JPH076900A - High frequency acceleration cavity and ion synchrotron accelerator - Google Patents

High frequency acceleration cavity and ion synchrotron accelerator

Info

Publication number
JPH076900A
JPH076900A JP14327593A JP14327593A JPH076900A JP H076900 A JPH076900 A JP H076900A JP 14327593 A JP14327593 A JP 14327593A JP 14327593 A JP14327593 A JP 14327593A JP H076900 A JPH076900 A JP H076900A
Authority
JP
Japan
Prior art keywords
frequency
acceleration cavity
high frequency
cavity
accelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14327593A
Other languages
Japanese (ja)
Inventor
Tetsurou Norimine
哲朗 乗峯
Kazuo Hiramoto
和夫 平本
Junichi Hirota
淳一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14327593A priority Critical patent/JPH076900A/en
Publication of JPH076900A publication Critical patent/JPH076900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a high frequency acceleration cavity and an ion synchrotron accelerator by which manufacture is facilitated and manufacturing cost is reduced by carrying out sequence control of a control system simpler than tune control of a high frequency acceleration cavity using conventional feedback control. CONSTITUTION:In a high frequency acceleration cavity 10 of an ion synchrotron accelerator, ferrite 21 having a large imaginary number part of magnetic permeability is loaded on the high frequency acceleration cavity 10, and a Q value of the high frequency acceleration cavity 10 is reduced. As the Q value is reduced, an allowable error becomes large in tuning operation to make a resonance frequency of the high frequency acceleration cavity 10 to obtain prescribed acceleration voltage and an impression frequency from high frequency electric power supply 23 coincide with each other. In this state, sequence control is carried out as tune control. The sequence control is carried out by using a digital computer 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンシンクロトロン
加速器、イオンシンクロトロン加速器に使用される高周
波加速空胴及びそれを用いた加速方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion synchrotron accelerator, a high frequency acceleration cavity used in the ion synchrotron accelerator, and an acceleration method using the same.

【0002】[0002]

【従来の技術】従来より、イオンを円形軌道内で加速す
るイオンシンクロトロン加速器は、物理実験や医療等に
用いられている。イオンシンクロトロン加速器には、入
射されたイオンに加速電圧をかけて加速するため、高周
波加速空胴が設けられている。高周波加速空胴を用いて
イオンを加速するには、イオンがシンクロトン内を周回
する際の周回周波数と、高周波電源から高周波加速空胴
に印加される高周波電力の印加周波数とを一致させなけ
ればならない。さらに、高周波加速空胴に励起される加
速電圧を最大にするためには、高周波電力の印加周波数
と加速空胴の共振周波数を一致させる同調制御を行わな
ければならない。
2. Description of the Related Art Conventionally, an ion synchrotron accelerator for accelerating ions in a circular orbit has been used in physical experiments and medical treatment. The ion synchrotron accelerator is provided with a high frequency accelerating cavity for accelerating the injected ions by applying an accelerating voltage. In order to accelerate ions using the high-frequency acceleration cavity, the orbital frequency of the ions when they orbit the synchroton must match the frequency of the high-frequency power applied from the high-frequency power source to the high-frequency acceleration cavity. I won't. Further, in order to maximize the accelerating voltage excited in the high frequency accelerating cavity, tuning control must be performed so that the applied frequency of the high frequency power and the resonant frequency of the accelerating cavity match.

【0003】また、高周波加速空胴自体の一定入力電力
に対する加速電圧の大きさは、次式、 Q=2π×(空胴共振器の蓄積エネルギ)÷(1サイク
ルの間に空胴共振器から失われるエネルギ) で定義される空胴共振器のQ値で評価される。一定入力
電力に対する加速電圧を大きくするには、Q値の高い高
周波加速空胴を用いる必要がある。
The magnitude of the accelerating voltage for a constant input power of the high frequency accelerating cavity itself is expressed by the following equation: Q = 2π × (accumulated energy of cavity resonator) ÷ (from the cavity resonator during one cycle) It is evaluated by the Q value of the cavity resonator defined by (energy lost). In order to increase the acceleration voltage for a constant input power, it is necessary to use a high-frequency acceleration cavity with a high Q value.

【0004】次に、共振曲線のQ値による違いを図5に
示す。図5より、共振周波数の近くでは、加速空胴のQ
値が高いと印加周波数の変化に対する加速電圧の変化は
大きいことがわかる。従って、高周波加速空胴のQ値が
高いと、高周波電源の印加周波数と高周波加速空胴の共
振周波数との誤差が小さくても、加速電圧の誤差は大き
い。従来のイオンシンクロトロンの高周波加速空胴で
は、Q値を高く取っているため、印加周波数と共振周波
数は厳密に一致させなければならない。また、粒子を加
速する際に短時間(0.5−1.0sec 程度)で印加周波
数が大きく(十倍程度)変化する。このため、高周波加
速空胴の共振周波数と印加周波数の同調制御では、共振
周波数の僅かな誤差を修正するためフィードバック制御
が必要であった(参考文献 「OHO '89 高エネル
ギ加速器セミナ」 二宮重史,高エネルギ研究所,V2
8頁−V30頁)。
Next, FIG. 5 shows the difference in the resonance curve depending on the Q value. From Figure 5, near the resonance frequency, the Q of the acceleration cavity
It can be seen that when the value is high, the change in acceleration voltage with respect to the change in applied frequency is large. Therefore, when the Q value of the high frequency acceleration cavity is high, the error of the acceleration voltage is large even if the error between the applied frequency of the high frequency power supply and the resonance frequency of the high frequency acceleration cavity is small. In the high-frequency acceleration cavity of the conventional ion synchrotron, the Q value is set high, so that the applied frequency and the resonance frequency must be exactly the same. In addition, when the particles are accelerated, the applied frequency changes largely (about ten times) in a short time (about 0.5-1.0 sec). For this reason, in the tuning control of the resonance frequency and the applied frequency of the high-frequency acceleration cavity, feedback control was necessary to correct a slight error in the resonance frequency (Reference "OHO '89 High Energy Accelerator Semina", Shigefumi Ninomiya. , High Energy Research Institute, V2
Page 8-V30).

【0005】[0005]

【発明が解決しようとする課題】従来技術で述べたよう
なフィードバック制御による同調装置を備えることは、
製作が困難で、かつ、製作費がかさむ。
Providing a tuning device with feedback control as described in the prior art is as follows.
It is difficult to manufacture, and the manufacturing cost is high.

【0006】本発明の目的は、製作が容易で、製作費が
安価な高周波加速空胴、及びそれを用いたイオシンクロ
トロン加速器を提供することにある。
An object of the present invention is to provide a high-frequency accelerating cavity which is easy to manufacture and inexpensive to manufacture, and an io-synchrotron accelerator using the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、Q値を低下させた加速空胴を用いて共振
周波数制御の許容誤差範囲を大きくする。その上で、共
振周波数制御に、シーケンス制御を行う。
In order to achieve the above-mentioned object, the present invention increases the allowable error range of resonance frequency control by using an acceleration cavity having a reduced Q value. Then, sequence control is performed for resonance frequency control.

【0008】[0008]

【作用】以下、本発明の作用を図を用いて説明する。The operation of the present invention will be described below with reference to the drawings.

【0009】図4に高周波加速空胴の共振曲線を示す。
横軸は高周波電源から高周波加速空胴に印加される印加
周波数を示しており、縦軸は加速電圧を示す。加速電圧
の最大電圧を与える周波数f0が共振周波数である。
FIG. 4 shows a resonance curve of the high frequency acceleration cavity.
The horizontal axis represents the applied frequency applied from the high frequency power supply to the high frequency acceleration cavity, and the vertical axis represents the acceleration voltage. The frequency f 0 that gives the maximum acceleration voltage is the resonance frequency.

【0010】次に、Q値が異なる場合の共振曲線の違い
を図5に示す。図5より、共振周波数の近くでは、加速
空胴のQ値が低いと印加周波数の変化に対する加速電圧
の変化は小さいことがわかる。従って、高周波加速空胴
のQ値を低下させれば、高周波電源の印加周波数と高周
波加速空胴の共振周波数との誤差が大きくても、加速電
圧の誤差は小さくてすむ。
Next, FIG. 5 shows the difference in resonance curve when the Q value is different. From FIG. 5, it can be seen that near the resonance frequency, when the Q value of the acceleration cavity is low, the change in acceleration voltage with respect to the change in applied frequency is small. Therefore, if the Q value of the high-frequency acceleration cavity is lowered, the error of the acceleration voltage can be small even if the error between the applied frequency of the high-frequency power supply and the resonance frequency of the high-frequency acceleration cavity is large.

【0011】高周波加速空胴のQ値を低下させるには、
加速空胴内に搭載するフェライトの透磁率の作用を利用
する。
To reduce the Q value of the high frequency acceleration cavity,
Utilizing the effect of the magnetic permeability of the ferrite mounted in the acceleration cavity.

【0012】高周波加速空胴は並列共振回路で書き表す
ことができるので、フェライト装荷の作用をLC共振回
路を用いて説明する。
Since the high frequency accelerating cavity can be described by a parallel resonant circuit, the effect of loading ferrite will be described using an LC resonant circuit.

【0013】図7にLC共振回路中に磁性体試料を挿入
した場合の等価回路の図を示す。インダクタンスL0
中に透磁率μ=μ′−jμ″の試料を挿入するとそのイ
ンピーダンスZは、
FIG. 7 shows a diagram of an equivalent circuit when a magnetic material sample is inserted in the LC resonance circuit. When a sample having a magnetic permeability μ = μ′−jμ ″ is inserted into the inductance L 0 , its impedance Z becomes

【0014】[0014]

【数1】 Z=jωL0(μ′−jμ″) =ωμ″L0+jωμ′L0 =R+jωμ′L0 …(数1) となる。これからわかるように透磁率の実数部μ′はリ
アクタンスを変化させるので、共振周波数を変化させ
る。透磁率の虚数部μ″はエネルギ散逸を増加させるの
で、Q値を低下させる。
## EQU1 ## Z = jωL 0 (μ′−jμ ″) = ωμ ″ L 0 + jωμ′L 0 = R + jωμ′L 0 (Equation 1) As can be seen from this, the real part μ ′ of the magnetic permeability changes the reactance and therefore the resonance frequency. The imaginary part μ ″ of the permeability increases the energy dissipation, thus lowering the Q value.

【0015】高周波加速空胴内に透磁率の虚数部の大き
いフェライトを装荷し、高周波加速空胴のQ値を低下さ
せる。Q値を低下させた加速空胴を用いれば、共振周波
数と印加周波数を一致させる同調制御において、共振周
波数の印加周波数に対する許容誤差は大きくできる。従
って、共振周波数と印加周波数を一致させる同調制御は
フィードバック制御を行わなくともシーケンス制御で十
分行うことができる。
Ferrite having a large imaginary part of magnetic permeability is loaded in the high-frequency acceleration cavity to reduce the Q value of the high-frequency acceleration cavity. If an acceleration cavity with a reduced Q value is used, the allowable error of the resonance frequency with respect to the applied frequency can be increased in the tuning control for matching the resonance frequency and the applied frequency. Therefore, the tuning control for matching the resonance frequency and the applied frequency can be sufficiently performed by the sequence control without performing the feedback control.

【0016】[0016]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0017】図1は、本発明の実施例で、医療用陽子シ
ンクロトロン加速器の機器配置を示す図である。図1の
加速器は、エネルギが10MeVの陽子を入射し、高周
波加速空胴10を用いて250MeVまで加速し、その
後、出射する。加速器は、前段加速器1からのビーム2
を入射器3から入射する。加速器は入射されたビーム2
にエネルギを与える高周波加速空胴10,ビーム軌道を
曲げる偏向電磁石4,ビームのベータトロン振動を制御
する4極電磁石5及び9,出射のために用いられる共鳴
励起用電磁石7,出射用静電デフレクタ5,出射用セプ
タム電磁石12で構成されている。
FIG. 1 is a view showing the arrangement of medical proton synchrotron accelerators according to an embodiment of the present invention. In the accelerator of FIG. 1, a proton having an energy of 10 MeV is incident, accelerated to 250 MeV using the high frequency acceleration cavity 10, and then emitted. The accelerator is the beam 2 from the previous stage accelerator 1.
From the injector 3. Accelerator is incident beam 2
High-frequency acceleration cavity 10 for giving energy to the beam, a bending electromagnet for bending the beam orbit 4, a quadrupole electromagnet 5 and 9 for controlling the betatron oscillation of the beam, a resonance excitation electromagnet 7 used for extraction, and an electrostatic deflector for extraction. 5, it is composed of an emitting septum electromagnet 12.

【0018】入射器3から入射されたビームは、周回す
る過程で偏向電磁石4で軌道が曲げられる。また、四極
電磁石9は、水平方向にビームを収束する方向に軌道勾
配を変え、四極電磁石5はビームを発散させる方向に軌
道勾配を変える働きをする。垂直方向には、各々の四極
電磁石は、水平方向の収束,発散と反対の機能を持つ。
これらの四極電磁石の励磁量を制御することによって入
射と加速時の過程でビームを安定に周回させることがで
きる。
The beam of light incident from the injector 3 is bent by the deflecting electromagnet 4 in the course of orbiting. Further, the quadrupole electromagnet 9 functions to change the trajectory gradient in the direction of converging the beam in the horizontal direction, and the quadrupole electromagnet 5 functions to change the trajectory gradient in the direction of diverging the beam. In the vertical direction, each quadrupole electromagnet has the opposite function of horizontal focusing and diverging.
By controlling the amount of excitation of these quadrupole electromagnets, it is possible to stably orbit the beam during the process of incidence and acceleration.

【0019】ビームは周回する過程で高周波加速空胴1
0からエネルギを与えられる。
The beam accelerates in the high-frequency acceleration cavity 1
Energy is given from 0.

【0020】図2に同調装置の概念図を示す。同調装置
は、印加周波数と共振周波数との同調操作をシーケンス
制御で実施するためのものである。同調装置は、ディジ
タルコンピュータ27,バイアス電源28、および、バ
イアスコイル22によって構成される。図2の高周波加
速空胴10は断面図が示してある。高周波加速空胴10
には透磁率の虚数部が大きいNi−Znフェライト21
を装荷し、高周波加速空胴10のQ値を低下させる。高
周波加速空胴内への電磁場の励振は、高周波電源23で
発生した信号を四極真空管24で増幅し、高周波アンテ
ナ25を介して行われる。
FIG. 2 shows a conceptual diagram of the tuning device. The tuning device is for performing the tuning operation of the applied frequency and the resonance frequency by sequence control. The tuning device includes a digital computer 27, a bias power source 28, and a bias coil 22. The high frequency acceleration cavity 10 of FIG. 2 is shown in cross section. High frequency acceleration cavity 10
Is a Ni-Zn ferrite 21 having a large imaginary part of magnetic permeability.
To reduce the Q value of the high-frequency acceleration cavity 10. The excitation of the electromagnetic field into the high-frequency acceleration cavity is performed via the high-frequency antenna 25 by amplifying the signal generated by the high-frequency power source 23 with the quadrupole vacuum tube 24.

【0021】高周波加速空胴10の共振周波数を印加周
波数に一致させる同調制御を以下のようなシーケンス制
御によって行う。
Tuning control for matching the resonance frequency of the high frequency acceleration cavity 10 with the applied frequency is performed by the following sequence control.

【0022】入射器3からビームをシンクロトロン加速
器に入射する際、入射器3からタイミングパルス発生装
置に信号を送る。タイミングパルス発生装置はディジタ
ルコンピュータ27に信号を送り、その信号を受信した
ディジタルコンピュータ27は予め計算しておいたバイ
アス電流プログラムに従ってバイアス電源28を制御す
る。バイアス電源28からバイアスコイル22に電流が
送られバイアス磁場を発生する。バイアスコイル22の
生じるバイアス磁場の強さによってフェライト21の透
磁率の実数部分を変化させ、高周波加速空胴10内に励
起される電磁場の共振周波数を制御する。
When the beam is incident on the synchrotron accelerator from the injector 3, a signal is sent from the injector 3 to the timing pulse generator. The timing pulse generator sends a signal to the digital computer 27, and the digital computer 27 receiving the signal controls the bias power supply 28 according to the bias current program calculated in advance. A current is sent from the bias power supply 28 to the bias coil 22 to generate a bias magnetic field. The real part of the magnetic permeability of the ferrite 21 is changed according to the strength of the bias magnetic field generated by the bias coil 22, and the resonance frequency of the electromagnetic field excited in the high frequency acceleration cavity 10 is controlled.

【0023】バイアス電流プログラムは以下のように設
定する。図3にその具体例としてディジタルコンピュー
タ27の行う計算手順をフローチャートにして示す。偏
向電磁石4の磁場強度の時間変化パターンをコンソール
から入力する。磁場強度の時間変化パターンに合わせ
て、ビームエネルギの時間変化パターンを計算する。シ
ンクロトロン加速器の周長は一定なので、ビームエネル
ギの時間変化パターンをもとにビームの周回周波数の時
間変化を計算する。印加周波数は周回周波数と一致する
ように別の制御系で制御を行うので、共振周波数の時間
変化が周回周波数と等しくなるようにバイアスコイルの
電流値を時間変化させる。所望の共振周波数を得るため
のバイアス電流値は、予め測定したバイアス電流による
共振周波数特性をもとにディジタルコンピュータで計算
する。
The bias current program is set as follows. FIG. 3 is a flowchart showing a calculation procedure performed by the digital computer 27 as a specific example. A time change pattern of the magnetic field strength of the bending electromagnet 4 is input from the console. The time change pattern of the beam energy is calculated according to the time change pattern of the magnetic field strength. Since the circumference of the synchrotron accelerator is constant, the time change of the orbital frequency of the beam is calculated based on the time change pattern of the beam energy. Since the applied frequency is controlled by another control system so as to match the circulation frequency, the current value of the bias coil is changed with time so that the time variation of the resonance frequency becomes equal to the circulation frequency. The bias current value for obtaining the desired resonance frequency is calculated by a digital computer based on the resonance frequency characteristics of the bias current measured in advance.

【0024】ビームは目標エネルギまで加速された後、
出射用静電デフレクタ11,セプタム電磁石12によっ
て軌道を偏向させられ治療室14へと送られる。
After the beam has been accelerated to the target energy,
The orbit is deflected by the emitting electrostatic deflector 11 and the septum electromagnet 12 and sent to the treatment room 14.

【0025】[0025]

【発明の効果】本発明によれば、製作が容易でかつ、製
作費が安価な高周波加速空胴及びそれを用いたイオンシ
クロトロン加速器を提供することができる。
According to the present invention, it is possible to provide a high-frequency accelerating cavity that is easy to manufacture and is inexpensive to manufacture, and an ion cyclotron accelerator using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例5の加速器の説明図。FIG. 1 is an explanatory diagram of an accelerator according to a fifth embodiment of the present invention.

【図2】本発明の実施例2の同調装置の説明図。FIG. 2 is an explanatory diagram of a tuning device according to a second embodiment of the present invention.

【図3】バイアス電流プログラムの設定手順を示すフロ
ーチャート。
FIG. 3 is a flowchart showing a procedure for setting a bias current program.

【図4】加速電圧の周波数依存性を示す共振曲線の特性
図。
FIG. 4 is a characteristic diagram of a resonance curve showing frequency dependence of acceleration voltage.

【図5】Q値が変化した場合の共振曲線の変化を示す特
性図。
FIG. 5 is a characteristic diagram showing changes in the resonance curve when the Q value changes.

【図6】共振回路に強磁性体を挿入したときの等価回路
図。
FIG. 6 is an equivalent circuit diagram when a ferromagnetic material is inserted in a resonance circuit.

【符号の説明】[Explanation of symbols]

10…高周波加速空胴、21…フェライト、22…バイ
アスコイル、23…高周波電源、24…四極真空管、2
5…高周波アンテナ、27…ディジタルコンピュータ、
28…バイアス電源。
10 ... High frequency acceleration cavity, 21 ... Ferrite, 22 ... Bias coil, 23 ... High frequency power supply, 24 ... Quadrupole vacuum tube, 2
5 ... high frequency antenna, 27 ... digital computer,
28 ... Bias power supply.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イオンシンクロトロン加速器で用いる高周
波加速空胴において、 共振周波数を変化させる手段を備え、周回周波数の変化
に応じて、共振周波数が周回周波数と等しくなるように
シーケンス制御することを特徴とする高周波加速空胴。
1. A high frequency accelerating cavity used in an ion synchrotron accelerator, comprising means for changing a resonance frequency, and performing sequence control so that the resonance frequency becomes equal to the rotation frequency according to a change in the rotation frequency. High frequency acceleration cavity.
【請求項2】イオンシンクロトロン加速器で用いる高周
波加速空胴において、 共振周波数制御用フェライトと、前記フェライトの透磁
率を調節するための磁場を発生させるバイアスコイルと
を装荷し、前記コイルの電流値を共振周波数が周回周波
数と等しくなるようにシーケンス制御することを特徴と
する高周波加速空胴。
2. A high frequency accelerating cavity used in an ion synchrotron accelerator, wherein a resonance frequency controlling ferrite and a bias coil for generating a magnetic field for adjusting the permeability of the ferrite are loaded, and a current value of the coil is loaded. A high-frequency accelerating cavity in which the resonance frequency is sequence-controlled so that the resonance frequency becomes equal to the orbiting frequency.
【請求項3】イオンシンクロトロン加速器における荷電
粒子の加速方法において、 共振周波数を変化させる手段を備えた高周波加速空胴を
用い、周回周波数の変化に応じて前記高周波加速空胴の
共振周波数が周回周波数と等しくなるようにシーケンス
制御することを特徴とする荷電粒子の加速方法。
3. A method of accelerating charged particles in an ion synchrotron accelerator, wherein a high-frequency acceleration cavity provided with a means for changing a resonance frequency is used, and the resonance frequency of the high-frequency acceleration cavity is rotated in response to a change in the rotation frequency. A method of accelerating charged particles, characterized by performing sequence control so that the frequency becomes equal to the frequency.
【請求項4】イオンシンクロトロン加速器で行われる荷
電粒子の加速方法において、 フェライトと、前記フェライトの透磁率を調節するため
の磁場を発生させるバイアスコイルとを装荷した高周波
加速空胴を用い、周回周波数の変化に応じて前記高周波
加速空胴の共振周波数が周回周波数と等しくなるように
前記コイルの電流値をシーケンス制御することを特徴と
する荷電粒子の加速方法。
4. A method for accelerating charged particles carried out by an ion synchrotron accelerator, comprising: a high-frequency accelerating cavity equipped with ferrite and a bias coil for generating a magnetic field for adjusting the permeability of the ferrite; A method of accelerating charged particles, characterized in that the current value of the coil is sequence-controlled so that the resonance frequency of the high-frequency accelerating cavity becomes equal to the orbiting frequency according to a change in frequency.
【請求項5】請求項1もしくは請求項2の前記高周波加
速空洞を備えたイオンシンクロトロン加速器。
5. An ion synchrotron accelerator provided with the high-frequency acceleration cavity according to claim 1 or 2.
JP14327593A 1993-06-15 1993-06-15 High frequency acceleration cavity and ion synchrotron accelerator Pending JPH076900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14327593A JPH076900A (en) 1993-06-15 1993-06-15 High frequency acceleration cavity and ion synchrotron accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14327593A JPH076900A (en) 1993-06-15 1993-06-15 High frequency acceleration cavity and ion synchrotron accelerator

Publications (1)

Publication Number Publication Date
JPH076900A true JPH076900A (en) 1995-01-10

Family

ID=15334962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14327593A Pending JPH076900A (en) 1993-06-15 1993-06-15 High frequency acceleration cavity and ion synchrotron accelerator

Country Status (1)

Country Link
JP (1) JPH076900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353587A (en) * 2004-05-19 2005-12-22 Gsi Ges Fuer Schwerionenforschung Mbh Beam distribution device and method for medical particle accelerator
US7741781B2 (en) 2005-09-08 2010-06-22 Mitsubishi Denki Kabushiki Kaisha Radio-frequency accelerating cavity and circular accelerator
US8643314B2 (en) 2011-05-09 2014-02-04 Sumitomo Heavy Industries, Ltd. Particle accelerator and charged particle beam irradiation apparatus including particle accelerator
US8811746B2 (en) 2009-07-31 2014-08-19 Fujitsu Limited Mobile unit position detecting apparatus and mobile unit position detecting method
CN111526656A (en) * 2020-04-07 2020-08-11 哈尔滨工业大学 Current control ultra-wideband cyclotron high-frequency cavity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353587A (en) * 2004-05-19 2005-12-22 Gsi Ges Fuer Schwerionenforschung Mbh Beam distribution device and method for medical particle accelerator
US7741781B2 (en) 2005-09-08 2010-06-22 Mitsubishi Denki Kabushiki Kaisha Radio-frequency accelerating cavity and circular accelerator
US8811746B2 (en) 2009-07-31 2014-08-19 Fujitsu Limited Mobile unit position detecting apparatus and mobile unit position detecting method
US8643314B2 (en) 2011-05-09 2014-02-04 Sumitomo Heavy Industries, Ltd. Particle accelerator and charged particle beam irradiation apparatus including particle accelerator
CN111526656A (en) * 2020-04-07 2020-08-11 哈尔滨工业大学 Current control ultra-wideband cyclotron high-frequency cavity

Similar Documents

Publication Publication Date Title
US6822405B2 (en) Deceleration of hadron beams in synchrotrons designed for acceleration
EP0673187B1 (en) A particle beam accelerator, and a method of operation therefor
US11570881B2 (en) Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator
JP2596292B2 (en) Circular accelerator, operation method thereof, and medical system
CN109923946B (en) Circular accelerator
JP4356019B2 (en) Electron accelerator and radiotherapy apparatus using the same
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
EP0426861B1 (en) Method of cooling charged particle beam
JP7240262B2 (en) Accelerator, particle beam therapy system and ion extraction method
JP2857598B2 (en) Accelerator operation method
JPH076900A (en) High frequency acceleration cavity and ion synchrotron accelerator
JP3116737B2 (en) Accelerator, beam extraction method therefor, and medical device
WO2022168484A1 (en) Accelerator and particle beam therapy system
WO2023162640A1 (en) Accelerator and particle beam treatment system comprising accelerator
JP2022026175A (en) Accelerator and particle beam therapy equipment
JP2008112693A (en) Annular acceleration device and operating method therefor
JP2016007456A (en) Particle beam therapy system and method of initializing electromagnet
EP0353888A1 (en) Method and apparatus for controlling the acceleration energy of a radiofrequency multipole linear accelerator
JPH1174100A (en) Orbital accelerator and operating method thereof
JP7465042B2 (en) Circular accelerator and particle beam therapy system
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
JP2892562B2 (en) Circular accelerator and its operation method
Nezhevenko et al. The results of the 7 GHz pulsed magnicon investigation
JPH0935899A (en) Take-out method for charged particle beam
JP2001043998A (en) Electromagnet, circular accelerator using it and circular accelerator system