ32a、32b同士を連結する楕円リブ33a、33bとからなる。半円リブ32a、32bとフレーム31a、31bに囲まれる部分は流体流通口34a、34bを形成し、楕円リブ33a、33bに囲まれる部分は流体流通口35a、35bを形成する。   As shown in the drawing, the plate-like bodies 30a and 30b have partition ribs having the same thickness as the frames 31a and 31b that partition the fluid inlet / outlet and the fluid flow passage in the substantially rectangular frames 31a and 31b in which the center of each side is recessed. It is stretched around. The partition rib includes semicircular ribs 32a and 32b extending in a semicircular shape from both ends of the frames 31a and 31b, and elliptical ribs 33a and 33b that connect the semicircular ribs 32a and 32b on both ends. The portions surrounded by the semicircular ribs 32a and 32b and the frames 31a and 31b form fluid circulation ports 34a and 34b, and the portions surrounded by the elliptical ribs 33a and 33b form fluid circulation ports 35a and 35b.

また、板状体30a、30bの凹入するフレーム31a、31b側辺中央を取り囲んでフレーム31a、31bと同じ厚みの膨出リブ36a、36bが設けられ、フレーム31a、31bと膨出リブ36a、36bに囲まれる部分は流体出入口37a、37bを形成する。   Further, bulging ribs 36a and 36b having the same thickness as the frames 31a and 31b are provided so as to surround the center sides of the frames 31a and 31b into which the plate-like bodies 30a and 30b are recessed, and the frames 31a and 31b and the bulging ribs 36a are provided. The part surrounded by 36b forms fluid inlets and outlets 37a and 37b.

上述した以外でフレーム31a、31bと半円リブ32a、32bおよび楕円リブ33a、33bに囲まれる大きなポケットは流体流通路38a、38bを形成する。   Except as described above, the large pockets surrounded by the frames 31a and 31b, the semicircular ribs 32a and 32b, and the elliptical ribs 33a and 33b form fluid flow passages 38a and 38b.

また、板状体30a、30bのフレーム31a、31bおよび半円リブ32a、32bおよび楕円リブ33a、33bには、鏡像関係となる溝39a、39bが設けられており、板状体30a、30bを重ね合わせるとリブ上の溝39a、39bも重なり合い流体流通孔39を形成する。   The frames 31a and 31b, the semicircular ribs 32a and 32b, and the elliptical ribs 33a and 33b of the plate-like bodies 30a and 30b are provided with grooves 39a and 39b having a mirror image relation. When superposed, the grooves 39a and 39b on the ribs also overlap to form a fluid flow hole 39.

なお、フレーム31a、31bの四辺には、板状体30a等を重ね合わせる際の位置あわせのための貫通孔を隔離した状態で設けてもよい。   In addition, you may provide in the state which isolate | separated the through-hole for the alignment at the time of superimposing the plate-like body 30a etc. on the four sides of the frames 31a and 31b.

次に図3を参照しつつ、流体の流れについて説明する。図中黒矢印は一方流体の流れを示し、白矢印は他方流体の流れを示す。   Next, the flow of fluid will be described with reference to FIG. In the figure, the black arrow indicates the flow of one fluid, and the white arrow indicates the flow of the other fluid.

まず一方流体の流れを追っていくと、第一の板状エレメント10のフレーム11の側辺に設けられた流体流通孔19を入口としてそこから流入した一方流体は、大きなポケットである流体流通路18を流通し、楕円リブ13に設けられた流体流通孔19をくぐり抜け、楕円リブ13に囲まれた流体流通口15に流れ込む。   First, when the flow of one fluid is followed, the one fluid that flows in from the fluid circulation hole 19 provided on the side of the frame 11 of the first plate element 10 as an inlet flows into the fluid flow passage 18 that is a large pocket. Through the fluid circulation hole 19 provided in the elliptical rib 13 and flows into the fluid circulation port 15 surrounded by the elliptical rib 13.

次に流体流通口15に流れ込んだ一方流体は、全熱交換膜20の楕円リブ23に囲まれた流体流通口25を通り、第二の板状エレメント30の楕円リブ33に囲まれた流体流通口35に出てくる。   Next, the one fluid that has flowed into the fluid circulation port 15 passes through the fluid circulation port 25 surrounded by the elliptical ribs 23 of the total heat exchange membrane 20, and the fluid circulation surrounded by the elliptical ribs 33 of the second plate element 30. Come out to mouth 35.

第二の板状エレメント30の楕円リブ33に囲まれた流体流通口35に出てきた一方流体は、楕円リブ33に設けられた流体流通孔39をくぐり抜け、大きなポケットである流体流通路38を流通し、フレーム31の側辺に設けられた流体流通孔39を出口としてそこから全熱交換器1外部へと流出する。   One fluid that has come out to the fluid circulation port 35 surrounded by the elliptical rib 33 of the second plate element 30 passes through the fluid circulation hole 39 provided in the elliptical rib 33 and passes through the fluid flow passage 38 that is a large pocket. It circulates and flows out of the total heat exchanger 1 from the fluid circulation hole 39 provided on the side of the frame 31 as an outlet.

次に他方流体の流れを追っていくと、側板50の貫通孔52を通り、第一の板状エレメント10のフレーム11と膨出リブ16に囲まれた流体出入口17を入口としてそこから流入した他方流体は、フレーム11側辺凹入部に設けられた流体流通孔19をくぐり抜け、大きなポケットである流体流通路18を流通し、半円リブ12に設けられた流体流通孔19をくぐり抜け、フレーム11と半円リブ12に囲まれた流体流通口14に流れ込む。   Next, when the flow of the other fluid is followed, the other fluid that has flowed in through the through hole 52 of the side plate 50 and the fluid inlet / outlet port 17 surrounded by the frame 11 and the bulging rib 16 of the first plate-like element 10 enters. The fluid passes through the fluid circulation hole 19 provided in the recessed portion on the side of the frame 11, flows through the fluid flow passage 18 which is a large pocket, passes through the fluid circulation hole 19 provided in the semicircular rib 12, and It flows into the fluid circulation port 14 surrounded by the semicircular rib 12.

次に流体出入口19に流れ込んだ他方流体は、全熱交換膜20のフレーム21と半円リブ22囲まれた流体流通口24を通り、第二の板状エレメント30のフレーム31と半円リブ36に囲まれた流体流通口34に出てくる。   Next, the other fluid that has flowed into the fluid inlet / outlet port 19 passes through the fluid flow port 24 surrounded by the frame 21 and the semicircular rib 22 of the total heat exchange membrane 20, and then the frame 31 and the semicircular rib 36 of the second plate element 30. It comes out at the fluid circulation port 34 surrounded by the.

第二の板状エレメント30のフレーム31と半円リブ32に囲まれた流体流通口34に出てきた他方流体は、半円リブ32に設けられた流体流通孔39をくぐり抜け、大きなポケットである流体流通路38を流通し、フレーム31側辺の凹入部に設けられた流体流通孔39をくぐり抜け、フレーム31と膨出リブ36に囲まれた流体出入口37を出口とし側板50の貫通孔52を通って全熱交換器外部へと流出する。   The other fluid that has come out to the fluid circulation port 34 surrounded by the frame 31 and the semicircular rib 32 of the second plate-shaped element 30 passes through the fluid circulation hole 39 provided in the semicircular rib 32 and is a large pocket. It flows through the fluid flow passage 38, passes through the fluid flow hole 39 provided in the recessed portion on the side of the frame 31, passes through the through hole 52 of the side plate 50 with the fluid inlet / outlet 37 surrounded by the frame 31 and the bulging rib 36 as an outlet. And flows out of the total heat exchanger.

このように、第一の板状エレメント10において、一方流体が流通する流体流通路18の裏面にあたる第二の板状エレメント30の流体流通路38に他方流体が流通し、第二の板状エレメント30において、一方流体が流通する流体流通路38の裏面にあたる第一の板状エレメント10の流体流通路18に他方流体が流通するため、全熱交換膜20を挟んで両面に異なる流体が流れることになりそれぞれの流体の持つ温度が交換される。   Thus, in the first plate element 10, the other fluid flows through the fluid flow path 38 of the second plate element 30 corresponding to the back surface of the fluid flow path 18 through which one fluid flows, and the second plate element. 30, the other fluid flows through the fluid flow passage 18 of the first plate element 10 corresponding to the back surface of the fluid flow passage 38 through which one fluid flows, so that different fluids flow on both surfaces across the total heat exchange membrane 20. And the temperature of each fluid is exchanged.

さらに、一方流体が他方流体に比べ相対的に乾いている場合には、図4(a)、(b)の矢印のように湿気が移動することで、流体間で湿気が交換される。なお、他方流体が一方流体に比べ相対的に乾いている場合には、以下に説明するものと逆の現象を考えればよい。   Furthermore, when one fluid is relatively dry compared to the other fluid, the moisture moves as shown by the arrows in FIGS. 4A and 4B, so that the moisture is exchanged between the fluids. When the other fluid is relatively dry compared to the one fluid, the reverse phenomenon described below may be considered.

すなわち、他方流体が第一の板状エレメント10を流通している際には、他方流体に含まれる湿気が、第一の板状エレメント10の流体流通路18から、全熱交換膜20の第一の板状エレメント10側の全熱交換部26にメッシュ状に設けられた微小孔26cを通り、扁平な空洞部27を経て、第二の板状エレメント30側の全熱交換部26に設けられた微小孔26dから、一方流体の流通する第二の板状エレメント30の流体流通路38へと移動する。   That is, when the other fluid is flowing through the first plate element 10, the moisture contained in the other fluid is transferred from the fluid flow path 18 of the first plate element 10 to the second heat exchange membrane 20. It is provided in the total heat exchanging portion 26 on the second plate-shaped element 30 side through the fine hole 26c provided in the mesh shape in the total heat exchanging portion 26 on the one plate-shaped element 10 side, and through the flat hollow portion 27. It moves from the formed micro hole 26d to the fluid flow passage 38 of the second plate element 30 through which one fluid flows.

同じく、他方流体が第二の板状エレメント30を流通している際には、他方流体に含まれる湿気が、第二の板状エレメント30の流体流通路38から、全熱交換膜20の第二の板状エレメント30側の全熱交換部26にメッシュ状に設けられた微小孔26dを通り、扁平な空洞部27を経て、第一の板状エレメント10側の全熱交換部26に設けられた微小孔27cから、一方流体の流通する第一の板状エレメント10の流体流通路18へと移動する。   Similarly, when the other fluid is flowing through the second plate element 30, the moisture contained in the other fluid is transferred from the fluid flow passage 38 of the second plate element 30 to the first heat exchange membrane 20. It is provided in the total heat exchanging portion 26 on the first plate element 10 side through the minute hole 26d provided in the mesh shape in the total heat exchanging portion 26 on the second plate element 30 side, and through the flat cavity portion 27. From the formed minute hole 27c, the fluid moves to the fluid flow path 18 of the first plate element 10 through which one fluid flows.

全熱交換器の分解斜視図Disassembled perspective view of total heat exchanger 第一の板状エレメントの分解図Exploded view of the first plate element 全熱交換膜の分解図Exploded view of total heat exchange membrane 第二の板状エレメントの分解図Exploded view of the second plate element 流体が流通する経路を示す図Diagram showing the path through which fluid flows (a)は全熱交換膜を通じて湿気が移動する経路を示す図、(b)は(a)のA−A縦断面図(A) is a figure which shows the path | route which moisture moves through a total heat exchange membrane, (b) is AA longitudinal cross-sectional view of (a).

符号の説明Explanation of symbols

10 第一の板状エレメント
10a、10b 板状体
11、11a、11b フレーム
12、12a、12b 半円リブ
13、13a、13b 楕円リブ
14、14a、14b、15、15a、15b 流体流通口
16、16a、16b 膨出リブ
17、17a、17b 流体出入口
18、18a、18b 流体流通路
19 流体流通孔
19a、19b 溝
20 全熱交換膜
20a、20b 板状体
21、21a、21b フレーム
22、22a、22b 半円リブ
23、23a、23b 楕円リブ
24、24a、24b、25、25a、25b 流体流通口
26、26a、26b 全熱交換部
26c、26d 微小孔
26´、26´a、26´b 補強リブ
27 空洞部
28、28a、28b 膨出リブ
29、29a、29b 流体出入口
30 第二の板状エレメント
30a、30b 板状体
31、31a、31b フレーム
32、32a、32b 半円リブ
33、33a、33b 楕円リブ
34、34a、34b、35、35a、35b 流体流通口
36、36a、36b 膨出リブ
37、37a、37b 流体出入口
38、38a、38b 流体流通路
39 流体流通孔
39a、39b 溝
40 第一の側板
41 膨出部
50 第二の側板
51 膨出部
52 貫通孔
DESCRIPTION OF SYMBOLS 10 1st plate-shaped element 10a, 10b Plate-shaped body 11, 11a, 11b Frame 12, 12a, 12b Semicircular rib 13, 13a, 13b Elliptical rib 14, 14a, 14b, 15, 15a, 15b Fluid circulation port 16, 16a, 16b Swelling ribs 17, 17a, 17b Fluid inlet / outlet 18, 18a, 18b Fluid flow passage 19 Fluid flow holes 19a, 19b Groove
20 Total heat exchange membranes 20a, 20b Plates 21, 21a, 21b Frames 22, 22a, 22b Semi-circular ribs 23, 23a, 23b Elliptical ribs 24, 24a, 24b, 25, 25a, 25b Fluid flow ports 26, 26a, 26b Total heat exchange part 26c, 26d Micro hole 26 ', 26'a, 26'b Reinforcement rib
27 Cavities 28, 28a, 28b Swelling ribs 29, 29a, 29b Fluid inlet / outlet 30 Second plate elements 30a, 30b Plate bodies 31, 31a, 31b Frames 32, 32a, 32b Semicircular ribs 33, 33a, 33b Elliptical ribs 34, 34a, 34b, 35, 35a, 35b Fluid flow ports 36, 36a, 36b Swelling ribs 37, 37a, 37b Fluid inlet / outlet ports 38, 38a, 38b Fluid flow passages 39 Fluid flow holes 39a, 39b Groove 40 First Side plate 41 bulging portion 50 second side plate 51 bulging portion 52 through-hole

Claims (8)

厚みの薄い板状体の外周に設けられたフレームを除いた内部のほぼ全域にわたって扁平な空洞部を設け、前記板状体のフレームを除いた表裏面のほぼ全面に前記空洞部と連通する微小孔をメッシュ状に設けた全熱交換膜。   A flat hollow portion is provided over almost the entire inner area excluding the frame provided on the outer periphery of the thin plate-like body, and a minute portion communicated with the hollow portion on almost the entire front and back surfaces excluding the frame of the plate-like body. Total heat exchange membrane with holes in mesh. 前記空洞部は、対向するフレームを連結する補強リブによって複数の小部屋に仕切られた請求項1に記載の全熱交換膜。   The total heat exchange membrane according to claim 1, wherein the hollow portion is partitioned into a plurality of small chambers by reinforcing ribs that connect the opposing frames. 金属または合成樹脂からなる請求項1または2に記載の全熱交換膜。   The total heat exchange membrane according to claim 1 or 2, comprising a metal or a synthetic resin. 請求項1から3のいずれかに記載の全熱交換膜の一面に沿って一の流体が流通する流体通路を設け、前記全熱交換膜の他面に沿って他の流体が流通する流体通路を設けた全熱交換器。   A fluid passage in which one fluid flows along one surface of the total heat exchange membrane according to claim 1, and another fluid flows along the other surface of the total heat exchange membrane. A total heat exchanger. 前記一の流体が流通する流体通路は第一の板状エレメントに形成され、前記他の流体が流通する流体通路は第二の板状エレメントに形成される請求項4に記載の全熱交換器。   5. The total heat exchanger according to claim 4, wherein the fluid passage through which the one fluid flows is formed in the first plate element, and the fluid passage through which the other fluid flows is formed in the second plate element. . 全熱交換膜の両面に互いに対応する、第一のポケットと第二のポケットおよび第三のポケットと第四のポケットの二対のポケットを設け、一方流体通路は全熱交換膜の一面に設けられた気密な第一のポケットから全熱交換膜に設けられた一の流通孔を経て他面に設けられた気密な第四のポケットにかけて形成され、他方流体通路は全熱交換膜の一面に設けられた気密な第三のポケットから他の流通孔を経て全熱交換膜の他面に設けられた気密な第二のポケットにかけて形成されることにより、互いに隔離されかつ互い違いに連通する2つの流体通路を形成した全熱交換器。   Two pairs of pockets, the first pocket and the second pocket and the third pocket and the fourth pocket, corresponding to each other on both sides of the total heat exchange membrane, are provided, while the fluid passage is provided on one side of the total heat exchange membrane It is formed from the airtight first pocket formed through one flow hole provided in the total heat exchange membrane to the airtight fourth pocket provided in the other surface, while the fluid passage is formed on one surface of the total heat exchange membrane. By forming from the airtight third pocket provided through the other circulation hole to the airtight second pocket provided on the other surface of the total heat exchange membrane, the two isolated from each other and alternately communicated with each other are formed. Total heat exchanger with fluid passage. 前記第一のポケットと第三のポケットは、全熱交換膜の一面に積層される第一の板状エレメントに形成され、第二のポケットと第四のポケットは、全熱交換膜の他面に積層される第二の板状エレメントに形成される請求項6に記載の全熱交換器。   The first pocket and the third pocket are formed in a first plate element laminated on one surface of the total heat exchange membrane, and the second pocket and the fourth pocket are the other surface of the total heat exchange membrane. The total heat exchanger of Claim 6 formed in the 2nd plate-shaped element laminated | stacked on. 請求項1から3のいずれかに記載の全熱交換膜の一面に、請求項5または7に記載の第一の板状エレメントを積層し、前記全熱交換膜の他面に請求項5または7に記載の第二の板状エレメントを積層したアセンブリを複数積層してなる全熱交換器。   The first plate-like element according to claim 5 or 7 is laminated on one surface of the total heat exchange membrane according to any one of claims 1 to 3, and the other surface of the total heat exchange membrane according to claim 5 or A total heat exchanger formed by laminating a plurality of assemblies in which the second plate elements according to claim 7 are laminated.
JP2005110145A 2005-04-06 2005-04-06 Total heat exchange membrane and total heat exchanger Withdrawn JP2006289191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110145A JP2006289191A (en) 2005-04-06 2005-04-06 Total heat exchange membrane and total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110145A JP2006289191A (en) 2005-04-06 2005-04-06 Total heat exchange membrane and total heat exchanger

Publications (1)

Publication Number Publication Date
JP2006289191A true JP2006289191A (en) 2006-10-26

Family

ID=37410376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110145A Withdrawn JP2006289191A (en) 2005-04-06 2005-04-06 Total heat exchange membrane and total heat exchanger

Country Status (1)

Country Link
JP (1) JP2006289191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311760B2 (en) * 2004-02-13 2007-12-25 Mitsubishi Denki Kabushiki Kaisha Temperature-humidity exchanger
CN105709617A (en) * 2016-01-28 2016-06-29 中国科学院宁波材料技术与工程研究所 Method for preparing organic-inorganic hybrid total heat exchange membrane through sol-gel method
KR101932516B1 (en) * 2018-04-02 2019-03-20 박준국 Heat exchange ventilating module for window and ventilating assembly apparatus having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311760B2 (en) * 2004-02-13 2007-12-25 Mitsubishi Denki Kabushiki Kaisha Temperature-humidity exchanger
CN105709617A (en) * 2016-01-28 2016-06-29 中国科学院宁波材料技术与工程研究所 Method for preparing organic-inorganic hybrid total heat exchange membrane through sol-gel method
CN105709617B (en) * 2016-01-28 2018-07-27 中国科学院宁波材料技术与工程研究所 A method of preparing hybrid inorganic-organic Total heat exchange film with sol-gal process
KR101932516B1 (en) * 2018-04-02 2019-03-20 박준국 Heat exchange ventilating module for window and ventilating assembly apparatus having the same
WO2019194335A1 (en) * 2018-04-02 2019-10-10 박준국 Heat exchange ventilation module for windows and doors, and ventilation assembly device having same

Similar Documents

Publication Publication Date Title
JP4880095B2 (en) Heat exchanger
JP5331701B2 (en) Plate stack heat exchanger
JPH09113156A (en) Heat exchanger having plate sandwich construction
US10281162B2 (en) Enthalpy exchanger including stacked networks and selectively permeable membranes
JP2006010130A (en) Multi-fluid heat exchanger
JP2006525485A (en) Heat exchanger core
JP4404305B2 (en) Plate type heat exchanger
JP4338480B2 (en) Heat exchanger
JP3920132B2 (en) Humidity exchanger
JP2006289191A (en) Total heat exchange membrane and total heat exchanger
TWI437201B (en) Heat exchanger
JP2000337784A (en) Plate type heat exchanger for three liquids
JP5393606B2 (en) Heat exchanger
JP2003106782A (en) Welded plate type heat exchanger
JP2000356483A (en) Heat exchanger
JP2009264727A (en) Heat exchanger unit and heat exchanger using the same
EP3467422B1 (en) Heat exchanger assembly
JP2020067185A (en) Lamination type heat exchanger
JP2005351520A (en) Heat exchanger
EP3306208B1 (en) Heat exchange ventilation device
JPH0229432Y2 (en)
JP2019515234A (en) Heat exchanger made of plastic material and vehicle equipped with the heat exchanger
JP2005083623A (en) Heat exchange unit and multilayer heat exchanger
KR102184045B1 (en) Plate Heat Exchanger
JP2005308232A (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701