JPH03157503A - Hydraulic circuit having flow rate controlling function - Google Patents

Hydraulic circuit having flow rate controlling function

Info

Publication number
JPH03157503A
JPH03157503A JP29655889A JP29655889A JPH03157503A JP H03157503 A JPH03157503 A JP H03157503A JP 29655889 A JP29655889 A JP 29655889A JP 29655889 A JP29655889 A JP 29655889A JP H03157503 A JPH03157503 A JP H03157503A
Authority
JP
Japan
Prior art keywords
valve
pressure
flow rate
hydraulic pump
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29655889A
Other languages
Japanese (ja)
Inventor
Kenichi Shimoura
霜浦 賢一
Hiroaki Sakai
坂井 宏彰
Takaaki Hashi
橋 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP29655889A priority Critical patent/JPH03157503A/en
Publication of JPH03157503A publication Critical patent/JPH03157503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate operation by detecting a grand total of oil required by a load from the operational rate of directional changeover valves provided with pressure compensation valves on the downstream side thereof, comparing the grand total of oil with a discharge oil rate of a hydraulic pump, and according to the obtained result, multiplying the command value of the operational parts by a coefficient. CONSTITUTION:Operational command signals of a control means 30 are inputted to operational parts 5b, 5c to 7b, 7c of solenoid type directional changeover valves 5a to 7a arranged between a hydraulic pump 1 and actuators 20 to 22. A signal of an operational device 31 output according to the operational rate of handle, rotational speed (n) of a driving engine 3 of the hydraulic pump 1, and an electric signal (p) of oil pressure of an operational part 1b are inputted to the control means 30. The control means 30 compares the grand total of flow rate of pressure oil required by a load with the discharge rate of the hydraulic pump 1, and according to the obtained result, multiply the command value of the operational parts by a coefficient of a proportional distribution for outputting. The operation is thus facilitated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建設機械等に利用される流量制御機能を有す
る油圧回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydraulic circuit having a flow rate control function used in construction machinery and the like.

(従来の技術) 従来の流量1111m能を有する油圧回路は、第4図(
特開昭50−188504号に開示されたものを、油圧
回路に書き直した油圧回路図)に示すものかある。
(Prior art) A conventional hydraulic circuit having a flow rate of 1111 m is shown in Fig. 4 (
The hydraulic circuit diagram disclosed in Japanese Patent Application Laid-Open No. 188504/1982 is rewritten as a hydraulic circuit.

第4図においてlは、可変吐出型の油圧ポンプである。In FIG. 4, l is a variable discharge type hydraulic pump.

この油圧ポンプlは、吐出流量制御部としての油圧シリ
ンダIfの出力によって斜板2の傾転角が制御され、こ
の斜板の傾転角で主回路4に吐出する吐出流量が変化す
るようになっている。
In this hydraulic pump l, the tilting angle of the swash plate 2 is controlled by the output of the hydraulic cylinder If serving as a discharge flow rate control section, and the discharge flow rate discharged to the main circuit 4 is changed by the tilt angle of the swash plate. It has become.

前記油圧シリンダ1fは、パイロット回路14か接続す
る圧力室1bとばね1cとを有し、圧力室1bに圧油が
作用しないと、ロッドldはばね1cで図示の位置に保
持される。この時、油圧ポンプ1の主回路4への吐出流
量は、最小となっている。
The hydraulic cylinder 1f has a pressure chamber 1b connected to the pilot circuit 14 and a spring 1c, and when no pressure oil acts on the pressure chamber 1b, the rod ld is held at the illustrated position by the spring 1c. At this time, the discharge flow rate of the hydraulic pump 1 to the main circuit 4 is at its minimum.

油圧ポンプ1の吐出側の主回路4には、方向切換弁5〜
7か並列に接続しである。この夫々の方向切換弁5〜7
は、圧力補償弁10〜12を介してアクチュエータ等の
負荷WO〜W2に接続している。
The main circuit 4 on the discharge side of the hydraulic pump 1 includes directional control valves 5 to 5.
7 or more connected in parallel. Each of these directional control valves 5 to 7
are connected to loads WO to W2 such as actuators via pressure compensation valves 10 to 12.

前記圧力補償弁10は、ばねloaを有するばね室10
bと、このばね室10bに主弁10dを介して対抗する
位置に圧力室10cを有する構成て、前記圧力室10c
には、方向切換弁5の下流側の油圧がパイロット回路1
3aを介して作用しており、ばね室Jobには、パイロ
ット回路14の油圧が作用している。そして、この圧力
補償弁10は、その主弁10dが、ばね室10bと圧力
室10cとの押圧力との差が大きくなると図示の位置か
ら左の方に大きく移動し方向切換弁5と7負荷WOの接
続量を多くする。逆に、主弁10dが、ばね室Jobと
圧力室10cとの押圧力との差か小さくなると図示の位
置から左の方への移動量を小さくし方向切換弁5と負荷
WOの接続量を小さくする。(なお、圧力補償弁11.
12は、圧力補償弁10と同一の構造であるのて圧力補
償弁10〜12の同一部品には、夫々の圧力補償弁を表
す番号11.12に同一アルファベットの添え字をして
番号のみ示しその説明を省略する。)油圧ポンプlの油
圧シリンダ1「と圧力補償弁10〜12のばね室1(l
b〜12bに接続するパイロット回路14は、高圧選択
回路15の出力側に接続するものである。この高圧選択
回路15は、負荷Wlが接続負荷WOが接続する負荷回
路20との高圧側を選択しその出力側が高圧選択回路1
5の出力側となる選択弁17と、で構成してあり、前記
パイロット回路14は前記選択弁17の出力側に接続し
ている。従ってパイロット回路14には、負荷WO〜W
2への負荷回路20〜21内の負荷圧力の最高値の圧力
が作用するものである。
The pressure compensating valve 10 has a spring chamber 10 having a spring loa.
b, and a pressure chamber 10c at a position opposite to the spring chamber 10b via the main valve 10d.
, the hydraulic pressure on the downstream side of the directional control valve 5 is connected to the pilot circuit 1.
3a, and the hydraulic pressure of the pilot circuit 14 acts on the spring chamber Job. When the difference between the pressing forces between the spring chamber 10b and the pressure chamber 10c increases, the pressure compensating valve 10 moves its main valve 10d largely to the left from the position shown in the figure. Increase the amount of WO connections. Conversely, when the difference between the pressing forces between the spring chamber Job and the pressure chamber 10c becomes smaller, the amount of movement of the main valve 10d to the left from the illustrated position is reduced, and the amount of connection between the directional control valve 5 and the load WO is reduced. Make it smaller. (Please note that the pressure compensation valve 11.
12 has the same structure as the pressure compensating valve 10, so for the same parts of the pressure compensating valves 10 to 12, only the numbers are indicated by adding the same alphabetical suffix to the numbers 11 and 12 representing the respective pressure compensating valves. The explanation will be omitted. ) Hydraulic cylinder 1 of hydraulic pump l and spring chamber 1 of pressure compensation valves 10 to 12 (l
The pilot circuit 14 connected to b to 12b is connected to the output side of the high voltage selection circuit 15. This high voltage selection circuit 15 selects the high voltage side of the load circuit 20 to which the load Wl is connected, and the output side thereof is the high voltage selection circuit 1.
The pilot circuit 14 is connected to the output side of the selection valve 17. Therefore, the pilot circuit 14 has loads WO to W.
The pressure of the highest value of the load pressure in the load circuits 20 to 21 to 2 is applied.

上記の構成を有する従来の流量制御機能を有する油圧回
路は、圧力補償弁lO〜12のばね室tob〜12bに
負荷WO〜W2の内の最高の負荷に相当する負荷圧力を
パイロット回路14を介して作用させる。又パイロット
回路14の油圧を油圧シリンダ1fの圧力室1bに作用
させ、油圧ポンプlの吐出油圧が前記パイロット回路1
4の油圧より更に一定の量たけ高くなるように吐出流量
を制御している。
The conventional hydraulic circuit having a flow rate control function having the above configuration applies a load pressure corresponding to the highest load among the loads WO to W2 to the spring chambers tob to 12b of the pressure compensation valves 10 to 12 via the pilot circuit 14. Let it work. Further, the hydraulic pressure of the pilot circuit 14 is applied to the pressure chamber 1b of the hydraulic cylinder 1f, and the discharge hydraulic pressure of the hydraulic pump l is applied to the pilot circuit 1.
The discharge flow rate is controlled to be higher than the oil pressure of No. 4 by a certain amount.

このような状況において、方向切換弁5と方向切換弁6
とが操作されると、その開度に応じて圧力補償弁10と
圧力補償弁11の上流側の油圧か高くなりその油圧は、
パイロット回路13a、パイロット回路13bを介して
圧力室10cと圧力室11cに作用する。すると、圧力
補償弁10の主弁10dは、圧力室Incとばね室10
bとの圧力差に応じて左へ移動し、圧力補償弁11の主
弁11dは、圧力室10cとばね室10bとの圧力差に
応じて左へ移動する。このため、方向切換弁5と方向切
換弁6が形成する絞りの前後の差圧をばねLOaとばね
Llaの押圧力の一定の値に保持し、負荷WO1負荷W
lへの油量の供給量を、方向切換弁5、方向切換弁6の
操作量に応じた値にする。なお、方向切換弁5〜7の全
部が操作された場合も同様であるのて、説明は省く。
In such a situation, the directional control valve 5 and the directional control valve 6
When the is operated, the oil pressure on the upstream side of the pressure compensation valve 10 and the pressure compensation valve 11 increases depending on the opening degree, and the oil pressure becomes as follows.
It acts on the pressure chamber 10c and the pressure chamber 11c via the pilot circuit 13a and the pilot circuit 13b. Then, the main valve 10d of the pressure compensation valve 10 connects the pressure chamber Inc and the spring chamber 10.
The main valve 11d of the pressure compensation valve 11 moves to the left depending on the pressure difference between the pressure chamber 10c and the spring chamber 10b. Therefore, the differential pressure before and after the throttle formed by the directional switching valve 5 and the directional switching valve 6 is maintained at a constant value of the pressing force of the spring LOa and the spring Lla, and the load WO1 and the load W
The amount of oil supplied to l is set to a value corresponding to the operation amount of the directional switching valve 5 and the directional switching valve 6. Note that the same applies when all of the directional control valves 5 to 7 are operated, so a description thereof will be omitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来の技術は、圧力補償弁10〜12が方向切換
弁5〜7の下流側の圧力を負荷wo〜w2の内の最高の
油圧に揃え、油圧ポンプlにそれより高い油圧が発生す
るようにその圧油の吐出流量を決定することにより、方
向切換弁5〜7の前後の差圧を一定に保ち、方向切換弁
5〜7の操作量に応じて負荷W O−W 2に圧油を配
分するものである。この作用は、負荷WO〜W2か要求
する油量が油圧ポンプlの吐出油量を越えると、圧力補
償弁IO〜12の上流側のパイロット回路13a〜1j
bの油圧か方向切換弁5〜7の操作量に応じて減少する
。従って、その分圧力補償弁lO〜12の主弁10d〜
12dがばね10a〜12aによって移動させられる。
In the above conventional technology, the pressure compensating valves 10 to 12 adjust the pressure on the downstream side of the directional control valves 5 to 7 to the highest oil pressure among the loads wo to w2, and a higher oil pressure is generated in the hydraulic pump l. By determining the discharge flow rate of the pressure oil, the differential pressure before and after the directional valves 5 to 7 is kept constant, and the pressure is applied to the load W It distributes oil. This action occurs when the amount of oil required by the loads WO to W2 exceeds the amount of oil discharged from the hydraulic pump l, the pilot circuits 13a to 1j on the upstream side of the pressure compensation valves IO to 12
The oil pressure of b decreases depending on the amount of operation of the directional control valves 5 to 7. Therefore, the main valve 10d~ of the pressure compensation valve lO~12
12d is moved by springs 10a-12a.

このため、圧力補償弁10〜12の作動がばね10a〜
12aの影響をうける。
Therefore, the operation of the pressure compensation valves 10 to 12 is limited to the springs 10a to 12.
Affected by 12a.

以上の原因て、この流に制御a俺を41する油圧回路は
負荷WO〜W2が要求する油量が油圧ポンプlの吐出油
量より小さい時には、圧力補償弁lO〜12の上流側パ
イロット回路13a〜13bの油圧を確保できるので分
配比率は、方向切換弁5〜7の操作量に応じた値になる
。しかし、負荷WO−W2の要求する油量が油圧ポンプ
の吐出油量より大きい時では方向切換弁5〜7が同一の
操作量でも圧力補償弁lO〜12のばね1(la〜12
aの撓み量が変化するのて、方向切換弁5〜7の前後の
差圧か変化しこのため負荷への油量分配比率が変化する
。従って、方向切換弁の操作指令値に対して負荷WO〜
W2の作動が正確に対応しなくなる問題点を有する。
Due to the above reasons, when the amount of oil required by the loads WO~W2 is smaller than the amount of oil discharged from the hydraulic pump 1, the hydraulic circuit that controls the flow 41 operates in the upstream pilot circuit 13a of the pressure compensation valves 1O~12. Since the oil pressure of ~13b can be secured, the distribution ratio becomes a value corresponding to the operation amount of the directional control valves 5-7. However, when the amount of oil required by the load WO-W2 is larger than the amount of oil discharged from the hydraulic pump, even if the directional control valves 5 to 7 have the same operation amount, the springs 1 (la to 12) of the pressure compensating valves 10 to 12
As the amount of deflection of a changes, the differential pressure before and after the directional control valves 5 to 7 changes, and therefore the oil amount distribution ratio to the load changes. Therefore, for the operation command value of the directional valve, the load WO~
There is a problem that the operation of W2 does not correspond accurately.

(問題点を解決するための手段) 従来技術の問題点を解決する本発明の技術的手段は、吐
出流量制御部を有する可変吐出型の油圧ポンプの吐出側
にアクチュエータ等の負荷を接続した方向切換弁を複数
個設け、この方向切換弁の下流側に、ばねで閉じ方向に
押圧された主弁とこの主神を介して前記ばねが内蔵され
るばね室と圧力室を配置してなる圧力補償弁を設けると
共に、前記各方向切換弁に接続する負荷の負荷回路に負
荷圧の最高値を選択する選択回路を設け、前記圧力補償
弁の圧力室を方向切換弁の下流側に接続し、ばね室を前
記選択回路の出力側に接続してなり、前記選択回路の出
力側を前記油圧ポンプの吐出流量制御部に接続し、この
油圧ポンプの吐出流量を、前記側々の方向切換弁に接続
する負荷の必要油量に制御し、前記油圧ポンプの吐出油
量を前記圧力補償弁と方向切換弁とで、各々の負荷に分
配する構成とした流量制御機能を有する油圧回路におい
て、 或は固定吐出型の油圧ポンプの吐出側にアクチュエータ
等の負荷を接続した方向切換弁を複数個設け、この方向
切換弁の下流側に、ばねて閉じ方向に押圧された主弁と
この主弁を介して前記ばねが内蔵されるばね室と圧力室
を配置してなる圧力補償弁を設けると共に、前記各方向
切換弁に接続する負荷の負荷回路に負荷圧の最高値を選
択する選択回路を設け、前記圧力補償弁の圧力室を方向
切換弁の下流側に接続し、ばね室を前記選択回路の出力
側に接続してなり、前記油圧ポンプの吐出側の主回路と
タンクとの間に、前記選択回路の出力側が接続するばね
室とこのばね室に主弁を介して対抗し前記主回路が接続
するブリードオフ型の圧力制御弁を設けこのブリードオ
フ型の圧力補償弁で前記油圧ポンプの吐出油圧を前記の
方向切換弁の負荷圧力により一定の値だけ高く保持し、
前記油圧ポンプの吐出油量を前記例々の方向切換弁と圧
力補償弁とで、各々の負荷に分配する構成とした流量制
御機能を有する油圧回路において、前記方向切換弁を電
磁操作型の方向切換弁とし、この電磁操作型の方向切換
弁の操作部と、電磁操作型の方向切換弁への操作装置と
の間に、前記油圧ポンプの吐出流量を演算する吐出流量
演算手段と、夫々の前記電磁操作型の方向切換弁操作量
の総和から負荷が必要とする流量の総和を演算する操作
量演算手段と、前記吐出流量演算手段の出力と操作量演
算手段の出力とを比較する比較演算手段と、この比較演
算の結果操作量演算手段の出力の方が大になったとき、
前記操作部の指令値に比例配分の係数を乗算する比例配
分乗算手段とで構成される制御手段を設けた事を特徴と
するものである。
(Means for Solving the Problems) The technical means of the present invention for solving the problems of the prior art is to connect a load such as an actuator to the discharge side of a variable discharge hydraulic pump having a discharge flow rate control section. A pressure compensation system in which a plurality of switching valves are provided, and on the downstream side of the directional switching valves, a main valve pressed in the closing direction by a spring, a spring chamber in which the spring is built in, and a pressure chamber are arranged via the main valve. In addition to providing a selection circuit for selecting the highest value of load pressure in the load circuit of the load connected to each of the directional control valves, the pressure chamber of the pressure compensation valve is connected to the downstream side of the directional control valve, and a spring A chamber is connected to the output side of the selection circuit, the output side of the selection circuit is connected to a discharge flow rate control section of the hydraulic pump, and the discharge flow rate of the hydraulic pump is connected to the directional switching valves on each side. In a hydraulic circuit having a flow control function configured to control the amount of oil to the required amount of the load, and distribute the amount of oil discharged from the hydraulic pump to each load using the pressure compensation valve and the directional control valve, or a fixed amount. A plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a discharge type hydraulic pump, and a main valve that is pressed in the closing direction by a spring and a main valve connected to the downstream side of the directional switching valve are connected to each other via the main valve. A pressure compensating valve is provided in which a spring chamber in which the spring is incorporated and a pressure chamber are arranged, and a selection circuit for selecting the highest value of load pressure is provided in a load circuit of a load connected to each of the directional switching valves, The pressure chamber of the pressure compensation valve is connected to the downstream side of the directional control valve, and the spring chamber is connected to the output side of the selection circuit, and the selection circuit is connected between the main circuit on the discharge side of the hydraulic pump and the tank. A spring chamber to which the output side of the circuit is connected and a bleed-off pressure control valve opposed to this spring chamber via a main valve and connected to the main circuit are provided, and this bleed-off pressure compensation valve controls the discharge hydraulic pressure of the hydraulic pump. is held high by a certain value by the load pressure of the directional valve mentioned above,
In a hydraulic circuit having a flow rate control function configured to distribute the amount of oil discharged from the hydraulic pump to each load using the directional switching valve and the pressure compensation valve, the directional switching valve is an electromagnetically operated directional control valve. A switching valve, and a discharge flow rate calculating means for calculating the discharge flow rate of the hydraulic pump, and a discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump, and a discharge flow rate calculating means for calculating the discharge flow rate of the hydraulic pump, between the operating part of the electromagnetically operated directional selector valve and the operating device for the electromagnetically operated directional selector valve. operation amount calculation means for calculating the total flow rate required by the load from the sum total of the operation amounts of the electromagnetically operated directional control valve; and a comparison operation for comparing the output of the discharge flow rate calculation means and the output of the operation amount calculation means. When the output of the operation amount calculation means becomes larger as a result of this comparison operation,
The present invention is characterized in that a control means is provided, which includes a proportional distribution multiplier that multiplies the command value of the operating section by a proportional distribution coefficient.

〔作用〕 以上の技術的手段を有する本発明は、油圧ポンプの吐出
油量を越えて方向切換弁が操作されたとき或は、方向切
換弁の操作中に負荷の変動て油圧ポンプの吐出油量が不
足すると、方向切換弁への操作指令を制御手段て油圧ポ
ンプの吐出油量に似合うように方向切換弁の操作量を比
例配分変更するのて、圧力補償弁を変動させない。従フ
て、油圧ポンプの吐出流量を越えて負荷WO〜W2への
供給油量が必要になるようになっても負荷WO〜W2の
供給量油量は、元の操作量に確実に比例した値になる。
[Operation] The present invention having the above-mentioned technical means is capable of reducing the amount of oil discharged from the hydraulic pump when the directional control valve is operated in excess of the amount of oil discharged from the hydraulic pump, or when the load fluctuates during operation of the directional control valve. When the amount is insufficient, the control means changes the operating amount of the directional valve proportionally to match the amount of oil discharged from the hydraulic pump, and the pressure compensating valve is not varied. Therefore, even if the amount of oil supplied to the loads WO to W2 becomes necessary in excess of the discharge flow rate of the hydraulic pump, the amount of oil supplied to the loads WO to W2 is reliably proportional to the original operation amount. Becomes a value.

〔実施例〕〔Example〕

以下本発明の第1実施例を第1図(A)、第2図(A)
、第3図によって説明する。なお、説明にあたっては、
従来の技術と相違する点のみを説明する。
The first embodiment of the present invention is shown in FIG. 1 (A) and FIG. 2 (A) below.
, will be explained with reference to FIG. In addition, when explaining,
Only the points that are different from the conventional technology will be explained.

第1図(A)に示す実施例と第4図に示し前述した従来
の技術とでは、方向切換弁が電磁操作型の方向切換弁と
されこの方向切換弁の操作部と操作装置の間に制御手段
を設け、この制御手段によっ第1図(A)において、可
変吐出型の油圧ポンプの油圧シリンダ1fの圧力室1b
に接続するパイロット回路14の油圧は、電気信号に変
換されて制御手段30に印加されている。
In the embodiment shown in FIG. 1(A) and the conventional technology shown in FIG. A control means is provided, and the control means controls the pressure chamber 1b of the hydraulic cylinder 1f of the variable discharge type hydraulic pump in FIG. 1(A).
The hydraulic pressure of the pilot circuit 14 connected to is converted into an electric signal and applied to the control means 30.

また電磁操作型の方向切換弁5a〜7aの操作部5b、
5c〜7b、7cは操作装置31にその操作信号Sl〜
S3を与えられるように制御手段30を介して接続しで
ある。
In addition, the operating portions 5b of the electromagnetically operated directional control valves 5a to 7a,
5c to 7b, 7c send the operating signals Sl to the operating device 31.
S3 is connected via the control means 30 so as to be given S3.

この制御手段30の他方には、油圧ポンプ1を駆動する
エンジン3の回転数nと、圧力室tbの油圧が電気信号
Pに変換され入力されるようになっている。
The rotational speed n of the engine 3 that drives the hydraulic pump 1 and the oil pressure in the pressure chamber tb are converted into an electric signal P and input to the other control means 30.

前記操作装置31は、ジョイスティック等で構成されそ
の操作量によって電圧が変化するものである。すなわち
、第2図(A)においてジョイスティックのハンドル3
1aか中央位置にあるとき方向切換弁5aの操作部5b
への操作指令は、出ないようになっており、ハンドル3
1aが矢印すの方向に操作されるとスイッチ32aが接
点す側に切り換わり。
The operating device 31 is composed of a joystick or the like, and the voltage changes depending on the amount of operation thereof. That is, in FIG. 2(A), the joystick handle 3
1a or in the center position, the operating part 5b of the directional control valve 5a
No operation command is issued to the handle 3.
When 1a is operated in the direction of the arrow, switch 32a switches to the contact side.

操作部5bに操作指令かハンドル31aの操作量分たけ
印加されるようになっている。同様にハンドル31aが
矢印Cの方向に操作されるとスイッチ32aが接点C側
に切り換わり、操作部5cへの操作指令がハンドル31
aの操作量分たけ!印加されるようになっている。また
、操作装置3】の出力信号は、制御手段30のマルチプ
レクサ33に印加されるようになっている。
An operation command corresponding to the amount of operation of the handle 31a is applied to the operation section 5b. Similarly, when the handle 31a is operated in the direction of arrow C, the switch 32a is switched to the contact C side, and an operation command to the operating section 5c is transmitted to the handle 31.
As much as the amount of operation of a! It is now applied. Further, the output signal of the operating device 3 is applied to a multiplexer 33 of the control means 30.

前記油圧ポンプlの吐出流量制御部としての油圧シリン
ダIfの圧力室1bと、エンジン3の出力信号とは、こ
の2つの値から油圧ポンプ1の吐出油量Qを算出する関
数回路34に印加され、油圧ボンブlの吐出油ftQと
してマルチプレクサ33に印加される。これらマルチプ
レクサ33に印加されるアナログ信号は、A−D変換器
35を介して演算装置36に印加され、インターフェー
ス37を介して方向切換弁58〜7aの操作部5b、5
c〜7b、 7cに印加される。
The pressure chamber 1b of the hydraulic cylinder If serving as the discharge flow rate control unit of the hydraulic pump I and the output signal of the engine 3 are applied to a function circuit 34 that calculates the discharge oil amount Q of the hydraulic pump 1 from these two values. , is applied to the multiplexer 33 as discharge oil ftQ of the hydraulic bomb l. The analog signals applied to these multiplexers 33 are applied to the arithmetic unit 36 via the A-D converter 35, and are applied to the operating units 5b, 5 of the directional control valves 58-7a via the interface 37.
Applied to c~7b, 7c.

前記、演算装置36は、第3図に見られるように、マル
チプレクサ33が操作装置31の夫々のハンドル31a
〜31cの操作量を読み取り、A−D変換器35を介し
てデジタル信号として伝達された値から個々の方向切換
弁か通過させようとする油量Ql〜Q3を算出しJ且つ
、その値を加算しその値から負荷WO〜W2が要求して
いる全体の負荷油量Qvを演算する操作量演算手段40
と、マルチプレクサ33に印加される関数回路34の出
力をA−D変換器35を介してデジタル信号として伝達
された値から油圧ポンプlの吐出油量Qpを演算する吐
出油量演算手段41と、前記油圧ポンプlの吐出油量Q
pから負荷WO〜W2か必要とする負荷油量Qvを減算
し、その値Qc(油量Qp−油量Qv−Qc)か負(値
Qc<O)ならば操作量演算子0)ならば操作量演算手
段44の作動を指令を行なう比較演算手段42とで構成
しである。
As shown in FIG.
31c is read, and from the value transmitted as a digital signal via the A-D converter 35, the amount of oil Ql to Q3 to be passed through each directional control valve is calculated. A manipulated variable calculation means 40 that calculates the total load oil amount Qv required by the loads WO to W2 from the added value.
and a discharge oil amount calculation means 41 that calculates the discharge oil amount Qp of the hydraulic pump l from the output of the function circuit 34 applied to the multiplexer 33 and transmitted as a digital signal via the A-D converter 35; Discharge oil amount Q of the hydraulic pump l
Subtract the load WO~W2 or the required load oil amount Qv from p, and if the value Qc (oil amount Qp - oil amount Qv - Qc) is negative (value Qc<O), the manipulated variable operator is 0). It is composed of a comparison calculation means 42 which issues a command to the operation amount calculation means 44.

なお前記操作量演算子段43は、比較演算手段42の出
力が負の値になった時、操作指令信号Sl〜S3に、操
作指令信号S1〜s3から演算した個々の負荷が要求す
る油量Ql〜Q3とQp/Qvとの積を修正した操作指
令信号Sl’〜S2’として、方向切換弁5a〜7aの
操作部5b、 5c 〜7b、7cに印加するものであ
り、操作量演算手段44は、比較演算手段42の出力が
0又は、正の値になった時、であるから操作指令信号s
1〜s3の信号をそのままの値で方向切換弁5a〜7a
の操作部5b、5c〜7b、7cに印加するものである
In addition, when the output of the comparison calculation means 42 becomes a negative value, the operation amount operator stage 43 inputs the oil amount required by each load calculated from the operation command signals S1 to S3 to the operation command signals S1 to S3. The operation command signals Sl' to S2' obtained by correcting the product of Ql to Q3 and Qp/Qv are applied to the operating portions 5b, 5c to 7b, and 7c of the directional control valves 5a to 7a, and are operated by the operation amount calculation means. 44 is when the output of the comparison calculation means 42 becomes 0 or a positive value, so the operation command signal s
Directional switching valves 5a to 7a with the signals of 1 to s3 as they are.
The voltage is applied to the operating units 5b, 5c to 7b, and 7c.

以上の構成を有する第1実施例についてその作動を説明
する。
The operation of the first embodiment having the above configuration will be explained.

第1図(A)に示す油圧回路は、前述したように、油圧
ポンプlの吐出油圧を、圧力補償弁10〜12か、方向
切換弁58〜7aの上流側と下流側の圧力差を一定の値
に保つのて、負荷WO〜W2への油量は、方向切換弁5
a〜7aの操作量に応じた油量か供給される。
As mentioned above, the hydraulic circuit shown in FIG. 1(A) maintains the discharge oil pressure of the hydraulic pump l at a constant pressure difference between the upstream side and the downstream side of the pressure compensation valves 10 to 12 or the directional control valves 58 to 7a. The amount of oil to loads WO to W2 is maintained at the value of directional control valve 5.
The amount of oil corresponding to the operation amount of a to 7a is supplied.

以上の油圧回路の作用において、訓御手段3゜は1次の
ように機能する。例えば、方向切換弁5a〜方向切換弁
7aの作動指令を発信されているとして、その作動指令
を発信する操作装置31のハンドル318〜ハンドル3
1cの指令値は、マルチプレクサ33に印加されており
、油圧シリンダ1aの圧力室lbに作用するパイロット
回路14のパイロット油圧を電気に変換し油圧信号pと
して関数回路34に印加すると共に、エンジン3の回転
数を電気信号に変換し回転数信号nとして関数回路34
に印加する。関数回路34はこの2つの信号から油圧ポ
ンプ1の吐出油ff1Qを算出し、油圧ポンプlの吐出
油量Qとしてマルチプレクサ33に印加する。これらの
各信号は、マルチプレクサ3コによって順次検出され、
この検出されたアナログ信号は、A−D変換器35を介
してデジタル信号で、@算装置コロに印加される。演算
装置36は、操作装置31のジョイスティックのハンド
ル31aの操作信号SLと、ジョイスティックのハンド
ル31bの操作信号S2と、ジョイスティックのハンド
ル31cの操作信号s3とが順次マルチプレクサ33に
よって検出されると、操作量演算手段40が、操作信号
Sl〜s3に基ずいて方向切換弁5a、方向切換弁7a
か負荷WO〜W2に供給しようとしている負荷油量Qv
を演算する。更に、マルチプレクサ33によって吐出油
量信号Qが印加されるlと、吐出流量演算手段41はこ
の吐出油量信号Qに基すいて吐出油量Qpを算出する。
In the above-described operation of the hydraulic circuit, the control means 3° functions as follows. For example, assuming that a command to operate the directional control valves 5a to 7a is being transmitted, the handles 318 to 3 of the operating device 31 that transmit the commands to operate the valves 5a to 7a.
The command value 1c is applied to the multiplexer 33, which converts the pilot hydraulic pressure of the pilot circuit 14 acting on the pressure chamber lb of the hydraulic cylinder 1a into electricity and applies it to the function circuit 34 as a hydraulic signal p. A function circuit 34 converts the rotation speed into an electrical signal and uses it as a rotation speed signal n.
to be applied. The function circuit 34 calculates the discharge oil ff1Q of the hydraulic pump 1 from these two signals, and applies it to the multiplexer 33 as the discharge oil amount Q of the hydraulic pump l. Each of these signals is sequentially detected by three multiplexers,
The detected analog signal is applied as a digital signal to the arithmetic unit 35 via the A-D converter 35. When the operation signal SL of the joystick handle 31a of the operation device 31, the operation signal S2 of the joystick handle 31b, and the operation signal s3 of the joystick handle 31c are sequentially detected by the multiplexer 33, the calculation device 36 calculates the operation amount. The calculation means 40 operates the directional switching valve 5a and the directional switching valve 7a based on the operation signals Sl to s3.
Load oil amount Qv to be supplied to loads WO to W2
Calculate. Further, when a discharge oil amount signal Q is applied by the multiplexer 33, the discharge flow rate calculation means 41 calculates the discharge oil amount Qp based on this discharge oil amount signal Q.

この吐出油量Qpと負荷油量Qvとは、比較演算手段4
2で吐出油量Qpから負荷油量Qvが減算され、その値
か0以−してある/(Qp−Qv≧0)と、負荷WO〜
W2か必要とする油量を油圧ポンプlの吐出油量が、上
回るものであるので、操作量演算子段44によって、操
作装置31よりの方向切換弁58〜7aへの操作信号5
l−S3と同等の信号を方向切換弁5aの操作部5b又
は5c方向切換弁6aの操作部6b又は6c、及び方向
切換弁7aの操作部7b又は7cに印加する。このよう
に、方向切換弁58〜方向切換弁7aに操作指令が印加
されると、圧力補償弁10〜圧力補償弁12が前述した
ように、方向切換弁5a〜方向切換弁7aの前後の差圧
を制御し負荷WO〜負荷W2を、方向切換弁5a〜方向
切換弁7aの操作量に応じた値に保つ。
The discharge oil amount Qp and the load oil amount Qv are calculated by the comparison calculation means 4
In step 2, the load oil amount Qv is subtracted from the discharge oil amount Qp, and the value is less than 0/(Qp-Qv≧0), and the load WO~
Since the amount of oil discharged from the hydraulic pump l exceeds the amount of oil required by W2, the operation amount operator stage 44 outputs the operation signal 5 from the operation device 31 to the directional control valves 58 to 7a.
A signal equivalent to l-S3 is applied to the operating section 5b or 5c of the directional switching valve 5a, the operating section 6b or 6c of the directional switching valve 6a, and the operating section 7b or 7c of the directional switching valve 7a. In this way, when the operation command is applied to the directional switching valves 58 to 7a, the pressure compensating valves 10 to 12 adjust the difference between the front and back of the directional switching valves 5a to 7a, as described above. The pressure is controlled to maintain the loads WO to W2 at values corresponding to the operating amounts of the directional switching valves 5a to 7a.

以上の作動において、操作装置31か操作され操作信号
Slを増加させた結果、操作量演算手段40て演算され
る負荷油量Qvが増加し、比較演算手段42の演算結果
0より小さくなる(Qp−Qv<O)と、操作量演算手
段43の演算器43aか操作信号S1に対応した負荷油
量Q1に吐出油ff1Qp/負荷油量Qvの値を乗算し
た操作信号S1より小さい操作信号S1′として方向切
換弁5aの操作部5bに印加する。同様に演算器43b
は、操作信号S2に対応した負荷油量Q2に吐出油量Q
p/負荷油量Qvの値を乗算し操作信号S2より小さい
操作信号S2’として方向切換弁6aの操作部6bに印
加し、演算器43cも操作信号S3’を操作部7bに印
加する。従って、方向切換弁58〜方向切換弁7aの操
作量が、操作装置31の操作量に比例して、油圧ポンプ
lの吐出油量に等しくなるまで小さくされるので、負荷
WO〜W2の速度は低下するが、操作部gt:llの操
作量、つまりジョイスティックハンドル:lla 、 
31b 、 31cの操作量に応じた比率の速度で作動
を続ける。なお、ジョイスティックハンドル:11a 
、 31b 、 :lIcのいずれか2つが操作されて
いるときも同様に同じ速度比率で作動を続ける。
In the above operation, as a result of operating the operation device 31 and increasing the operation signal Sl, the load oil amount Qv calculated by the operation amount calculation means 40 increases and becomes smaller than 0 as the calculation result of the comparison calculation means 42 (Qp -Qv<O), and the operation signal S1' is smaller than the operation signal S1 obtained by multiplying the load oil amount Q1 corresponding to the operation signal S1 by the value of discharge oil ff1Qp/load oil amount Qv. The voltage is applied to the operating portion 5b of the directional control valve 5a. Similarly, the computing unit 43b
is the discharge oil amount Q to the load oil amount Q2 corresponding to the operation signal S2.
The product is multiplied by the value of p/load oil amount Qv and applied to the operating section 6b of the directional control valve 6a as an operating signal S2' smaller than the operating signal S2, and the arithmetic unit 43c also applies an operating signal S3' to the operating section 7b. Therefore, the operating amounts of the directional switching valves 58 to 7a are reduced in proportion to the operating amounts of the operating device 31 until they become equal to the amount of oil discharged from the hydraulic pump l, so the speeds of the loads WO to W2 are reduced. However, the operation amount of the operation part gt:ll, that is, the joystick handle:lla,
The operation continues at a speed proportional to the amount of operation of 31b and 31c. In addition, joystick handle: 11a
, 31b, :lIc are operated, they continue to operate at the same speed ratio.

次に第1図(B)と第2図CB)及び第3図によって第
2実施例について述べる。
Next, a second embodiment will be described with reference to FIGS. 1(B), 2(CB), and 3.

第1図(B)に示す第2実施例と、第1実施例との相違
点は、油圧ポンプlを可変吐出型から固定吐出型に替え
、その油圧ポンプlaの主回路4とタンクの間に、ブリ
ードオフ型の圧力補償弁8を設けた構成である。
The difference between the second embodiment shown in FIG. 1(B) and the first embodiment is that the hydraulic pump l is changed from a variable discharge type to a fixed discharge type, and between the main circuit 4 of the hydraulic pump la and the tank. In this configuration, a bleed-off type pressure compensation valve 8 is provided.

前記のブリードオフ型の圧力補償弁8は、ばね8aを有
するばね室8bとこのばね室8bに主弁8dを介して配
置しである圧力室8cとで構成してあり、前記ばね室8
bかパイロット回路14に接続し、圧力室8cはパイロ
ット回路8eを介して主回路4に接続する構成である。
The bleed-off type pressure compensation valve 8 is composed of a spring chamber 8b having a spring 8a and a pressure chamber 8c disposed in the spring chamber 8b via a main valve 8d.
b is connected to the pilot circuit 14, and the pressure chamber 8c is connected to the main circuit 4 via the pilot circuit 8e.

なお、リリーフ弁8fは、パイロウド回路8eの最高圧
力を制限するものである。
Note that the relief valve 8f limits the maximum pressure of the pilot circuit 8e.

このような構成を有するブリードオフ型の圧力補償弁8
は、そのばね室8bに作用するパイロット回路14の油
圧よりばね8aの押圧力分だけ高く保持する。つまり主
回路4の油圧を負荷WO〜W2の負荷圧力よりばね8a
の押圧力分だけ高い値に保持する。このような油圧に保
持された主回路4の油圧は、圧力補償弁lO〜12によ
って、方向切換弁58〜7aの各々に接続する負荷WO
〜W2に応じて制御され、方向切換弁5a〜7a操作量
に応じた油圧を負荷WO〜W2に供給する。
Bleed-off type pressure compensation valve 8 having such a configuration
is maintained higher than the hydraulic pressure of the pilot circuit 14 acting on the spring chamber 8b by the pressing force of the spring 8a. In other words, the hydraulic pressure of the main circuit 4 is determined by the load pressure of the loads WO to W2.
The value is held at a higher value by the amount of pressing force. The oil pressure in the main circuit 4 maintained at such oil pressure is applied to the load WO connected to each of the directional control valves 58 to 7a by the pressure compensating valves lO to 12.
~W2, and supplies hydraulic pressure according to the operation amount of the directional control valves 5a to 7a to the loads WO to W2.

制御手段30に入力される信号油圧は、パイロット回路
14の油圧か油圧−電気変換器9によって油圧信号pに
変換され第2図CB)の関数回路34aに印加され、関
数回路34aで油圧ポンプlaの吐出油量信号Qに変換
される。この関数回路34aは油圧ポンプIaを固定吐
出型にしたので、その特性に合った関数回路としたもの
である。
The signal hydraulic pressure input to the control means 30 is converted into a hydraulic signal p by the hydraulic pressure/hydraulic-electrical converter 9 of the pilot circuit 14, and is applied to the function circuit 34a of FIG. is converted into a discharge oil amount signal Q. Since the hydraulic pump Ia is of a fixed discharge type, this function circuit 34a is a function circuit that matches the characteristics of the hydraulic pump Ia.

この制゛御手段30の、マルチプレクサ33、A−D変
換器35、演算装置36の作動は、前述した第1実施例
の作動と同様である。即ち、操作量演算手段40が、方
向切換弁5a〜7aの操作量から必要としている負荷油
量Qvを算出し、吐出流量演算手段41が油圧ポンプl
aに吐出油量Qpを算出し、比較演算手段42が、前記
吐出油量Qpから負荷油量Qvを引き算しその値Qcが
Oより小さい場合は、操作量演算子段43によフて夫々
の操作量51〜s3に、吐出油量Qp/負荷油量Qvを
乗算し、修正をした操作量信号Sl”〜S3’とし、方
向切換弁5a〜7aが形成する絞りの量を各方向切換弁
5a〜7aを通過する負荷油量Qvか油圧ポンプIaの
吐出油量Qpに一致するするように修正する。従って、
圧力補償弁23〜25か作動することなく、負荷WO〜
W2に油圧ポンプ!aの吐出圧油が比例配分されるので
、負荷WO〜W2か要求する油量が、油圧ポンプ1aA
吐出油量を越えた時と、越えない時の負荷WO〜W2の
作動速度の変化の比率は同一のままである。
The operations of the multiplexer 33, AD converter 35, and arithmetic unit 36 of this control means 30 are similar to those of the first embodiment described above. That is, the operation amount calculation means 40 calculates the required load oil amount Qv from the operation amount of the directional control valves 5a to 7a, and the discharge flow amount calculation means 41 calculates the required load oil amount Qv from the operation amount of the directional control valves 5a to 7a.
The comparison calculation means 42 subtracts the load oil amount Qv from the discharged oil amount Qp, and if the value Qc is smaller than O, the manipulated variable operator stage 43 calculates the amount Qp. The manipulated variables 51 to s3 are multiplied by the discharge oil amount Qp/loaded oil amount Qv to obtain the corrected manipulated variable signals Sl'' to S3', and the amount of throttle formed by the directional switching valves 5a to 7a is switched in each direction. The load oil amount Qv passing through the valves 5a to 7a is corrected to match the discharge oil amount Qp of the hydraulic pump Ia. Therefore,
The pressure compensation valves 23 to 25 do not operate, and the load WO
Hydraulic pump for W2! Since the discharge pressure oil of a is distributed proportionally, the amount of oil required by the loads WO to W2 is the same as that of the hydraulic pump 1aA.
The ratio of change in operating speed of the loads WO to W2 remains the same when the discharged oil amount is exceeded and when it is not exceeded.

(発明の効果) 本発明は、以上説明したように、方向切換弁の操作量か
ら負荷か必要とする圧油の総量を検出し、油圧ポンプ制
御油圧とエンジンの回転数から油圧ポンプの吐出油量を
比較演算し油圧ポンプの吐出油量より方向切換弁の操作
量から負荷か必要とする圧油の総量が大きくなった時、
各方向切換弁への操作信号を、操作量に応してその方向
切換弁の操作量から負荷か必要とする圧油の総量を油圧
ポンプの吐出油量に合致するように制御するのて、各圧
力補償弁は、通常の作動となる。このため負荷か必要と
する油量が油圧ポンプの吐出油量を越えた時の負荷の作
動速度は減少するかその比率は負荷か必要とする油量が
油圧ポンプの吐出油けを越えない時の操作比率と同様で
ある。このため、操作者は、油圧ポンプの吐出油量より
方向切換弁の操作量から負荷が必要とする圧油の総量か
大きくなった時、各方向切換弁の操作量を変更すること
なく、油圧ポンプの吐出油量より方向切換弁の操作量か
ら負荷か必要とする圧油の総量が小さい時と同一の操作
感覚で操作できるのて、操作が容易になる効果を有する
(Effects of the Invention) As explained above, the present invention detects the load or the total amount of pressure oil required from the operation amount of the directional control valve, and detects the discharge oil of the hydraulic pump from the hydraulic pump control oil pressure and the engine rotation speed. When the amounts are compared and calculated, and the total amount of pressure oil required is greater than the amount of oil discharged from the hydraulic pump due to the operation amount of the directional control valve,
The operation signal to each directional switching valve is controlled according to the operating amount of the directional switching valve so that the total amount of pressure oil required for the load matches the amount of oil discharged from the hydraulic pump. Each pressure compensation valve operates normally. Therefore, when the amount of oil required by the load exceeds the amount of oil discharged by the hydraulic pump, does the operating speed of the load decrease?What is the ratio when the amount of oil required by the load does not exceed the amount of oil discharged by the hydraulic pump? It is similar to the operating ratio of . Therefore, when the total amount of pressure oil required by the load is greater than the amount of oil discharged by the hydraulic pump from the operation amount of the directional valve, the operator can adjust the hydraulic pressure without changing the amount of operation of each directional valve. This has the effect of making the operation easier because the operation can be performed with the same feeling as when the total amount of pressure oil required is smaller than the amount of oil discharged from the pump due to the amount of operation of the directional valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は1本発明の第1実施例の電気系統を含む
油圧回路図、第1図(B)は、本発明の第2実施例の電
気系統を含む油圧回路図、第2図(A)は第1実施例の
制御手段の制御系統図、第2図(B)は第2実施例の制
御手段の制御系統図、第3図は、第2図(A) 、 (
B)の、演算装置の機能のフローを示すブロック線図、
第4図は、従来技術の油圧回路図である。 l・・・・可変吐出型油圧ポンプ la・・・・固定吐出型油圧ポンプ 3・・・・エンジン 4・・・・主回路 5a、 6a、 7a・・・・方向切換弁8・・・・ブ
リードオフ型の圧力補償弁9・・・・油圧−電気変換器 lO〜12・・・・圧力補償弁 14・・・・パイロット回路 15・・・・高圧選択回路 16.17・・・・選択弁 20〜22・・・・負荷回路 30・・・・制御手段 ]】・・・・操作装置 32・・・・スイッチ 33・・・・マルチプレクサ 34・・・・関数回路 35・・・・A−D変換器 36・・・・@算装置 40・・・・操作量演算手段 41・・・・吐出量演算手段 42・・・・比較手段 43.44・・・・操作量演算手段 4コa、4ゴa、 43a・・・・演算器繁1 図(A
FIG. 1(A) is a hydraulic circuit diagram including an electrical system according to a first embodiment of the present invention, FIG. 1(B) is a hydraulic circuit diagram including an electrical system according to a second embodiment of the present invention, and FIG. Figure (A) is a control system diagram of the control means of the first embodiment, Figure 2 (B) is a control system diagram of the control means of the second embodiment, and Figure 3 is the control system diagram of the control means of the second embodiment.
B) a block diagram showing the flow of functions of the arithmetic device;
FIG. 4 is a hydraulic circuit diagram of the prior art. l...Variable discharge type hydraulic pump la...Fixed discharge type hydraulic pump 3...Engine 4...Main circuit 5a, 6a, 7a...Direction switching valve 8... Bleed-off type pressure compensation valve 9...Hydraulic-electrical converter lO~12...Pressure compensation valve 14...Pilot circuit 15...High pressure selection circuit 16.17...Selection Valve 20-22...Load circuit 30...Control means]...Operating device 32...Switch 33...Multiplexer 34...Function circuit 35...A -D converter 36... @ Calculation device 40... Manipulated amount calculation means 41... Discharge amount calculation means 42... Comparison means 43, 44... Manipulated amount calculation means 4 pieces a, 4 go a, 43a...Arithmetic unit 1 diagram (A
)

Claims (2)

【特許請求の範囲】[Claims] (1)吐出流量制御部を有する可変吐出型の油圧ポンプ
の吐出側にアクチュエータ等の負荷を接続した方向切換
弁を複数個設け、この方向切換弁の下流側に、ばねで閉
じ方向に押圧された主弁とこの主面を介して前記ばねが
内蔵されるばね室と圧力室を配置してなる圧力補償弁を
設けると共に、前記各方向切換弁に接続する負荷の負荷
回路に負荷圧の最高値を選択する選択回路を設け、前記
圧力補償弁の圧力室を方向切換弁の下流側に接続し、ば
ね室を前記選択回路の出力側に接続してなり、前記選択
回路の出力側を前記油圧ポンプの吐出流量制御部に接続
し、この油圧ポンプの吐出流量を、前記個々の方向切換
弁に接続する負荷の必要油量に制御し、前記油圧ポンプ
の吐出油量を前記圧力補償弁と方向切換弁とで、各々の
負荷に分配する構成とした流量制御機能を有する油圧回
路において、 前記方向切換弁を電磁操作型の方向切換弁とし、この電
磁操作型の方向切換弁の操作部と、電磁操作型の方向切
換弁への操作装置との間に、前記油圧ポンプの吐出流量
を演算する吐出流量演算手段と、夫々の前記電磁操作型
の方向切換弁操作量の総和から負荷が必要とする流量の
総和を演算する操作量演算手段と、前記吐出流量演算手
段の出力と操作量演算手段の出力とを比較する比較演算
手段と、この比較演算の結果操作量演算手段の出力の方
が大になったとき、前記操作部の指令値に比例配分の係
数を乗算する比例配分乗算手段とで構成される制御手段
を設けた事を特徴とする流量制御機能を有する油圧回路
(1) A plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a variable discharge hydraulic pump having a discharge flow rate control section, and a valve is pressed in the closing direction by a spring on the downstream side of the directional switching valve. A pressure compensating valve is provided, which is composed of a main valve, a spring chamber in which the spring is built in, and a pressure chamber arranged through the main surface of the main valve. A selection circuit for selecting a value is provided, a pressure chamber of the pressure compensating valve is connected to the downstream side of the directional control valve, a spring chamber is connected to the output side of the selection circuit, and the output side of the selection circuit is connected to the output side of the selection circuit. connected to a discharge flow rate control section of a hydraulic pump, controls the discharge flow rate of this hydraulic pump to the required oil amount for the load connected to the individual directional switching valve, and adjusts the discharge oil amount of the hydraulic pump to the pressure compensating valve. In a hydraulic circuit having a flow control function configured to distribute the flow rate to each load with a directional control valve, the directional control valve is an electromagnetically operated directional control valve, and the operating part of the electromagnetically operated directional control valve and , a discharge flow rate calculation means for calculating the discharge flow rate of the hydraulic pump is provided between the operating device for the electromagnetically operated directional control valve, and a load is required from the sum of the operating amounts of each of the electromagnetically operated directional control valves. a manipulated variable calculation means for calculating the sum of the flow rates, a comparison calculation means for comparing the output of the discharge flow rate calculation means with an output of the manipulated variable calculation means, and an output of the manipulated variable calculation means as a result of this comparison calculation. 1. A hydraulic circuit having a flow rate control function, characterized in that a control means is provided, comprising a proportional distribution multiplier that multiplies the command value of the operating section by a coefficient of proportional distribution when the command value becomes large.
(2)固定吐出型の油圧ポンプの吐出側にアクチュエー
タ等の負荷を接続した方向切換弁を複数個設け、この方
向切換弁の下流側に、ばねで閉じ方向に押圧された主弁
とこの主弁を介して前記ばねが内蔵されるばね室と圧力
室を配置してなる圧力補償弁を設けると共に、前記各方
向切換弁に接続する負荷の負荷回路に負荷圧の最高値を
選択する選択回路を設け、前記圧力補償弁の圧力室を方
向切換弁の下流側に接続し、ばね室を前記選択回路の出
力側に接続してなり、前記油圧ポンプの吐出側の主回路
とタンクとの間に、前記選択回路の出力側が接続するば
ね室とこのばね室に主弁を介して対抗し前記主回路が接
続するブリードオフ型の圧力制御弁を設けこのブリード
オフ型の圧力補償弁で前記油圧ポンプの吐出油圧を前記
の方向切換弁の負荷圧力により一定の値だけ高く保持し
、前記油圧ポンプの吐出油量を前記個々の方向切換弁と
圧力補償弁とで、各々の負荷に分配する構成とした流量
制御機能を有する油圧回路において、前記方向切換弁を
電磁操作型の方向切換弁とし、この電磁操作型の方向切
換弁の操作部と、電磁操作型の方向切換弁への操作装置
との間に、前記油圧ポンプの吐出流量を演算する吐出流
量演算手段と、夫々の前記電磁操作型の方向切換弁操作
量の総和から負荷が必要とする流量の総和を演算する操
作量演算手段と、前記吐出流量演算手段の出力と操作量
演算手段の出力とを比較する比較演算手段と、この比較
演算の結果操作量演算手段の出力の方が大になったとき
、前記操作部の指令値に比例配分の係数を乗算する比例
配分乗算手段とで構成される制御手段を設けた事を特徴
とする流量制御機能を有する油圧回路。
(2) A plurality of directional switching valves connected to loads such as actuators are provided on the discharge side of a fixed discharge type hydraulic pump, and on the downstream side of the directional switching valves, there is a main valve that is pressed in the closing direction by a spring and a main valve that is pressed in the closing direction by a spring. A selection circuit for selecting a maximum value of load pressure for a load circuit of a load connected to each of the directional control valves, and providing a pressure compensation valve in which a spring chamber in which the spring is housed and a pressure chamber are arranged via a valve. is provided, the pressure chamber of the pressure compensation valve is connected to the downstream side of the directional control valve, the spring chamber is connected to the output side of the selection circuit, and the pressure chamber is connected to the output side of the selection circuit, and between the main circuit on the discharge side of the hydraulic pump and the tank. A spring chamber to which the output side of the selection circuit is connected and a bleed-off pressure control valve opposed to this spring chamber via a main valve and connected to the main circuit are provided, and the bleed-off pressure compensation valve controls the hydraulic pressure. A configuration in which the hydraulic pressure discharged from the pump is held high by a certain value by the load pressure of the directional switching valve, and the amount of oil discharged from the hydraulic pump is distributed to each load by the individual directional switching valve and pressure compensation valve. In a hydraulic circuit having a flow rate control function, the directional control valve is an electromagnetically operated directional control valve, and an operating section of the electromagnetically operated directional control valve, and an operating device for the electromagnetically operated directional control valve. a discharge flow rate calculating means for calculating the discharge flow rate of the hydraulic pump; and a manipulated variable calculating means for calculating the sum of the flow rate required by the load from the sum of the manipulated variables of each of the electromagnetically operated directional control valves; , a comparison calculation means for comparing the output of the discharge flow rate calculation means and the output of the operation amount calculation means, and when the output of the operation amount calculation means becomes larger as a result of this comparison calculation, the command value of the operation unit is 1. A hydraulic circuit having a flow rate control function, characterized in that a control means is provided, comprising a proportional distribution multiplier for multiplying a proportional distribution coefficient by a proportional distribution coefficient.
JP29655889A 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function Pending JPH03157503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29655889A JPH03157503A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29655889A JPH03157503A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Publications (1)

Publication Number Publication Date
JPH03157503A true JPH03157503A (en) 1991-07-05

Family

ID=17835097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29655889A Pending JPH03157503A (en) 1989-11-14 1989-11-14 Hydraulic circuit having flow rate controlling function

Country Status (1)

Country Link
JP (1) JPH03157503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003292A1 (en) * 1995-07-10 1997-01-30 Hitachi Construction Machinery Co., Ltd. Hydraulic driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003292A1 (en) * 1995-07-10 1997-01-30 Hitachi Construction Machinery Co., Ltd. Hydraulic driving device
US5873245A (en) * 1995-07-10 1999-02-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system
CN1071854C (en) * 1995-07-10 2001-09-26 日立建机株式会社 Hydraulic driving system

Similar Documents

Publication Publication Date Title
US4759183A (en) Control arrangement for at least two hydraulic loads fed by at least one pump
EP1798346B1 (en) Control device for hydraulic drive machine
KR0145142B1 (en) Hydraulic recovery device
US4856278A (en) Control arrangement for at least two hydraulic consumers fed by at least one pump
US6209322B1 (en) Pressurized fluid supply system
US5421155A (en) Hydraulic drive system for hydraulic working machines
WO1993018308A1 (en) Hydraulically driving system
JP2657548B2 (en) Hydraulic drive device and control method thereof
US5520087A (en) Control device for hydraulically operated machine
JPH04136507A (en) Hydraulic circuit
US6772590B2 (en) Hydraulic driving device
EP0877168B1 (en) Hydraulic drive system
JPH03157503A (en) Hydraulic circuit having flow rate controlling function
US5212950A (en) Hydraulic circuit with pilot pressure controlled bypass
JP4807888B2 (en) Control device for hydraulic drive machine
JPH03157502A (en) Hydraulic circuit having flow rate controlling function
JP7201878B2 (en) Hydraulic drive for construction machinery
JP2721384B2 (en) Hydraulic circuit of work machine
JP2749320B2 (en) Hydraulic drive
JP2556998B2 (en) Hydraulic circuit
JPH05346101A (en) Hydraulic transmission device for construction equipment
JP3394581B2 (en) Hydraulic control device for construction machinery
JP2839567B2 (en) Hydraulic drive for construction machinery
JP3705886B2 (en) Hydraulic drive control device
JP2000220604A (en) Flow rate control device for hydraulic pump