JPH03156900A - Operating method for circular accelerator and circular accelerator - Google Patents

Operating method for circular accelerator and circular accelerator

Info

Publication number
JPH03156900A
JPH03156900A JP29505089A JP29505089A JPH03156900A JP H03156900 A JPH03156900 A JP H03156900A JP 29505089 A JP29505089 A JP 29505089A JP 29505089 A JP29505089 A JP 29505089A JP H03156900 A JPH03156900 A JP H03156900A
Authority
JP
Japan
Prior art keywords
electromagnet
circular accelerator
output
operating
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29505089A
Other languages
Japanese (ja)
Inventor
Kazuo Hiramoto
和夫 平本
Junichi Hirota
淳一 廣田
Masatsugu Nishi
西 政嗣
Hisahide Nakayama
中山 尚英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29505089A priority Critical patent/JPH03156900A/en
Publication of JPH03156900A publication Critical patent/JPH03156900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To accelerate and accumulate a large-current beam by setting the target output values of auxiliary constituting apparatuses based on the output value of a main constituting apparatus. CONSTITUTION:A deflecting electromagnet 1 most hard to control is made a main constituting apparatus, its current is measured 6, and other electromagnets 2-4 and a high-frequency accelerating cavity 5 are controlled as auxiliary constituting apparatuses using the measured current as a reference. A control device 20 controls the electromagnet 1 with the output of a current measuring device 6. Target values of currents of the four-pole electromagnet 2, a steering electromagnet 3 and the other electromagnet, the high-frequency power and resonance frequency of the cavity are set based on the actual current value of the electromagnet 1 obtained in real time, and constituting apparatuses are controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子が周回軌道を周回する円形加速器に
係り、特に円形加速器の運転に好適な運転方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a circular accelerator in which charged particles orbit in an orbit, and particularly to an operating method suitable for operating a circular accelerator.

〔従来技術〕[Prior art]

円形加速器は、荷電粒子を周回軌道に入射させるための
入射装置、荷電粒子を安定に周回させるための偏向電磁
石などの電磁石及び荷電粒子にエネルギーを付与する高
周波加速空胴などにより構成される。
A circular accelerator is composed of an injection device for injecting charged particles into an orbit, an electromagnet such as a bending electromagnet for stably orbiting the charged particles, and a high-frequency acceleration cavity that imparts energy to the charged particles.

円形加速器では、シンクロトロン加速時や入射時などに
おいて、各構成機器を連動して制御しながら運転する必
要がある。この種の運転方法としては、アイ・イー・イ
ー・イー パーティクルアクセラレータ−コンファレン
ス(1987)第689頁から第691頁(IEEE、
 ParticleAccelarator Cofe
renca+  1987)において論じられているも
のがある。この従来技術は、シンクロトロン加速時の運
転方法に関するものである。
In a circular accelerator, each component must be controlled and operated in conjunction with each other during synchrotron acceleration and injection. This type of operation method is described in IEE Particle Accelerator Conference (1987), pages 689 to 691 (IEEE,
Particle Accelerator Coffee
renca+ 1987). This prior art relates to an operating method during synchrotron acceleration.

シンクロトロン加速では、偏向電磁石の磁場強度(すな
わち、偏向電磁石に流す電流値)と他の電磁石の磁場強
度(電流値)、高周波加速空胴の加速電圧(又は高周波
電力)や共振周波数との間にある一定の関゛係を保持し
ながら連動して制御する必要がある。従来技術では、偏
向電磁石の磁場強度などの時間変化パターン(以下、目
標パターンと呼ぶ)を前記関係となるように運転前に予
め定め、各々の目標パターンになるように各々を独立に
制御していた。
In synchrotron acceleration, the relationship between the magnetic field strength of the bending electromagnet (i.e., the current value flowing through the bending electromagnet), the magnetic field strength (current value) of other electromagnets, the accelerating voltage (or high-frequency power) of the high-frequency acceleration cavity, and the resonant frequency It is necessary to control them in conjunction with each other while maintaining a certain relationship between them. In conventional technology, time-varying patterns (hereinafter referred to as target patterns) such as the magnetic field strength of bending electromagnets are determined in advance before operation so as to have the above relationship, and each pattern is independently controlled to achieve each target pattern. Ta.

(発明が解決しようとする課題) 上記従来技術では、偏向電磁石、4極電磁石等の電磁石
の電流や高周波加速空胴の加速電圧や共振周波数が各々
目標パターン通りに運転できることを前提にしている。
(Problems to be Solved by the Invention) The above-mentioned conventional technology is based on the premise that the current of electromagnets such as bending electromagnets and quadrupole electromagnets, and the acceleration voltage and resonance frequency of the high-frequency acceleration cavity can each be operated according to the target pattern.

しかし、例えば偏向電磁石や4極電磁石等の電磁石では
、コイルのインダクタンスが電流に依存し大きく変化す
る効果や鉄心の残留磁場の影響等により、電流の時間変
化を目標パターン通りにすることが困難である。目標パ
ターン通りに制御できなくなると、周回軌道に垂直な方
向の荷電粒子の振動(ベータトロン振動)の振幅が大き
くなり、周回軌道を構成するダクトに衝突し、荷電粒子
が失なわれる。この場合、連動する機器が多いほど、各
々の目標パターンと、実際の値との差が互いに影響しあ
って、ベータトロン振動の振幅を大きくする可能性が大
となるので、失なわれる荷電粒子の量すなわちビーム損
失は多くなる。このため、従来技術では、大電流ビーム
の加速・蓄積が困難になる問題があった。
However, with electromagnets such as bending magnets and quadrupole magnets, it is difficult to make the time change of the current follow the target pattern due to the effect that the inductance of the coil changes greatly depending on the current and the influence of the residual magnetic field of the iron core. be. If control is no longer possible according to the target pattern, the amplitude of the charged particle vibrations (betatron oscillations) in the direction perpendicular to the orbit increases, colliding with the ducts that make up the orbit, and the charged particles are lost. In this case, the more devices are interlocked, the greater the possibility that the difference between each target pattern and the actual value will influence each other and increase the amplitude of the betatron oscillation, so the amount of charged particles that are lost will increase. In other words, the amount of beam loss increases. For this reason, the conventional technology has a problem in that it is difficult to accelerate and accumulate a large current beam.

本発明の目的は、上記問題を解決し、円形加速器で大電
流ビームを加速・蓄積することが可能となる円形加速器
の運転方法又は円形加速器を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a circular accelerator operating method or a circular accelerator that enables the circular accelerator to accelerate and accumulate a large current beam.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、運転の際に制
御する円形加速器の構成機器を主構成機器と副構成機器
に分け、副構成機器の出力の目標値を主構成機器の出力
値に基づいて定める。
In order to achieve the above object, the present invention divides the components of the circular accelerator that are controlled during operation into main components and sub-components, and sets the target value of the output of the sub-components to the output value of the main component. determined based on

〔作用〕[Effect]

本発明の作用を従来技術で述べたシンクロトロン加速を
例に説明する。この場合、主構成機器は偏向電磁石であ
り、その出力は電流である。また、副構成機器は、他の
電磁石、高周波加速空胴であり、それらの制御変数は各
々電流と加速電圧(又は高周波電力)、共振周波数であ
る。偏向電磁石の電流と副構成機器の制御変数とはある
一定関係を有しているから、主構成機器である偏向電磁
石を予め決めた目標パターンに沿って制御する際に、他
の電磁石と高周波加速空胴の制御変数を、制御中に時々
刻々得られる偏向電磁石の電流の出力値によって定まる
目標値になるように制御する。この結果は、他の電磁石
と高周波加速空胴は常に偏向電磁石と常に一定の関係を
保ちながら制御されるので、ベータトロン振動の振幅が
大きくなることはなく、すなわちビーム損失が少なく安
定して大電流を加速・蓄積できる。
The operation of the present invention will be explained using synchrotron acceleration described in the prior art as an example. In this case, the main component is a bending electromagnet, the output of which is a current. Further, the subcomponents are other electromagnets and a high frequency acceleration cavity, and their control variables are current, acceleration voltage (or high frequency power), and resonance frequency, respectively. Since there is a certain relationship between the current of the bending electromagnet and the control variables of the sub-components, when controlling the bending electromagnet, which is the main component, according to a predetermined target pattern, the current of the bending electromagnet and the high-frequency acceleration The control variable of the cavity is controlled to a target value determined by the output value of the current of the bending electromagnet that is obtained from time to time during the control. This result shows that because the other electromagnets and the high-frequency acceleration cavity are always controlled while maintaining a constant relationship with the deflection electromagnet, the amplitude of the betatron oscillations does not become large, which means that the beam loss is small and the beam is stably large. Can accelerate and accumulate current.

また、場合によっては、副構成機器の出力の目標値は、
主構成機器の出力値によって定めた他の副構成機器の出
力の目標値あるいは出力値によって定めてもよい。
Also, in some cases, the target value of the output of the sub-component is
It may be determined by the target value or output value of the output of other sub-component devices determined by the output value of the main component device.

以下、本発明の円形加速器の一実施例を第1図に示す。An embodiment of the circular accelerator of the present invention is shown in FIG. 1 below.

第1図に示す円形加速器は、電子を100MeVから5
00 M e Vまで加速するレーストラック型の円形
加速器である6本円形加速器は、偏向電磁石1,4極電
磁石2.平衡軌道のずれを補正するステアリング電磁石
3.チューン(加速器1周あたりのベータトロン振動数
)がビームの運動量に依存する効果を打ち消すための6
極電磁石4.ビームエネルギーを与えるための高周波加
速空胴5゜入射装置17.構成機器1〜5の各々の電源
7〜11、チューナ16.偏向電磁石1の電流を測定す
る電流測定装置6及びこれらを制御する制御装置2oか
ら構成されている。
The circular accelerator shown in Figure 1 is capable of accelerating electrons from 100 MeV to 5
The six circular accelerator, which is a race track type circular accelerator that accelerates up to 00 M e V, consists of a bending electromagnet 1, a quadrupole electromagnet 2. Steering electromagnet for correcting the deviation of the equilibrium trajectory 3. 6 to cancel the effect that the tune (betatron frequency per accelerator revolution) depends on the beam momentum.
Polar magnet 4. RF accelerating cavity 5° injection device for providing beam energy 17. Power supplies 7 to 11 and tuner 16 for each of component devices 1 to 5. It consists of a current measuring device 6 that measures the current of the bending electromagnet 1 and a control device 2o that controls them.

本実施例の運転方法の1例として電子100M e V
から500 M e Vまでシンクロトロン加速する場
合を説明する。
As an example of the operating method of this embodiment, an electronic 100 M e V
The case of synchrotron acceleration from 500 M e V to 500 M e V will be explained.

第1図の加速器の偏向磁石は、鉄磁極を用いており、ビ
ームの加速のため、磁場強度を0.3Tから1.5Tま
で変化させる。この偏向磁石1では、電流の変化に対し
て自己インダクタンスの変化が大きく、電流を目標の時
間変化パターン通りにすることが難しい。このため、最
も制御しにくい偏向電磁石を主構成機器とし、その電流
を電流測定装置6を測定し、この電流を基準として副構
成機器とする他の電磁石2〜4.高周波加速空胴5を制
御する。
The deflection magnet of the accelerator shown in FIG. 1 uses iron magnetic poles, and changes the magnetic field strength from 0.3T to 1.5T to accelerate the beam. In this deflection magnet 1, the change in self-inductance is large with respect to the change in current, and it is difficult to make the current follow a target time change pattern. For this reason, the bending electromagnet that is the most difficult to control is used as the main component, its current is measured by the current measuring device 6, and the other electromagnets 2 to 4 are used as the sub-components based on this current. The high frequency acceleration cavity 5 is controlled.

第2図に、電子をl OOM e Vから500MeV
までシンクロトロン加速する時の偏向電磁石1の目標時
間変化パターンの1例を示す。制御装置20は電流測定
装置6の出力を用いて、なるべく第2図の電流パターン
になるように偏向電磁石1を制御する。しかし、前述し
たように必ずしも第2図の通りに制御できない。そこで
、4極電磁石2、ステアリング電磁石3などその他の電
磁石の電流や高周波加速空胴5の高周波電力、共振周波
数の目標値を時々刻々得られる偏向電磁石に実際に流れ
る電流値から求め、上記各構成機器を制御する。この制
御は制御装置20が行なう。以下、各構成機器について
の具体的制御方法を第3図を用いて説明する。偏向電磁
石1と他の電磁石とは、磁場強度又は磁場勾配とを介し
である一定の関係がある。そのため、本実施例では、偏
向電磁石1の電流と他の電磁石の電流との関係を、各々
についてあらかじめ測定しておいた電流値と磁場強度あ
るいは磁場勾配の関係を利用して求める。
In Figure 2, electrons are transferred from l OOM e V to 500 MeV.
An example of the target time change pattern of the bending electromagnet 1 when the synchrotron accelerates up to 1 is shown. The control device 20 uses the output of the current measuring device 6 to control the bending electromagnet 1 so as to follow the current pattern shown in FIG. 2 as much as possible. However, as described above, control cannot always be performed as shown in FIG. Therefore, the target values of the currents of other electromagnets such as the quadrupole electromagnet 2 and the steering electromagnet 3, the high-frequency power of the high-frequency acceleration cavity 5, and the resonance frequency are determined from the current values actually flowing through the bending electromagnets that can be obtained from time to time, and each of the above configurations is Control equipment. This control is performed by the control device 20. Hereinafter, a specific control method for each component device will be explained using FIG. 3. The bending electromagnet 1 and other electromagnets have a certain relationship via magnetic field strength or magnetic field gradient. Therefore, in this embodiment, the relationship between the current of the bending electromagnet 1 and the current of other electromagnets is determined by using the relationship between the current value and the magnetic field strength or magnetic field gradient, which are measured in advance for each.

まず、4極電磁石2について説明する。第3図13で、
偏向電磁石1の電流測定値12から磁場強度Ban(t
) (t :時間)を求める。円形加速器では、運転中
のチューンを所定値に保つ必要があり、4極磁石2の磁
場勾配d Be/ d x (xはビーム進行方向に垂
直な方向)と偏向磁場強度BBMとの比dBe/dX/
BBMを所定値(以下rQBと記す)に保つ必要がある
。ここでXとは平衡周回軌道からのずれを示す。そこで
、rQBとBBMからdBQ/dxの目標値を算出する
(第3図14)。
First, the quadrupole electromagnet 2 will be explained. In Figure 3 13,
From the current measurement value 12 of the bending electromagnet 1, the magnetic field strength Ban(t
) (t: time). In a circular accelerator, it is necessary to maintain the tune at a predetermined value during operation, and the ratio between the magnetic field gradient dBe/dx (x is a direction perpendicular to the beam traveling direction) of the quadrupole magnet 2 and the deflection magnetic field strength BBM is dBe/ dX/
It is necessary to maintain BBM at a predetermined value (hereinafter referred to as rQB). Here, X indicates the deviation from the equilibrium orbit. Therefore, the target value of dBQ/dx is calculated from rQB and BBM (FIG. 3, 14).

前もって測定しておいたdBe/dx  と電流の関係
から、4極磁石2の電流の目標値を求める(第3図15
)、この目標値に従って4極電磁石を制御する。この場
合、実際に4極電磁石の電流を測定して、サーボ制御し
てもよいし、本実施例のようにオープンループで制御し
てもよい。この手順は、運転条件が異なり、dBa/d
x/Bにの比を変化させた場合についても全く同様に行
う。
The target value of the current of the quadrupole magnet 2 is determined from the relationship between the dBe/dx and the current measured in advance (Fig. 3, 15).
), the quadrupole electromagnet is controlled according to this target value. In this case, servo control may be performed by actually measuring the current of the quadrupole electromagnet, or open loop control may be performed as in this embodiment. This procedure has different operating conditions, dBa/d
Exactly the same procedure is performed when changing the ratio x/B.

平衡軌道のずれを補正するステアリング電磁石3につい
ては、磁場強度Bitと偏向磁石の磁場強度BBMの比
Bst/BaMを一定(rsa)に保つように、電流の
目標値を定めるが、その手順は、前述の4極磁石の場合
と同様である。
Regarding the steering electromagnet 3 that corrects the deviation of the equilibrium trajectory, the target value of the current is determined so as to keep the ratio Bst/BaM of the magnetic field strength Bit and the magnetic field strength BBM of the deflection magnet constant (rsa), and the procedure is as follows. This is similar to the case of the quadrupole magnet described above.

次に、クロマティシティξをゼロにするための6極電磁
石4について説明する。ここでクロマティシティξとは
、ビームの運動量をP、その幅をΔP、チューンの幅を
Δνとした時、ξ=Δν/ΔP/Pと表わされる。6極
電磁石4については、2次の磁場勾配d2Bsx/dx
”と偏向磁石の磁場強度BBMの比d”Bsx/d x
”/BBMを一定(r 5xa)に保つように、電流の
目標値を定め制御する。
Next, the hexapole electromagnet 4 for making the chromaticity ξ zero will be explained. Here, the chromaticity ξ is expressed as ξ=Δν/ΔP/P, where P is the momentum of the beam, ΔP is its width, and Δν is the width of the tune. For the hexapole electromagnet 4, the second-order magnetic field gradient d2Bsx/dx
” and the ratio of the magnetic field strength BBM of the deflection magnet d”Bsx/d x
The target value of the current is determined and controlled so as to keep the /BBM constant (r 5xa).

最後に偏向電磁石の電流の測定値から、高周波加速空胴
の高周波電力、共振周波数を制御する方法を説明する。
Finally, we will explain how to control the high frequency power and resonance frequency of the high frequency acceleration cavity from the measured values of the current of the bending electromagnet.

まず、第3図13で、偏向電磁石1の電流の測定値から
、偏向磁場BBHの時間変化を求め、この結果を用いて
、ビームのエネルギーの目標値を求める。この目標値か
ら、加速器1周あたりのビームの放射光によるエネルギ
ー損失を算出して、加速空胴の共振周波数、及び高周波
電力の目標値を定め、各々を制御する。
First, in FIG. 3, the time change of the deflection magnetic field BBH is determined from the measured value of the current of the deflection electromagnet 1, and the target value of the beam energy is determined using this result. From this target value, the energy loss due to the emitted light of the beam per revolution of the accelerator is calculated, and the target values of the resonance frequency of the acceleration cavity and the high-frequency power are determined, and each is controlled.

上記において、各電磁石の制御は、各々対応する電源8
,9.10を介して行なわれ、高周波加速空胴5に関し
ては、高周波電源11から高周波電力を送り、チューナ
16を用いて共振周波数が制御される。
In the above, each electromagnet is controlled by its corresponding power source 8.
.

以上本実施例によれば、電流の制御が困難な磁石の制御
を簡略化できるので、従来に比べより簡単に、より高精
度で、磁石の磁場制御、及びそれらと高周波加速空胴の
高周波電力、共振周波数との協調制御を行うことができ
、大電流の加速、蓄積が行える効果がある。
As described above, according to this embodiment, it is possible to simplify the control of the magnet whose current is difficult to control, so that the magnetic field control of the magnet and the high-frequency power of the high-frequency acceleration cavity can be controlled more easily and with higher precision than in the past. It is possible to perform cooperative control with the resonant frequency, and has the effect of accelerating and accumulating large currents.

以上、シンクロトロン加速について述べたが荷電粒子を
入射する時にも関連する構成機器について同様な運転を
することができる。
The synchrotron acceleration has been described above, but the related components can be operated in a similar manner when charged particles are injected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来に比べより簡単に、より高精度で
、磁石の磁場制御、高周波加速空洞の高周波電力、共振
周波数及び入射装置などの間の協調制御を行うことがで
き、大電流の加速、蓄積が行える効果がある。
According to the present invention, it is possible to perform cooperative control among the magnetic field control of the magnet, the high frequency power of the high frequency acceleration cavity, the resonant frequency, the injection device, etc. more easily and with higher precision than in the past, and the control of large current It has the effect of accelerating and accumulating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の加速器を示す図、第2図は
偏向電磁石電流の測定値の時間依存性を示す図、第3図
は本発明の一実施例の電磁石の電流、高周波電力、共振
周波数の目標値を決める方法を示す図である。
Fig. 1 is a diagram showing an accelerator according to an embodiment of the present invention, Fig. 2 is a diagram showing the time dependence of the measured value of the bending electromagnet current, and Fig. 3 is a diagram showing the electromagnet current and high frequency according to an embodiment of the present invention. FIG. 3 is a diagram showing a method of determining target values of power and resonance frequency.

Claims (1)

【特許請求の範囲】 1、荷電粒子が周回する円形加速器の運転方法において
、 運転の際に制御する前記円形加速器の構成機器を主構成
機器と副構成機器に分け、副構成機器の出力の目標値を
主構成機器の出力値に基づいて定めることを特徴とする
円形加速器の運転方法。 2、荷電粒子が周回する円形加速器の運転方法において
、 運転の際に制御する前記円形加速器の構成機器を主構成
機器と副構成機器に分け、副構成機器の出力の目標値を
副構成機器の出力の目標値と主構成機器の出力値又は他
の副構成機器の出力の目標値あるいは出力値との所望の
関係に基づいて定めることを特徴とする円形加速器の運
転方法。 3、前記主構成機器を1つとすることを特徴とする請求
項1又は2記載の円形加速器の運転方法。 4、前記主構成機器を偏向電磁石とし、前記主構成機器
の出力を電流又は磁場強度することを特徴とする請求項
1、2又は3記載の円形加速器の運転方法。 5、電磁石を有する円形加速器の運転方法において、 少なくとも1つの電磁石の出力を測定し、その測定値に
基づいて他の電磁石の出力の目標値を定めることを特徴
とする円形加速器の運転方法。 6、多数の電磁石を有する円形加速器の運転方法におい
て、 前記多数の電磁石は出力が測定される少なくとも1つの
測定電磁石を有し、他の電磁石の目標値は、他の電磁石
の目標値と前記測定値又は前記他の電磁石とは異なつた
他の電磁石の目標値あるいは出力値との所望の関係に基
づいて定めることを特徴とする円形加速器の運転方法。 7、電磁石を有する円形加速器の運転方法において、 少なくとも1つの電磁石の出力を測定し、前記測定値に
基づいて出力を測定していない他の電磁石の出力の目標
値を定めることを特徴とする円形加速器の運転方法。 8、電磁石と高周波加速空胴を有する円形加速器の運転
方法において、 少なくとも1つの電磁石の出力を測定し、前記測定値に
基づいて他の電磁石と高周波加速空胴の出力の目標値を
定めることを特徴とする円形加速器の運転方法。 9、電磁石と高周波加速空胴を有する円形加速器の運転
方法において、 少なくとも1つの電磁石の出力を測定し、前記測定値に
基づいて出力を測定していない他の電磁石と高周波加速
空胴の出力の目標値を定めることを特徴とする円形加速
器の運転方法。 10、前記電磁石の出力は電流とすることを特徴とする
請求項5、6、7、8又は9記載の円形加速器の運転方
法。 11、前記電磁石の出力は磁束密度とすることを特徴と
する請求項5、6、7、8又は9記載の円形加速器の運
転方法。 12、前記高周波加速空胴の出力は高周波電力、加速電
圧、共振周波数のうち少なくとも1つとすることを特徴
とする請求項8又は9記載の円形加速器の運転方法。 13、荷電粒子が周回する円形加速器において、運転の
際に制御する前記円形加速器の構成機器と、構成機器を
制御する制御装置とを有し、前記構成機器を主構成機器
と副構成機器に分け、前記制御装置は副構成機器の出力
の目標値を主構成機器の出力値に基づいて定めることを
特徴とする円形加速器。 14、電磁石と運転を制御する制御装置を有する円形加
速器において、 少なくとも1つの電磁石の出力を測定する手段を有し、
前記制御装置は前記測定値に基づいて他の電磁石の出力
の目標値を定めることを特徴とする円形加速器。 15、電磁石、高周波加速空胴及び運転を制御する制御
装置を有する円形加速器において、 少なくとも1つの電磁石の出力を測定する手段を有し、
前記制御装置は前記測定値に基づいて他の電磁石と高周
波加速空胴の出力の目標値を定めることを特徴とする円
形加速器の運転方法。
[Claims] 1. In a method of operating a circular accelerator in which charged particles circulate, the components of the circular accelerator that are controlled during operation are divided into main components and sub-components, and the target output of the sub-components is determined. A method for operating a circular accelerator, characterized in that a value is determined based on an output value of a main component. 2. In a method of operating a circular accelerator in which charged particles circulate, the components of the circular accelerator that are controlled during operation are divided into main components and sub-components, and the target value of the output of the sub-components is set to the target value of the output of the sub-components. 1. A method of operating a circular accelerator, characterized in that the method is determined based on a desired relationship between a target output value and an output value of a main component or a target value or output value of another sub-component. 3. The method of operating a circular accelerator according to claim 1 or 2, wherein the number of main components is one. 4. The method of operating a circular accelerator according to claim 1, 2 or 3, wherein the main component is a bending electromagnet, and the output of the main component is a current or a magnetic field intensity. 5. A method for operating a circular accelerator having an electromagnet, the method comprising: measuring the output of at least one electromagnet, and determining target values for the outputs of other electromagnets based on the measured value. 6. A method of operating a circular accelerator having a large number of electromagnets, wherein the large number of electromagnets has at least one measuring electromagnet whose output is measured, and the target values of the other electromagnets are equal to the target values of the other electromagnets and the measurement electromagnet. A method for operating a circular accelerator, characterized in that the determination is made based on a value or a desired relationship with a target value or output value of another electromagnet different from the other electromagnet. 7. A method of operating a circular accelerator having electromagnets, characterized in that the output of at least one electromagnet is measured, and the target value of the output of other electromagnets whose outputs are not measured is determined based on the measured value. How to operate an accelerator. 8. A method for operating a circular accelerator having an electromagnet and a high-frequency acceleration cavity, including measuring the output of at least one electromagnet and determining target values for the outputs of other electromagnets and the high-frequency acceleration cavity based on the measured value. Features: How to operate a circular accelerator. 9. In a method of operating a circular accelerator having an electromagnet and a high-frequency acceleration cavity, the output of at least one electromagnet is measured, and the output of other electromagnets whose outputs are not measured and the output of the high-frequency acceleration cavity are determined based on the measured value. A method of operating a circular accelerator characterized by determining a target value. 10. The method of operating a circular accelerator according to claim 5, 6, 7, 8 or 9, wherein the output of the electromagnet is a current. 11. The method of operating a circular accelerator according to claim 5, 6, 7, 8, or 9, wherein the output of the electromagnet is a magnetic flux density. 12. The method of operating a circular accelerator according to claim 8 or 9, wherein the output of the high-frequency acceleration cavity is at least one of high-frequency power, acceleration voltage, and resonance frequency. 13. In a circular accelerator in which charged particles circulate, the circular accelerator has a component device of the circular accelerator that is controlled during operation and a control device that controls the component device, and the component device is divided into a main component device and a sub component device. . A circular accelerator, wherein the control device determines the target value of the output of the sub-component device based on the output value of the main component device. 14. A circular accelerator having an electromagnet and a control device for controlling operation, having means for measuring the output of at least one electromagnet,
The circular accelerator, wherein the control device determines target values for outputs of other electromagnets based on the measured values. 15. A circular accelerator having an electromagnet, a high-frequency acceleration cavity, and a control device for controlling operation, having means for measuring the output of at least one electromagnet,
A method for operating a circular accelerator, characterized in that the control device determines target values for the outputs of other electromagnets and the high-frequency acceleration cavity based on the measured values.
JP29505089A 1989-11-15 1989-11-15 Operating method for circular accelerator and circular accelerator Pending JPH03156900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29505089A JPH03156900A (en) 1989-11-15 1989-11-15 Operating method for circular accelerator and circular accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29505089A JPH03156900A (en) 1989-11-15 1989-11-15 Operating method for circular accelerator and circular accelerator

Publications (1)

Publication Number Publication Date
JPH03156900A true JPH03156900A (en) 1991-07-04

Family

ID=17815672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29505089A Pending JPH03156900A (en) 1989-11-15 1989-11-15 Operating method for circular accelerator and circular accelerator

Country Status (1)

Country Link
JP (1) JPH03156900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0673187A1 (en) * 1994-03-17 1995-09-20 Hitachi, Ltd. A particle beam accelerator, and a method of operation therefor
US5698954A (en) * 1993-09-20 1997-12-16 Hitachi, Ltd. Automatically operated accelerator using obtained operating patterns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698954A (en) * 1993-09-20 1997-12-16 Hitachi, Ltd. Automatically operated accelerator using obtained operating patterns
EP0673187A1 (en) * 1994-03-17 1995-09-20 Hitachi, Ltd. A particle beam accelerator, and a method of operation therefor

Similar Documents

Publication Publication Date Title
Hillert The Bonn electron stretcher accelerator ELSA: Past and future
JP2978873B2 (en) Electromagnet and accelerator, and accelerator system
WO2018173240A1 (en) Circular accelerator
Andrianov et al. Development of 200 MeV linac for the SKIF light source injector
JPH03156900A (en) Operating method for circular accelerator and circular accelerator
JP4399604B2 (en) Charged particle beam trajectory control apparatus and control method therefor
EP0351970B1 (en) Electron storage ring
US8183800B2 (en) Induced voltage control device, its control method, charged particle beam orbit control device, and its control method
US2738420A (en) Injection into charged particle accelerators
Shiltsev et al. The use of ionization electron columns for space-charge compensation in high intensity proton accelerators
WO2023162640A1 (en) Accelerator and particle beam treatment system comprising accelerator
JPH076900A (en) High frequency acceleration cavity and ion synchrotron accelerator
JP3924624B2 (en) Synchrotron vibration frequency control device and control method thereof
JP2002246200A (en) Method for operating particle accelerator
US2617026A (en) Induction accelerator for electrons
JP2892562B2 (en) Circular accelerator and its operation method
CN116321669B (en) Method for obtaining strong focusing by modulating magnetic field gradient in large radial range of isochronous accelerator
Hotchi et al. Effects of magnetic field tracking errors on beam dynamics at J-PARC RCS
JPH03122999A (en) Deflecting electric magnet and charged particle accelerating method for circular accelerator using same
RU2187913C2 (en) Induction accelerator pulsed power system
Han et al. Spare Undulator Production for PAL-XFEL HX1 Beamline
JPH1174100A (en) Orbital accelerator and operating method thereof
JPH0765998A (en) Synchrotron device, and its methods for beam adjustment, measurement, and acceleration
Weng Operation of the Brookhaven AGS with the Booster
Hosokawa et al. Performance of 15-MeV injection scheme in Super-ALIS