JPH03157502A - Hydraulic circuit having flow rate controlling function - Google Patents

Hydraulic circuit having flow rate controlling function

Info

Publication number
JPH03157502A
JPH03157502A JP29655789A JP29655789A JPH03157502A JP H03157502 A JPH03157502 A JP H03157502A JP 29655789 A JP29655789 A JP 29655789A JP 29655789 A JP29655789 A JP 29655789A JP H03157502 A JPH03157502 A JP H03157502A
Authority
JP
Japan
Prior art keywords
pressure
load
valve
flow rate
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29655789A
Other languages
Japanese (ja)
Inventor
Kenichi Shimoura
霜浦 賢一
Hiroaki Sakai
坂井 宏彰
Takaaki Hashi
橋 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP29655789A priority Critical patent/JPH03157502A/en
Publication of JPH03157502A publication Critical patent/JPH03157502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate operation by providing a computing means which computes discharge rate of a hydraulic pump and a computing means which computes the grand total of flow rate required by a load, a computing means which performs comparison, and a computing means which multiplies a command value of an operational part by a coefficient between the operational part of a solenoid operational type directional changeover valve and an operation device. CONSTITUTION:Directional changeover valves 5a to 7a arranged between a hydraulic pump 1 and actuators 20 to 22 are solenoid operational type, and operational command signals of a control means 30 are applied to operational parts 5b, 5c to 7b, 7c. A signal of an operational device 31 output according to the operational rate of handle, rotational speed (n) of a driving engine 3 of the hydraulic pump 1, and an electric signal (p) of oil pressure of an operational part 1e are inputted to the control means 30. The control means 30 has a discharge rate computing means of the hydraulic pump 1, an operational rate computing means of grand total of flow rate required by load, a means which compares outputs of both computing means to each other, and a means which multiplies a command value of the operational part by a coefficient of proportional distribution from the thus obtained result. The operation is thus facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建設機械等に利用される流量制御機能を有す
る油圧回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic circuit having a flow rate control function used in construction machinery and the like.

(従来の技術) 従来の流量制御機能を有する油圧回路は、第4図(特開
昭50−188604号に開示されたものを、油圧回路
に書き直した油圧回路図)に示すものがある。
(Prior Art) A conventional hydraulic circuit having a flow rate control function is shown in FIG. 4 (a hydraulic circuit diagram in which the hydraulic circuit disclosed in Japanese Patent Application Laid-open No. 188604/1983 is rewritten as a hydraulic circuit).

第4図においてlは、可変吐出室の油圧ポンプである。In FIG. 4, l is a hydraulic pump with a variable discharge chamber.

この油圧ポンプlは、油圧シリンダ1fの出力によって
斜板2の傾転角が制御され、この斜板の傾転角て主回路
4に吐出する吐出流量か変化するようになっている。前
記油圧シリンダifは。
In this hydraulic pump 1, the tilt angle of the swash plate 2 is controlled by the output of the hydraulic cylinder 1f, and the discharge flow rate to the main circuit 4 changes depending on the tilt angle of the swash plate. The hydraulic cylinder if is.

パイロット回路14が接続する圧力室1bとげねICと
を有し、圧力室1bに圧油が作用しないと、ロッドld
はばねlcで図示の位置に保持される。この時、油圧ポ
ンプ1の主回路4への吐出流量は、最小となっている。
The pilot circuit 14 has a pressure chamber 1b connected to the thorn IC, and if pressure oil does not act on the pressure chamber 1b, the rod ld
is held in the position shown by a spring lc. At this time, the discharge flow rate of the hydraulic pump 1 to the main circuit 4 is at its minimum.

油圧ポンプ1の吐出側の主回路4には、方向切換弁5〜
7が並列に接続しである。この夫々の方向切換弁5〜7
は、圧力補償弁lO〜12を介してアクチュエータ等の
負荷WO〜W2に接続している。
The main circuit 4 on the discharge side of the hydraulic pump 1 includes directional control valves 5 to 5.
7 are connected in parallel. Each of these directional control valves 5 to 7
are connected to loads WO to W2 such as actuators via pressure compensation valves IO to 12.

前記圧力補償弁10は、ばねlOaを有するばね室10
bと、このばね室10bに主弁10dを介して対抗する
位置に圧力室10cを有する構成て、前記圧力室10c
には、方向切換弁5の下流側の油圧がパイロット回路1
3aを介して作用しており、ばね室10bには、パイロ
ット回路14の油圧が作用している。そして、この圧力
補償弁10は、その主弁10dか、ばね室10bと圧力
室10cとの押圧力との差か大きくなると図示の位置か
ら左の方に大きく移動し方向切換弁5と負荷WOの接続
量を多くする。
The pressure compensation valve 10 includes a spring chamber 10 having a spring lOa.
b, and a pressure chamber 10c at a position opposite to the spring chamber 10b via the main valve 10d.
, the hydraulic pressure on the downstream side of the directional control valve 5 is connected to the pilot circuit 1.
3a, and the hydraulic pressure of the pilot circuit 14 acts on the spring chamber 10b. When the main valve 10d or the difference between the pressing force between the spring chamber 10b and the pressure chamber 10c increases, the pressure compensating valve 10 moves greatly to the left from the position shown in the figure, and the directional control valve 5 and the load WO Increase the number of connections.

逆に、主弁10dが、ばね室10bと圧力室10cとの
押圧力との差が小さくなると図示の位置から左の方への
移動量を小さくし方向切換弁5の負荷WOの接続量を小
さくする。(なお、圧力補償弁11゜12は、圧力補償
弁10と同一の構造であるので圧力補償弁lO〜12の
同一部品には、夫々の圧力補償弁を表す番号11.12
に同一アルファベットの添え字をして番号のみ示しその
説明を省略する。)油圧ポンプlの油圧シリンダlaと
圧力補償弁18〜12のばね室10b〜12bに接続す
るパイロット回路14は、高圧選択回路15の出力側に
接続するものである。この高圧選択回路15は、負荷W
1が接続する負荷回路21と負荷W2か接続する負荷回
路2zの高圧側を選択する選択弁16と、この選択弁1
6の出力側と負荷WOか接続する負荷回路2oとの高圧
側を選択しその出力側か高圧選択回路15の出力側とな
る選択弁17と、で構成してあり、前記パイロット回路
14は前記選択弁17の出力側に接続している。従って
パイロット回路14には、負荷Wo〜W2への負荷回路
20〜21内の負荷圧力の最高値の圧力か作用するもの
である。
Conversely, when the difference between the pressing forces between the spring chamber 10b and the pressure chamber 10c becomes smaller, the main valve 10d decreases the amount of movement toward the left from the illustrated position, thereby reducing the amount of connection of the load WO of the directional control valve 5. Make it smaller. (The pressure compensating valves 11 and 12 have the same structure as the pressure compensating valve 10, so the same parts of the pressure compensating valves 10 to 12 have numbers 11, 12 representing the respective pressure compensating valves.
are subscripted with the same alphabet, only the numbers are shown, and their explanations are omitted. ) The pilot circuit 14 connected to the hydraulic cylinder la of the hydraulic pump l and the spring chambers 10b to 12b of the pressure compensation valves 18 to 12 is connected to the output side of the high pressure selection circuit 15. This high voltage selection circuit 15 has a load W
A selection valve 16 that selects the high pressure side of the load circuit 21 connected to the load circuit 2z and the load circuit 2z connected to the load W2;
6 and a selection valve 17 which selects the high pressure side of the load circuit 2o connected to the load WO or the output side of the high pressure selection circuit 15, and the pilot circuit 14 It is connected to the output side of the selection valve 17. Therefore, the highest pressure of the load pressures in the load circuits 20 to 21 to the loads Wo to W2 acts on the pilot circuit 14.

上記の構成を有する従来の流量制m機能を有する油圧回
路は、圧力補償弁lO〜12のばね室10b〜12bに
負荷WO〜W2の内の最高の負荷に相当する負荷圧力を
パイロット回路14を介して作用させる。又パイロット
回路14の油圧を油圧シリンダ1aの圧力室1bに作用
させ、油圧ポンプ1の吐出油圧か前記パイロット回路1
4の油圧より更に一定の量だけ高くなるように吐出流量
を制御している。
The conventional hydraulic circuit having the flow control function having the above-mentioned configuration applies a load pressure corresponding to the highest load among the loads WO to W2 to the spring chambers 10b to 12b of the pressure compensation valves 10 to 12 through the pilot circuit 14. act through. Further, the hydraulic pressure of the pilot circuit 14 is applied to the pressure chamber 1b of the hydraulic cylinder 1a, and the discharge hydraulic pressure of the hydraulic pump 1 is controlled by the pilot circuit 1.
The discharge flow rate is controlled to be higher than the oil pressure of No. 4 by a certain amount.

この様な状況において、方向切換弁5と方向切換弁6と
が操作されると、その開度に応じて圧力補償弁IOと圧
力補償弁11の上流側の油圧が高くなりその油圧は、パ
イロット回路1:Ia 、パイロット回路1コbを介し
て圧力室10cと圧力室11cに作用する。すると、圧
力補償弁10の主弁10dは、圧力室Incとばね室1
.Obの圧力差に応じて左へ移動し、圧力補償弁11の
主弁11dは、圧力室10cとばね室10bとの圧力差
に応じて左へ移動する。このため、方向切換弁5と方向
切換弁6が形成する絞りの前後の差圧をばね10aとば
ねllaの押圧力の一定の値に保持し、負荷WO1負荷
W1への油量の供給量を、方向切換弁5、方向切換弁6
の操作量に応じた値にする。なお、方向切換弁5〜7の
全部が操作された場合も同様であるので、説明は省く。
In such a situation, when the directional switching valve 5 and the directional switching valve 6 are operated, the oil pressure on the upstream side of the pressure compensation valve IO and the pressure compensation valve 11 increases according to their opening degrees, and the oil pressure is equal to the pilot pressure. Circuit 1: Ia acts on pressure chamber 10c and pressure chamber 11c via pilot circuit 1b. Then, the main valve 10d of the pressure compensation valve 10 connects the pressure chamber Inc and the spring chamber 1.
.. The main valve 11d of the pressure compensation valve 11 moves to the left depending on the pressure difference between the pressure chamber 10c and the spring chamber 10b. Therefore, the differential pressure before and after the throttle formed by the directional control valve 5 and the directional control valve 6 is maintained at a constant value of the pressing force of the spring 10a and the spring lla, and the amount of oil supplied to the load WO1 and the load W1 is controlled. , directional switching valve 5, directional switching valve 6
Set the value according to the amount of operation. Note that the same applies when all of the directional control valves 5 to 7 are operated, so a description thereof will be omitted.

(発明が解決しようとする問題点) 上記の従来の技術は、圧力補償弁IO〜I2が方向切換
弁5〜7の下流側の圧力を負荷wo〜w2の内の最高の
油圧に揃え、油圧ポンプlにそれより高い油圧が発生す
るようにその圧油の吐出流量を決定することにより、方
向切換弁5〜7の前後の差圧を一定に保ち、方向切換弁
5〜7の操作量に応じて負荷WO〜W2に圧油を配分す
るものである。この作用は、負荷Wo〜w2が要求する
油量が油圧ポンプlの吐出油量を越えると、圧力補償弁
10〜12の上流側のパイロット回路13a〜13bの
油圧が方向切換弁5〜7の操作量に応じて減少する、従
って、その分圧力補償弁Io〜12の主弁IQd〜12
dがばねloa〜12aによって移動させられる。この
ため、圧力補償弁10〜I2の作動がばね10a〜12
aの影響をうける。
(Problems to be Solved by the Invention) In the above conventional technology, the pressure compensating valves IO to I2 adjust the pressure on the downstream side of the directional control valves 5 to 7 to the highest hydraulic pressure among the loads wo to w2, and By determining the discharge flow rate of the pressure oil so that a higher oil pressure is generated in the pump l, the differential pressure before and after the directional control valves 5 to 7 is kept constant, and the operation amount of the directional control valves 5 to 7 is controlled. Pressure oil is distributed to the loads WO to W2 accordingly. This action is such that when the amount of oil required by the loads Wo to w2 exceeds the amount of oil discharged from the hydraulic pump l, the oil pressure in the pilot circuits 13a to 13b on the upstream side of the pressure compensation valves 10 to 12 is The main valve IQd~12 of the pressure compensation valve Io~12 decreases according to the amount of operation.
d is moved by spring loa~12a. Therefore, the operation of the pressure compensation valves 10 to I2 is limited to the springs 10a to 12.
Affected by a.

以上の原因で、この流量制御機能を有する油圧回路は、
負荷WO〜w2か要求する油量が油圧ポンプlの吐出油
量より小さい時には、圧力補償弁10〜12の上流側パ
イロット回路13a〜13bの油圧を確保できるので分
配比率は、方向切換弁5〜7の操作量に応じた値になる
。しかし、負荷wo〜W2の要求する油量が油圧ポンプ
の吐出油量より大きい時では方向切換弁5〜7か同一の
操作量でも圧力補償弁10〜12のばね10a〜12a
の撓み量か変化するので、負荷への油量分配比率が変化
する。従って、方向切換弁の操作指令値に対して負荷W
O〜W2の作動か正確に対応しなくなる問題点を有する
Due to the above reasons, the hydraulic circuit with this flow control function is
When the amount of oil required by the load WO~w2 is smaller than the amount of oil discharged from the hydraulic pump l, the oil pressure in the upstream pilot circuits 13a~13b of the pressure compensating valves 10~12 can be secured, so the distribution ratio is set to the directional control valves 5~ The value corresponds to the operation amount of 7. However, when the amount of oil required by the loads wo to W2 is larger than the amount of oil discharged from the hydraulic pump, the springs 10a to 12a of the pressure compensating valves 10 to 12 are
As the amount of deflection changes, the oil distribution ratio to the load changes. Therefore, the load W with respect to the operation command value of the directional valve
There is a problem that the operations of O to W2 do not correspond accurately.

(問題点を解決するための手段) 従来技術の問題点を解決する本発明の技術的手段は、可
変吐出型の油圧ポンプの吐出側にアクチュエータ等の負
荷を接続した方向切換弁を複数個設け、この方向切換弁
の上流側に、方向切換弁の下流側が接続するばね室とこ
のばね室に対抗し前記方向切換弁の上流側に接続する圧
力室とを有する圧力補償弁を設け、前記各方向切換弁に
接続する負荷の負荷回路に負荷圧の最高値を選択する選
択回路を設け、この選択回路の出力側を前記油圧ポンプ
の吐出流量制御部に接続し、この油圧ポンプの吐出流量
を、前記側々の方向切換弁に接続する負荷の必要油量に
制御し、前記油圧ポンプの吐出油量を前記圧力補償弁と
方向切換弁とで、各々の負荷に分配する構成とした流量
制御機能を有する油圧回路において、 或いは、固定吐出型の油圧ポンプの吐出側にアクチュエ
ータ等の負荷を接続した方向切換弁を複数個設け、この
方向切換弁の上流側に、方向切換弁の下流側が接続する
ばね室とこのばね室に対抗し前記方向切換弁の上流側に
接続する圧力室とを有する圧力補償弁を設けると共に、
前記方向切換弁に接続した負荷が接続する負荷回路にそ
の負荷圧の最高値を選択検出する選択回路を設け、前記
油圧ポンプの吐出側の主回路とタンクとの間に、前記選
択回路の出力側が接続するばね室とこのばね室に主弁を
介して対抗し前記主回路が接続するブリードオフ型の圧
力制御弁を設けこのブリードオフ型の圧力補償弁で前記
油圧ポンプの吐出油圧を前記の方向切換弁の負荷圧力よ
り一定の値だけ高く保持し、前記油圧ポンプの吐出油圧
を前記側々の方向切換弁と圧力補償弁とで、各々の負荷
に分配する構成とした流量制′4i4機能を有する油圧
回路において、 前記方向切換弁を電磁操作型の方向切換弁とし、この電
磁操作型の方向切換弁の操作部と、電磁操作型の方向切
換弁への操作装置との間に、前記油圧ポンプの吐出流量
を演算する吐出流量演算手段と、夫々の前記電磁操作型
の方向切換弁操作量の総和から負荷が必要とする流量の
総和を演算する操作量演算手段と、前記吐出流量演算手
段の出力と操作量演算手3段の出力とを比較する比較演
算手段と、この比較演算の結果操作量演算手段の出力の
方か大になったとき、前記操作部の指令値に比例配分の
係数を乗算する比例配分乗算手段とで構成される制御手
段を設けた事を特徴とするものである。
(Means for Solving the Problems) The technical means of the present invention for solving the problems of the prior art is to provide a plurality of directional control valves connected to loads such as actuators on the discharge side of a variable discharge type hydraulic pump. A pressure compensation valve is provided on the upstream side of the directional switching valve, and has a spring chamber connected to the downstream side of the directional switching valve, and a pressure chamber opposing the spring chamber and connected to the upstream side of the directional switching valve, and each of the above-mentioned A selection circuit for selecting the highest value of load pressure is provided in the load circuit of the load connected to the directional switching valve, and the output side of this selection circuit is connected to the discharge flow rate control section of the hydraulic pump, and the discharge flow rate of this hydraulic pump is controlled. , a flow rate control configured to control the amount of oil required for the loads connected to the side directional switching valves, and distribute the amount of oil discharged from the hydraulic pump to each load by the pressure compensating valve and the directional switching valve. Alternatively, in a hydraulic circuit having a function, a plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a fixed discharge type hydraulic pump, and the downstream side of the directional switching valve is connected to the upstream side of the directional switching valve. a pressure compensation valve having a spring chamber and a pressure chamber opposing the spring chamber and connected to the upstream side of the directional control valve;
A selection circuit for selectively detecting the maximum value of the load pressure is provided in the load circuit to which the load connected to the directional control valve is connected, and the output of the selection circuit is provided between the main circuit on the discharge side of the hydraulic pump and the tank. A bleed-off type pressure control valve is provided which opposes the spring chamber to which the side is connected and which is connected to the main circuit via a main valve. Flow rate control '4i4 function configured to maintain a constant value higher than the load pressure of the directional switching valve and distribute the discharge hydraulic pressure of the hydraulic pump to each load by the directional switching valves and pressure compensation valves on the sides. In the hydraulic circuit, the directional control valve is an electromagnetically operated directional control valve, and the directional control valve is provided between an operating section of the electromagnetically operated directional control valve and an operating device for the electromagnetically operated directional control valve. discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump; operation amount calculation means for calculating the sum of the flow rate required by the load from the sum of the operation amounts of the respective electromagnetically operated directional control valves; and the discharge flow rate calculation means. Comparison calculation means for comparing the output of the means and the output of the operation amount calculation means 3, and when the output of the operation amount calculation means is larger as a result of this comparison calculation, proportionate distribution is made to the command value of the operation unit. The present invention is characterized by providing a control means comprising a proportional distribution multiplication means for multiplying by a coefficient of .

〔作   用〕[For production]

以上の技術的手段を有する本発明は、油圧ポンプの吐出
油量を越えて方向切換弁が操作されたとき或いは、方向
切換弁の操作中に負荷の変動で油圧ポンプの吐出油量が
不足すると、方向切換弁への操作指令を制御手段で油圧
ポンプの吐出油量に似合うように方向切換弁の操作量を
比例配分変更するので、圧力補償弁を変動させない。従
って油圧ポンプの吐出流量を越えて負荷WO〜W2への
供給油贋が必要になるようになっても負荷WO〜W2の
供給量油量は、元の操作量に比例した値になる。
The present invention having the above-mentioned technical means is applicable when the directional control valve is operated in excess of the amount of oil discharged by the hydraulic pump, or when the amount of oil discharged by the hydraulic pump becomes insufficient due to load fluctuations during operation of the directional control valve. Since the operation command to the directional control valve is changed by the control means in proportion to the amount of operation of the directional control valve so as to match the amount of oil discharged from the hydraulic pump, the pressure compensation valve is not fluctuated. Therefore, even if it becomes necessary to supply oil to the loads WO to W2 in excess of the discharge flow rate of the hydraulic pump, the amount of oil supplied to the loads WO to W2 will be a value proportional to the original operation amount.

(実 施 例) 以下本発明の第1実施例を第1図(A)、第2図(A)
、第3図によって説明する。なお、説明にあたりでは、
前記従来の技術と相違する点のみ説明する。
(Embodiment) The first embodiment of the present invention will be described below as shown in Fig. 1 (A) and Fig. 2 (A).
, will be explained with reference to FIG. In addition, for the explanation,
Only the points that are different from the conventional technology described above will be explained.

第1図(A)において、油圧ポンプlは、その操作部1
eに作用するパイロット回路14の油圧によってその吐
出流量が変化する可変吐出型の油圧ポンプである。この
油圧ポンプ1の操作部1eは、その油圧を電気に変換す
る機器を有し、その機器の出力信号が制御手段30に入
力されるようになっている。
In FIG. 1(A), the hydraulic pump l has its operating section 1.
This is a variable discharge type hydraulic pump whose discharge flow rate changes depending on the hydraulic pressure of the pilot circuit 14 acting on the pump. The operating section 1e of the hydraulic pump 1 has a device that converts the hydraulic pressure into electricity, and the output signal of the device is inputted to the control means 30.

油圧ポンプlの吐出側には、圧力補償弁23〜25か夫
々接続してあり、この圧力補償弁23〜25の夫々は、
方向切換弁58〜7aを介して負荷WO〜W2に接続す
る構成である。
Pressure compensating valves 23 to 25 are connected to the discharge side of the hydraulic pump l, and each of the pressure compensating valves 23 to 25 has a
It is configured to connect to loads WO to W2 via directional switching valves 58 to 7a.

前記圧力補償弁23は、ばね23aを有し方向切換弁5
aの下流側にパイロウド回路18aを介して接続するば
ね室23bと、このばね室23bに主弁23dを介して
対抗し、方向切換弁5aの上流側にパイロット回路19
aを介して接続する圧力室23cとで構成しである。こ
の圧力補償弁23は、方向切換弁5aが形成する絞りの
上流側の圧力をばね室23bのばね23aの押圧力分だ
け高く保持する。従って方向切換弁5aを通過する油量
は方向切換弁5aの操作量に応じた量となる。また、圧
力補償弁23の主弁23dは、通常は全開位置にあり、
ばね室23bと圧力室23cとの油圧差により回路を絞
るものである。なお、他の圧力補償弁24.25も圧力
補償弁23と同様の構成と機能を有するものであるので
、同一部品に同一添字をし、その詳細な説明は省く。な
お、パイロット回路18aに対応するものは18b 、
 18c、パイロット回路19a対応するものは19b
 、 19cで示しである。方向切換弁5a〜7aは、
電磁操作型の方向切換弁て、その操作部5b、5c〜7
b、7cに操作装置31からの信号が制御手段3oを介
して印加される操作指令信号により操作方向、操作量が
決められる。
The pressure compensation valve 23 has a spring 23a and the directional control valve 5
a spring chamber 23b connected to the downstream side of the directional control valve 5a via a pilot circuit 18a;
A pressure chamber 23c is connected to the pressure chamber 23c via a. This pressure compensation valve 23 maintains the pressure on the upstream side of the throttle formed by the directional switching valve 5a as high as the pressing force of the spring 23a of the spring chamber 23b. Therefore, the amount of oil that passes through the directional switching valve 5a corresponds to the amount of operation of the directional switching valve 5a. Further, the main valve 23d of the pressure compensation valve 23 is normally in a fully open position,
The circuit is narrowed down by the oil pressure difference between the spring chamber 23b and the pressure chamber 23c. Note that the other pressure compensating valves 24 and 25 have the same configuration and function as the pressure compensating valve 23, so the same parts are given the same suffixes and detailed explanation thereof will be omitted. In addition, those corresponding to the pilot circuit 18a are 18b,
18c, pilot circuit 19a corresponds to 19b
, 19c. The directional control valves 5a to 7a are
Electromagnetic operation type directional switching valve, its operating parts 5b, 5c to 7
The operation direction and amount of operation are determined by operation command signals applied to signals b and 7c from the operation device 31 via the control means 3o.

方向切換弁5a〜7aの操作部5b、5c〜7b、7c
は制御手段30を介して操作装置31に接続しており、
この制御手段コ0の他方には、油圧ポンプlを駆動する
エンジン3の回転数nと、操作部1eの油圧が電気信号
Pに変換され入力されるようになっている。
Operation parts 5b, 5c to 7b, 7c of directional switching valves 5a to 7a
is connected to the operating device 31 via the control means 30,
The rotational speed n of the engine 3 that drives the hydraulic pump 1 and the oil pressure of the operating section 1e are converted into an electric signal P and inputted to the other side of the control means KO.

前記操作装置31は、ジョイスティック等で構成されそ
の操作量によって電圧が変化するものである。すなわち
、第2図(A)においてジョイスティックのハンドル3
1aが中央位置にあるとき方向切換弁5aの操作部5b
、5cへの操作指令は、出ない様になっており、ハンド
ル31aか矢印すの方向に操作されるとスイッチ32a
か接点す側に切り換ゎリ、操作部5bに操作指令がハン
ドル31aの操作量分たけ印加されるようになっている
。同様にハンドル31aが矢印Cの方向に操作されると
スイッチ32aが接点C側に切り換わり、操作部5Cへ
の操作指令がハンドル31aの操作量分だけ印加される
ようになっている。また、操作装置31の出力信号は、
制御手段30のマルチプレクサ33に印加される様にな
っている。
The operating device 31 is composed of a joystick or the like, and the voltage changes depending on the amount of operation thereof. That is, in FIG. 2(A), the joystick handle 3
1a is in the center position, the operating part 5b of the directional control valve 5a
, 5c are not issued, and when the handle 31a is operated in the direction of the arrow, the switch 32a is activated.
When the switch is switched to the contact side, an operation command corresponding to the operation amount of the handle 31a is applied to the operation section 5b. Similarly, when the handle 31a is operated in the direction of arrow C, the switch 32a is switched to the contact C side, and an operation command corresponding to the amount of operation of the handle 31a is applied to the operation section 5C. Moreover, the output signal of the operating device 31 is
The signal is applied to a multiplexer 33 of the control means 30.

前記油圧ポンプlの操作部(eとエンジン3の出力信号
は、この2つの値から油圧ポンプ1の吐出流量Qを算出
する関数回路34に印加され、油圧ポンプlの吐出流量
、Qとしてマルチプレクサ33に印加される。これらマ
ルチプレクサ33に印加されるアナログ信号は、A−D
変換器35を介して演算装置36に印加され、インター
フェース37を介して方向切換弁5a〜7aの操作部5
b、5C〜7b、7Cに印加される。
The operation unit (e) of the hydraulic pump l and the output signal of the engine 3 are applied to a function circuit 34 that calculates the discharge flow rate Q of the hydraulic pump 1 from these two values, and the discharge flow rate Q of the hydraulic pump l is applied to a multiplexer 33. The analog signals applied to these multiplexers 33 are A-D.
The voltage is applied to the arithmetic unit 36 via the converter 35, and is applied to the operation unit 5 of the directional control valves 5a to 7a via the interface 37.
b, 5C to 7b, 7C.

前記、演算装置36は、第3図に見られるように、マル
チプレクサ33が操作装置31の夫々のハンドル31a
〜31cの操作量を読み取り、A−D変換器35を介し
てデジタル信号として伝達された値から個々の方向切換
弁が通過させようとする油量QO〜Q2を算出し、且つ
、その値を加算しその値から負荷WO−W2が要求して
いる全体の負荷油量Qvを演算する操作量演算手段40
と、マルチプレクサ33に印加される関数回路34の出
力をA−D変換器35を介してデジタル信号として伝達
された値から油圧ポンプlの吐出油量Qpを演算する吐
出流量演算手段41と、前記油圧ポンプ1の吐出油量Q
pから負荷WO〜W2が必要とする負荷油量Qvを減算
し、その値Qc(油量Qp−油量Qv=Qc)が負(値
Qc<O)ならば操作量演算手段43の作動を指令し、
その値Qcが正(値Qc≧0)ならば操作量演算手段4
4の作動を指令を行う比較演算手段42とで構成しであ
る。
As shown in FIG.
~31c is read, and from the value transmitted as a digital signal via the A-D converter 35, the amount of oil QO~Q2 that each directional control valve attempts to pass is calculated, and the value is A manipulated variable calculating means 40 that calculates the total load oil amount Qv required by the load WO-W2 from the added value.
and a discharge flow rate calculating means 41 which calculates the discharge oil amount Qp of the hydraulic pump l from the output of the function circuit 34 applied to the multiplexer 33 and transmitted as a digital signal via the A-D converter 35; Discharge oil amount Q of hydraulic pump 1
The load oil amount Qv required by the loads WO to W2 is subtracted from p, and if the value Qc (oil amount Qp - oil amount Qv = Qc) is negative (value Qc<O), the operation amount calculation means 43 is activated. command,
If the value Qc is positive (value Qc≧0), the manipulated variable calculation means 4
4, and a comparison calculation means 42 for issuing commands for the operations of 4.

なお前記操作量演算手段43は、比較演算手段42の出
力が負の値になった時、操作指令信号Sl〜S3に、操
作指令信号Sl〜S3から演算した個々の負荷が要求す
る流量Ql〜Q3とQp/Qvとの積を修正した操作指
令信号Sl’〜S2’として、方向切換弁5a〜7aの
操作部5b、5c〜7b、7cに印加するものであり、
操作量演算手段44は、比較演算手段42の出力が0又
は、正の値になった時、であるから操作指令信号Sl〜
S3の信号をその侭の値で方向切換弁5a〜7aの操作
部5b、 5c〜7b、7cに印加するものである。
Note that when the output of the comparison calculation means 42 becomes a negative value, the operation amount calculation means 43 calculates a flow rate Ql~ required by each load calculated from the operation command signals Sl~S3 to the operation command signals Sl~S3. The operation command signals Sl' to S2' obtained by correcting the product of Q3 and Qp/Qv are applied to the operating parts 5b, 5c to 7b, and 7c of the directional control valves 5a to 7a,
When the output of the comparison calculation means 42 becomes 0 or a positive value, the operation amount calculation means 44 outputs the operation command signal Sl~
The current value of the signal S3 is applied to the operation parts 5b, 5c to 7b, and 7c of the directional control valves 5a to 7a.

以上の構成を有する第1実施例についてその作動を説明
する。
The operation of the first embodiment having the above configuration will be explained.

第1図(A)において、エンジン3で油圧ポンプlが駆
動され主回路4に圧油が吐出される状態の時、方向切換
弁5aと方向切換弁6aが操作装置31からの指令によ
り操作されると、油圧ポンプlの吐出圧油が主回路4か
ら負荷回路20の圧力補償弁23、方向切換弁5aを介
して負荷WOに流入すると共に、負荷回路21の圧力補
償弁24.方向切換弁6aを介して負荷W1に流入する
In FIG. 1(A), when the hydraulic pump l is driven by the engine 3 and pressure oil is discharged into the main circuit 4, the directional switching valve 5a and the directional switching valve 6a are operated by a command from the operating device 31. Then, the discharge pressure oil of the hydraulic pump l flows from the main circuit 4 to the load WO via the pressure compensation valve 23 of the load circuit 20 and the directional switching valve 5a, and also flows into the load WO through the pressure compensation valve 24 of the load circuit 21. It flows into the load W1 via the directional switching valve 6a.

このとき負荷WOとWlの負荷は、負荷WOより負荷W
lの方が軽いとすると、その負荷圧力は、高圧選択回路
15の選択弁16と選択弁17とによってその負荷WO
の負荷圧が選択弁17を介してパイロット回路14に作
用し、その油圧が油圧ポンプlの操作部1eに作用し、
油圧ポンプ1が、操作部1eの吐出圧力を負荷WOの負
荷圧力より一定の値たけ高い値に制御する。
At this time, the load WO and Wl are smaller than the load WO.
If l is lighter, its load pressure is reduced by the selection valve 16 and selection valve 17 of the high pressure selection circuit 15.
The load pressure acts on the pilot circuit 14 via the selection valve 17, and the oil pressure acts on the operating part 1e of the hydraulic pump l,
The hydraulic pump 1 controls the discharge pressure of the operating part 1e to a value higher than the load pressure of the load WO by a certain value.

この様にして主回路4の油圧が負荷WOの負荷圧力より
一定の値だけ高い値に制御され、その油圧が負荷回路2
0の圧力補償弁23.負荷回路21の圧力補償弁24に
作用する。この圧力補償弁23には、その圧力室23c
に方向切換弁5aの上流側の油圧が作用しており、その
ばね室23bには方向切換弁5aの下流側の油圧が作用
しているので、その主弁2”ldは、方向切換弁5aの
前後の圧力差をばね室23bのばね23aの押圧力に応
じた値に保持する。
In this way, the oil pressure of the main circuit 4 is controlled to a value higher than the load pressure of the load WO by a certain value, and the oil pressure of the main circuit 4 is controlled to be higher than the load pressure of the load WO.
0 pressure compensation valve 23. It acts on the pressure compensation valve 24 of the load circuit 21. This pressure compensating valve 23 has its pressure chamber 23c.
Since the hydraulic pressure on the upstream side of the directional control valve 5a is acting on the spring chamber 23b, and the hydraulic pressure on the downstream side of the directional control valve 5a is acting on the spring chamber 23b, the main valve 2''ld is connected to the directional control valve 5a. The pressure difference before and after is maintained at a value corresponding to the pressing force of the spring 23a of the spring chamber 23b.

同様に圧力補償弁24には、その圧力室24cに方向切
換弁6aの上流側の油圧が作用しており、そのばね室2
4bには方向切換弁6aの下流側の油圧が作用している
ので、その主弁24dは、方向切換弁6aの前後の圧力
差をばね室24bのばね24aの押圧力に応じた値に保
持する。従って、負荷WOに供給される圧油の流量は、
方向切換弁5aの操作量に応じた値になり、同様に負荷
Wlに供給される圧油の流量は、方向切換弁6aの操作
量に応じた値になる。
Similarly, the pressure compensation valve 24 has its pressure chamber 24c acted on by the hydraulic pressure on the upstream side of the directional control valve 6a, and its spring chamber 24c.
Since the hydraulic pressure on the downstream side of the directional switching valve 6a is acting on the directional switching valve 6a, the main valve 24d maintains the pressure difference before and after the directional switching valve 6a at a value corresponding to the pressing force of the spring 24a in the spring chamber 24b. do. Therefore, the flow rate of pressure oil supplied to the load WO is:
The value corresponds to the amount of operation of the directional switching valve 5a, and similarly, the flow rate of the pressure oil supplied to the load Wl has a value depending on the amount of operation of the directional switching valve 6a.

以上の油圧回路の作用に於いて制御手段30は、次の様
に機能する。例えば、方向切換弁5a、方向切換弁6a
の作動指令を発信されているとして、その差動指令を発
信する操作装置31のハンドル31a、ハンドル31b
の指令値は、マルチプレクサ33に印加されており、操
作部1eに作用するパイロット回路14のパイロット油
圧を電気に変換し油圧信号pとして関数回路34に印加
すると共に、エンジン3の回転数を電気信号に変換し回
転数信号nとして関数回路34に印加する。関数回路3
4はこの2つの信号から油圧ポンプlの吐出油量Qを算
出し、油圧ポンプlの吐出油量Qとしてマルチプレクサ
33に印加する。これらの各信号は、マルチプレクサ3
3によって順次検出され、この検出されたアナログ信号
は、A−D変換器35を介してデジタル信号で、演算装
置36に印加される。演算装置36は、操作装置31の
ジョイスティックのハンドル31aの操作信号S1と、
ジョイスティックのハンドルllbの操作信号S2とが
順次マルチプレクサ33によって検出されると、操作量
演算手段40が、操作信号S1、S2に基ずいて方向切
換弁5a、方向切換弁6aが負荷WO1Wlに供給しよ
うとしている負荷油量Qvを演算する。更に、マルチプ
レクサ33によって吐出油量信号Qが印加されると、吐
出流量演算手段41はこの吐出油圧信号Qに基すいて吐
出油量Qpを算出する。この吐出油量Qpと負荷油量Q
vとは、比較演算手段42で吐出油量Qpから負荷油量
Qvが減算され、その値が(Qp−Qv≧0)0以上で
あると、負荷WO,Wlか必要とする油量を油圧ポンプ
lの吐出油量か、上回るものであるのて、操作量演算手
段44によって、操作装置コlよりの方向切換弁5a、
方向切換弁6aへの操作信号S1.S2と同等の信号を
方向切換弁5aの操作部5b又は5c及び方向切換弁6
aの操作部6b又は6Cに印加する。この様に、方向切
換弁5a、方向切換弁6aに操作指令が印加されると、
圧力補償弁23、圧力補償弁24が前述した様に、方向
切換弁5aと方向切換弁5aとの前後の差圧をm制御し
負荷WO1負荷wiを、方向切換弁5a、方向切換弁6
aの操作量に応じた値に保つ。
In the operation of the above hydraulic circuit, the control means 30 functions as follows. For example, directional switching valve 5a, directional switching valve 6a
handle 31a and handle 31b of the operating device 31 that transmits the differential command.
The command value is applied to the multiplexer 33, which converts the pilot oil pressure of the pilot circuit 14 acting on the operating part 1e into electricity and applies it to the function circuit 34 as the oil pressure signal p, and also converts the rotation speed of the engine 3 into an electric signal. It is converted into a rotation speed signal n and applied to the function circuit 34. Function circuit 3
4 calculates the discharge oil amount Q of the hydraulic pump l from these two signals, and applies it to the multiplexer 33 as the discharge oil amount Q of the hydraulic pump l. Each of these signals is sent to multiplexer 3
3, and the detected analog signals are applied as digital signals to an arithmetic unit 36 via an A-D converter 35. The calculation device 36 receives an operation signal S1 of the joystick handle 31a of the operation device 31,
When the operation signal S2 of the joystick handle llb is sequentially detected by the multiplexer 33, the operation amount calculating means 40 determines whether the direction switching valve 5a and the direction switching valve 6a will supply the load WO1Wl based on the operation signals S1 and S2. Calculate the load oil amount Qv. Furthermore, when the discharge oil amount signal Q is applied by the multiplexer 33, the discharge flow rate calculation means 41 calculates the discharge oil amount Qp based on this discharge oil pressure signal Q. This discharge oil amount Qp and load oil amount Q
v means that the load oil amount Qv is subtracted from the discharge oil amount Qp by the comparison calculation means 42, and if the value is (Qp-Qv≧0) 0 or more, the load WO, Wl or the required oil amount is Since the amount of oil discharged from the pump l is greater than the amount of oil discharged from the pump l, the operation amount calculating means 44 operates the directional control valve 5a from the operating device l.
Operation signal S1 to directional control valve 6a. A signal equivalent to S2 is sent to the operation part 5b or 5c of the directional control valve 5a and the directional control valve 6.
The voltage is applied to the operating section 6b or 6C of a. In this way, when the operation command is applied to the directional switching valve 5a and the directional switching valve 6a,
As described above, the pressure compensation valve 23 and the pressure compensation valve 24 control the differential pressure between the directional switching valve 5a and the directional switching valve 5a, and control the load WO1 and the load wi.
Maintain the value according to the manipulated variable of a.

以上の作動において、操作装置31が操作され操作信号
Slを増加させた結果、操作量演算手段40で演算され
る負荷油量Qvが増加し、比較演算手段42の演算結果
が(Qp−Qv<O)Oより小さくなると操作量演算手
段43の演算器43aが操作信号Slに対応した負荷油
量Qlに吐出油量Qp/負荷油量Qvの値を乗算し操作
信号S1より小さい操作信号St’として方向切換弁5
aの操作部5bに印加する。同様に演算器43bは、操
作信号S2に対応した負荷油量Q2に吐出油量Qp/負
荷油量Qvの値を乗算し操作信号S2より小さい操作信
号S2’として方向切換弁6aの操作部6bに印加する
。従って、方向切換弁5a、方向切換弁6aの操作にか
、操作装置31の操作量に比例して、油圧ポンプlの吐
出油量に等しくなるまで小さくされるので、負荷WO,
Wlの速度は低下するか、同じ割合で低下し、操作装置
31の操作量、つまりジョイスティックのハンドル31
a 、 31bの操作量に応じた比率の速度で作動を続
ける。なお、ジョイスティックのハンドル31a 、 
31b 、 :llcが全て操作されている場合も同様
に操作量に応じた同じ速度比で作動を続ける。
In the above operation, as a result of operating the operating device 31 and increasing the operating signal Sl, the load oil amount Qv calculated by the operating amount calculating means 40 increases, and the calculation result of the comparison calculating means 42 becomes (Qp-Qv< O) When it becomes smaller than O, the calculator 43a of the operation amount calculation means 43 multiplies the load oil amount Ql corresponding to the operation signal Sl by the value of the discharge oil amount Qp/load oil amount Qv, and the operation signal St' is smaller than the operation signal S1. as directional valve 5
The voltage is applied to the operation section 5b of a. Similarly, the calculator 43b multiplies the load oil amount Q2 corresponding to the operation signal S2 by the value of the discharge oil amount Qp/load oil amount Qv, and outputs the result as an operation signal S2' smaller than the operation signal S2. to be applied. Therefore, the load WO is reduced in proportion to the amount of operation of the operating device 31 or the operation of the directional switching valve 5a and the directional switching valve 6a until it becomes equal to the amount of oil discharged from the hydraulic pump l.
The speed of Wl decreases or decreases at the same rate, and the amount of operation of the operating device 31, that is, the joystick handle 31
The operation continues at a speed proportional to the amount of operation of a and 31b. In addition, the joystick handle 31a,
Even when all of 31b, :llc are operated, the operation continues at the same speed ratio according to the operation amount.

次に第1図(B)と第2図(B)及び第3図によって第
2実施例について述べる。
Next, a second embodiment will be described with reference to FIG. 1(B), FIG. 2(B), and FIG. 3.

第1図(B)に示す第2実施例と、第1実施例との相違
点は、油圧ポンプlを可変吐出型から固定吐出型に替え
、その油圧ポンプ1aの主回路4とタンクの間に、ブリ
ードオフ型の圧力補償弁8を設けた構成である。
The difference between the second embodiment shown in FIG. 1(B) and the first embodiment is that the hydraulic pump 1 is changed from a variable discharge type to a fixed discharge type, and between the main circuit 4 of the hydraulic pump 1a and the tank. In this configuration, a bleed-off type pressure compensation valve 8 is provided.

前記のブリードオフ型の圧力補償弁8は、前記した圧力
補償弁23と同様の構成で、ばね8aを有するばね室8
bとこのばね室8bに主弁8dを介して配置しである圧
力室8cとで構成してあり、前記ばね室8bがパイロッ
ト回路14に接続し、圧力室8cはパイロット回路8c
を介して主回路4に接続する構成である。なお、リリー
フ弁8fは、パイロット回路8eの最高圧力を制限する
ものである。
The bleed-off type pressure compensation valve 8 has the same structure as the pressure compensation valve 23 described above, and has a spring chamber 8 having a spring 8a.
b, and a pressure chamber 8c arranged in the spring chamber 8b via a main valve 8d.The spring chamber 8b is connected to the pilot circuit 14, and the pressure chamber 8c is connected to the pilot circuit 8c.
The configuration is such that it is connected to the main circuit 4 via. Note that the relief valve 8f limits the maximum pressure of the pilot circuit 8e.

この様な構成を有するブリードオフ型の圧力補償弁8は
、そのばね室8bに作用するパイロット回路14の油圧
よりばね8aの押圧力分だけ高く保持する。つまり主回
路4の油圧を負荷WO〜W2の負荷圧力よりばね8aの
押圧力分だけ高い値に保持する。この様な油圧に保持さ
れた主回路4の油圧は、圧力補償弁23〜25によって
、方向切換弁58〜方向切換弁7aの各々に接続する負
荷WO〜W2に応じて制御され、方向切換弁5a〜7a
の操作量に応した油圧を負荷WO〜W2に供給する。
The bleed-off pressure compensation valve 8 having such a configuration maintains the hydraulic pressure of the pilot circuit 14 acting on the spring chamber 8b higher by the pressing force of the spring 8a. In other words, the oil pressure of the main circuit 4 is maintained at a value higher than the load pressure of the loads WO to W2 by the pressing force of the spring 8a. The oil pressure of the main circuit 4 maintained at such oil pressure is controlled by the pressure compensating valves 23 to 25 according to the loads WO to W2 connected to each of the directional control valves 58 to 7a, and the directional control valves 5a-7a
Hydraulic pressure corresponding to the operation amount is supplied to the loads WO to W2.

制御手段30に入力される信号油圧は、パイロット回路
14の油圧が油圧−電気変換器9によって油圧信号pに
変換され第2図(B)の関数回路34aに印加され、関
数回路34aで油圧ポンプ1aの吐出油量信号Qに変換
される。この関数回路34aは油圧ポンプ1aを固定吐
出型にしたので、その特性に合った関数回路としたもの
である。
The signal oil pressure input to the control means 30 is the oil pressure of the pilot circuit 14 converted into an oil pressure signal p by the oil pressure-electrical converter 9 and applied to the function circuit 34a of FIG. 2(B). It is converted into a discharge oil amount signal Q of 1a. Since the hydraulic pump 1a is of a fixed discharge type, this function circuit 34a is a function circuit that matches the characteristics of the hydraulic pump 1a.

この制御手段30の、マルチプレクサ33、A−D変換
器35、演算装置36の作動は、前述した第1実施例の
作動と同様である。即ち、操作量演算手段40が、方向
切換弁58〜7aの操作量から必要としている負荷油量
Qvを算出し、吐出流量演算手段41が油圧ポンプ1a
に吐出油量Qpを算出し、比較演算手段42、前記吐出
油量Qpから負荷油量Qvを引き算しその値QcがO−
より小さい場合は、操作量演算手段43によって夫々の
操作量Sl〜s3に、出油量Qp/負荷油量Qvを乗算
し、修正をした操作量信号Sl’〜S3’とし、方向切
換弁5a〜7aが形成する絞りの量を各方向切換弁58
〜7aを通過する負荷油量Qvが油圧ポンプ1aの吐出
油量Qpに一致するように修正する。従って、圧力補償
弁23〜25が作動することなく、負荷WO〜W2に油
圧ポンプIaの吐出圧油が比例配分されるので、負荷W
O〜W2か要求する油量が、油圧ポンプ1aの吐出油量
を越えた時と、越えない時の負荷WO〜W2の作動速度
の変化の比率は同一のままである。
The operations of the multiplexer 33, A-D converter 35, and arithmetic unit 36 of this control means 30 are similar to those of the first embodiment described above. That is, the operation amount calculation means 40 calculates the required load oil amount Qv from the operation amount of the directional control valves 58 to 7a, and the discharge flow amount calculation means 41 calculates the required load oil amount Qv from the operation amount of the directional control valves 58 to 7a.
The comparison calculation means 42 subtracts the load oil amount Qv from the discharged oil amount Qp, and the value Qc is O-
If it is smaller, the manipulated variable calculating means 43 multiplies each of the manipulated variables Sl to s3 by oil output amount Qp/load oil amount Qv to obtain corrected manipulated variable signals Sl' to S3', and then the directional control valve 5a The amount of restriction formed by ~7a is determined by each direction switching valve 58.
The load oil amount Qv passing through 7a is corrected to match the discharge oil amount Qp of the hydraulic pump 1a. Therefore, the pressure oil discharged from the hydraulic pump Ia is proportionally distributed to the loads WO to W2 without the pressure compensation valves 23 to 25 operating, so the load W
The ratio of change in the operating speed of the loads WO to W2 remains the same when the amount of oil requested by O to W2 exceeds the amount of oil discharged from the hydraulic pump 1a and when it does not.

(発明の効果) 本発明は、以上に説明したように、方向切換弁の操作量
から負荷が必要とする圧油の総量を検出し、油圧ポンプ
制御油圧とエンジンの回転数から油圧ポンプの吐出油量
を比較演算し油圧ポンプの吐出油量より方向切換弁の操
作量から負荷が必要とする圧油の総量が大きくなった時
、各方向切換弁への操作信号を、操作量に応じてその方
向切換弁の操作量から負荷が必要とする圧油の総量を油
圧ポンプの吐出油量に合致するように制御するので、各
圧力補償弁は、通常の作動となる。このため負荷が必要
とする油量が油圧ポンプの吐出油量を越えた時の負荷の
作動速度は減少するかその比率は負荷が必要とする油量
が油圧ポンプの吐出油量を越えない時の操作比率と同様
である。このため、操作者は、油圧ポンプの吐出油量よ
り方向切換弁の操作量から負荷が必要とする圧油の総量
が大きくなった時、各方向切換弁の操作量を変更するこ
となく、油圧ポンプの吐出油量より方向切換弁の操作量
から負荷が必要とする圧油の総量か小さい時と同一の操
作感覚で操作できるので、操作が容易になる効果を有す
る。
(Effects of the Invention) As explained above, the present invention detects the total amount of pressure oil required by the load from the operation amount of the directional control valve, and calculates the discharge of the hydraulic pump from the hydraulic pump control oil pressure and the engine rotation speed. When the amount of oil is compared and calculated and the total amount of pressure oil required by the load is larger than the amount of oil discharged by the hydraulic pump based on the amount of operation of the directional control valve, the operation signal to each directional control valve is sent according to the amount of operation. Since the total amount of pressure oil required by the load is controlled from the operation amount of the directional switching valve so as to match the amount of oil discharged from the hydraulic pump, each pressure compensation valve operates normally. Therefore, when the amount of oil required by the load exceeds the amount of oil discharged by the hydraulic pump, the operating speed of the load decreases, or is the ratio reduced when the amount of oil required by the load does not exceed the amount of oil discharged by the hydraulic pump? It is similar to the operating ratio of . Therefore, when the total amount of pressure oil required by the load is larger than the amount of oil discharged by the hydraulic pump from the amount of operation of the directional valves, the operator can adjust the hydraulic pressure without changing the amount of operation of each directional valve. Since the operation can be performed with the same feeling as when the total amount of pressure oil required by the load is smaller from the amount of operation of the directional control valve than the amount of oil discharged from the pump, the operation becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、本発明の第1実施例の電気系統を含む
油圧回路図、第1図(B)は、本発明の第2実施例の電
気系統を含む油圧回路図、第2図(A)は第1実施例の
制御手段の制御系統図5第2図(B)は第2実施例の制
御手段の制御系統図、第3図は、第2図(A)、(B)
の、演算装置の機能のフローを示すブロック線図、第4
図は、従来技術の油圧回路図。 l・・・・可変吐出型油圧ポンプ 1a・・・・固定吐出型油圧ポンプ 3・・・・エンジン 4・・・・主回路 5a、6a、7a・・・・方向切換弁 8・・・・ブリードオフ型の圧力補償弁9・・・・油圧
−電”気変換器 10〜12・・・・圧力補償弁 14・・・・パイロット回路 15・・・・高圧選択回路 16.17・・・・選択弁 20〜22・・・・負荷回路 3〜25・・・・圧力補償弁 0・・・・制御手段 l・・・・操作装置 2・・・・スイッチ 3・・・・マルチプレクサ 4・・・・関数回路 5・・・・A−D変換器 6・・・・演算装置 0・・・・操作量演算手段 l・・・・吐出量演算手段 2・・・・比較手段 3.44・・・・操作量演算手段 3a、43a、43a・・・・演算器
FIG. 1(A) is a hydraulic circuit diagram including an electrical system according to a first embodiment of the present invention, and FIG. 1(B) is a hydraulic circuit diagram including an electrical system according to a second embodiment of the present invention. Figure (A) is a control system diagram of the control means of the first embodiment. Figure 2 (B) is a control system diagram of the control means of the second embodiment. )
Block diagram showing the flow of functions of the arithmetic unit, No. 4
The figure is a hydraulic circuit diagram of a conventional technology. l...Variable discharge type hydraulic pump 1a...Fixed discharge type hydraulic pump 3...Engine 4...Main circuits 5a, 6a, 7a...Direction switching valve 8... Bleed-off type pressure compensation valve 9...Hydraulic-electrical converter 10-12...Pressure compensation valve 14...Pilot circuit 15...High pressure selection circuit 16.17... - Selection valves 20 to 22... Load circuits 3 to 25... Pressure compensation valve 0... Control means l... Operating device 2... Switch 3... Multiplexer 4. ... Function circuit 5 ... A-D converter 6 ... Arithmetic device 0 ... Manipulated amount calculation means l ... Discharge amount calculation means 2 ... Comparison means 3.44 ...Operation amount calculation means 3a, 43a, 43a...Arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] (1)可変吐出型の油圧ポンプの吐出側にアクチュエー
タ等の負荷を接続した方向切換弁を複数個設け、この方
向切換弁の上流側に、方向切換弁の下流側が接続するば
ね室とこのばね室に対抗し前記方向切換弁の上流側に接
続する圧力室とを有する圧力補償弁を設け、前記各方向
切換弁に接続する負荷の負荷回路に負荷圧の最高値を選
択する選択回路を設け、この選択回路の出力側を前記油
圧ポンプの吐出流量制御部に接続し、この油圧ポンプの
吐出流量を、前記個々の方向切換弁に接続する負荷の必
要油量に制御し、前記油圧ポンプの吐出油量を前記圧力
補償弁と方向切換弁とで、各々の負荷に分配する構成と
した流量制御機能を有する油圧回路において、 前記方向切換弁を電磁操作型の方向切換弁とし、この電
磁操作型の方向切換弁の操作部と、電磁操作型の方向切
換弁への操作装置との間に、前記油圧ポンプの吐出流量
を演算する吐出流量演算手段と、夫々の前記電磁操作型
の方向切換弁操作量の総和から負荷が必要とする流量の
総和を演算する操作量演算手段と、前記吐出流量演算手
段の出力と操作量演算手段の出力とを比較する比較演算
手段と、この比較演算の結果操作量演算手段の出力の方
が大になったとき、前記操作部の指令値に比例配分の係
数を乗算する比例配分乗算手段とで構成される制御手段
を設けた事を特徴とする流量制御機能を有する油圧回路
(1) A plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a variable discharge type hydraulic pump, and a spring chamber and a spring chamber to which the downstream side of the directional switching valve is connected are provided on the upstream side of the directional switching valve. A pressure compensation valve having a pressure chamber facing the chamber and connected to the upstream side of the directional control valve is provided, and a selection circuit for selecting the highest value of the load pressure is provided in a load circuit of a load connected to each of the directional control valves. , the output side of this selection circuit is connected to the discharge flow rate control section of the hydraulic pump, and the discharge flow rate of this hydraulic pump is controlled to the required amount of oil for the load connected to each of the directional control valves, In a hydraulic circuit having a flow control function configured to distribute the amount of discharged oil to each load using the pressure compensating valve and the directional switching valve, the directional switching valve is an electromagnetically operated directional switching valve, and the directional switching valve is an electromagnetically operated directional switching valve. A discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump is disposed between the operating section of the directional switching valve of the type and the operating device for the electromagnetically operated directional switching valve; A manipulated variable calculation means for calculating the total flow rate required by the load from the sum of the valve operation amounts, a comparison calculation means for comparing the output of the discharge flow rate calculation means with the output of the manipulated variable calculation means, and A flow rate characterized in that a control means is provided, comprising a proportional distribution multiplier that multiplies the command value of the operating section by a proportional distribution coefficient when the output of the resultant manipulated variable calculation means becomes larger. Hydraulic circuit with control function.
(2)固定吐出型の油圧ポンプの吐出側にアクチュエー
タ等の負荷を接続した方向切換弁を複数個設け、この方
向切換弁の上流側に、方向切換弁の下流側が接続するば
ね室とこのばね室に対抗し前記方向切換弁の上流側に接
続する圧力室とを有する圧力補償弁を設けると共に、前
記方向切換弁に接続した負荷が接続する負荷回路にその
負荷圧の最高値を選択検出する選択回路を設け、前記油
圧ポンプの吐出側の主回路とタンクとの間に、前記選択
回路の出力側が接続するばね室とこのばね室に主弁を介
して対抗し前記主回路が接続するブリードオフ型の圧力
制御弁を設けこのブリードオフ型の圧力補償弁で前記油
圧ポンプの吐出油圧を前記の方向切換弁の負荷圧力より
一定の値だけ高く保持し、前記油圧ポンプの吐出油量を
前記個々の方向切換弁と圧力補償弁とで、各々の負荷に
分配する構成とした流量制御機能を有する油圧回路にお
いて、 前記方向切換弁を電磁操作型の方向切換弁とし、この電
磁操作型の方向切換弁の操作部と、電磁操作型の方向切
換弁への操作装置との間に、前記油圧ポンプの吐出流量
を演算する吐出流量演算手段と、夫々の前記電磁操作型
の方向切換弁操作量の総和から負荷が必要とする流量の
総和を演算する操作量演算手段と、前記吐出流量演算手
段の出力と操作量演算手段の出力とを比較する比較演算
手段と、この比較演算の結果操作量演算手段の出力の方
が大になったとき、前記操作部の指令値に比例配分の係
数を乗算する比例配分乗算手段とで構成される制御手段
を設けた事を特徴とする流量制御機能を有する油圧回路
(2) A plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a fixed discharge type hydraulic pump, and a spring chamber and a spring chamber to which the downstream side of the directional switching valve is connected are installed on the upstream side of the directional switching valve. A pressure compensation valve having a pressure chamber facing the chamber and connected to the upstream side of the directional switching valve is provided, and a maximum value of the load pressure of the load connected to the directional switching valve is selectively detected in a load circuit connected to the directional switching valve. A selection circuit is provided between the main circuit on the discharge side of the hydraulic pump and the tank, a spring chamber to which the output side of the selection circuit is connected, and a bleed chamber opposed to the spring chamber via a main valve and connected to the main circuit. An off-type pressure control valve is provided, and this bleed-off type pressure compensating valve maintains the discharge oil pressure of the hydraulic pump by a certain value higher than the load pressure of the directional control valve, and the discharge oil amount of the hydraulic pump is adjusted to the above-mentioned level. In a hydraulic circuit having a flow rate control function configured to distribute to each load with an individual directional switching valve and a pressure compensation valve, the directional switching valve is an electromagnetically operated directional switching valve, and the directional switching valve of the electromagnetically operated type is Discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump, and a discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump, and a control unit for each of the electromagnetically operated directional control valves, between the operating section of the switching valve and the operating device for the electromagnetically operated directional control valve. a manipulated variable calculating means for calculating the total flow rate required by the load from the sum total of the flow rate, a comparison calculating means for comparing the output of the discharge flow rate calculating means with the output of the manipulated variable calculating means, and a manipulated variable as a result of this comparison calculation. A flow rate control function characterized in that a control means is provided, comprising a proportional distribution multiplier that multiplies the command value of the operating section by a proportional distribution coefficient when the output of the calculation means becomes larger. Hydraulic circuit with.
JP29655789A 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function Pending JPH03157502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29655789A JPH03157502A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29655789A JPH03157502A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Publications (1)

Publication Number Publication Date
JPH03157502A true JPH03157502A (en) 1991-07-05

Family

ID=17835083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29655789A Pending JPH03157502A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Country Status (1)

Country Link
JP (1) JPH03157502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125637A (en) * 2004-10-29 2006-05-18 Caterpillar Inc Hydraulic system with flow rate control based on priority

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125637A (en) * 2004-10-29 2006-05-18 Caterpillar Inc Hydraulic system with flow rate control based on priority

Similar Documents

Publication Publication Date Title
US4759183A (en) Control arrangement for at least two hydraulic loads fed by at least one pump
KR940009219B1 (en) Hydraulic driving apparatus of caterpillar vehicle
US5535587A (en) Hydraulic drive system
JP3204977B2 (en) Hydraulic drive
EP0394465B1 (en) Hydraulic driving apparatus
JPH04136509A (en) Variable circuit of pump discharging capacity in closed-center load sensing system
KR100480949B1 (en) Hydraulic drive device
JPH06123302A (en) Oil pressure controller of construction machine
US6772590B2 (en) Hydraulic driving device
JPH0776863A (en) Hydraulic pressure drive device of construction machinery
JPH03157502A (en) Hydraulic circuit having flow rate controlling function
JPH0641764B2 (en) Drive control device for hydraulic circuit
JPH06123301A (en) Oil pressure controller of construction machine
JPH04351304A (en) Hydraulic driving device
JP3394581B2 (en) Hydraulic control device for construction machinery
JP2721384B2 (en) Hydraulic circuit of work machine
JPH05346101A (en) Hydraulic transmission device for construction equipment
JPH03157503A (en) Hydraulic circuit having flow rate controlling function
JP3522959B2 (en) Hydraulic drive
JP3419610B2 (en) Hydraulic drive traveling device
US5315827A (en) Apparatus for switching flow rate for attachment
JPH07293508A (en) Hydraulic control device
JPH0650309A (en) Hydraulic drive apparatus of construction machine
JPH08200308A (en) Hydraulic circuit
JP2556998B2 (en) Hydraulic circuit