JPH03156293A - Liquid metal heat pipe structure operated in bottom heating mode - Google Patents

Liquid metal heat pipe structure operated in bottom heating mode

Info

Publication number
JPH03156293A
JPH03156293A JP1293076A JP29307689A JPH03156293A JP H03156293 A JPH03156293 A JP H03156293A JP 1293076 A JP1293076 A JP 1293076A JP 29307689 A JP29307689 A JP 29307689A JP H03156293 A JPH03156293 A JP H03156293A
Authority
JP
Japan
Prior art keywords
wick
heat
evaporator
fluid
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1293076A
Other languages
Japanese (ja)
Other versions
JPH0581830B2 (en
Inventor
Itaru Yamamoto
格 山本
Yoshio Tanaka
芳雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1293076A priority Critical patent/JPH03156293A/en
Publication of JPH03156293A publication Critical patent/JPH03156293A/en
Publication of JPH0581830B2 publication Critical patent/JPH0581830B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent dryup of the heat transfer surface of an evaporator by engraving cutouts at both upper and lower ends of a cylindrical laminated wick, opening a radial through hole at a position suitably separated from both ends, and concentrically disposing a columnar article with the wick in the evaporator of the vapor passage. CONSTITUTION:Heat is applied externally to the evaporator E of a heat pipe having a wick 11, work fluid is evaporated, vapor is fed to a condenser C, and condensed by heat radiating. The fluid is heated to generate bubbles in an air gap 12 of the evaporator E at the time of starting to heat to rise in two phases flow in the air gap 12. As the bubble rises, a cold work fluid flows from a cutout 11a, a through hole 11c to the gap 12. A part of the rising fluid is discharged through a cutout 11b and a through hole 11d to a vapor passage 13, condensed and fed down along the wick 11. As input heat is increased, the temperature of the fluid in the evaporator becomes uniform to be evaporated and boiled. The wick 11 is so extended as to slightly increase the interval of the air gap 12, a condensed liquid is always circulated, and local dryout is avoided due to sealing fluid quantity reducing effect by a columnar article 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ボトムヒートモードで作動する液体金属ヒ
ートパイプにおいて、蒸発部で毛細管圧力を発生させ、
蒸発部内壁面を均一にぬらし、かつ、伝熱促進ならびに
封入作動流体量を減少させるtこめに設けたウィックと
円柱状物体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for generating capillary pressure in the evaporator section in a liquid metal heat pipe that operates in a bottom heat mode.
This invention relates to a wick and a cylindrical object provided in the evaporator to uniformly wet the inner wall surface of the evaporation section, promote heat transfer, and reduce the amount of enclosed working fluid.

〔従来の技術〕[Conventional technology]

周知のように液体金属熱サイフオン形ヒートパイプは、
密閉管の内部に封入した作動流体が蒸発と凝縮とを伴っ
て蒸発部と凝縮部との間を循環流動することにより熱を
輸送するものであって、凝縮部で放熱した作動流体を蒸
発部に還流させるために、重力を利用し、ウィックで生
じる毛細管圧力は利用せずウィックはない。
As is well known, liquid metal thermosiphon heat pipes are
The working fluid sealed inside the sealed tube evaporates and condenses and circulates between the evaporating section and the condensing section to transport heat, and the working fluid that radiates heat in the condensing section is transferred to the evaporating section. To achieve reflux, gravity is used, and the capillary pressure generated by the wick is not used, so there is no wick.

〔発明の目的〕[Purpose of the invention]

前記のように熱サイフオン形ヒートバイブにおいては、
通常ウィックを使用しない。液体金属の作動流体を、通
常の熱サイフオン形ヒートパイプで採用されているよう
に蒸発部内容積の10〜30%封入すると、ボトムヒー
トモードの場合、作動流体は密閉管の底の方にたまり、
加熱開始時、蒸発部内壁面積の70〜90%は作動流体
と接触されない状態で加熱されることになる。又、液体
金属の密度は水などに比べ大きく、したがって、熱容量
が大きく、沸点も高いため、液体金属作動流体が蒸発を
開始するまでに、長い時間を要し、その間、蒸発部で作
動流体に接していない伝熱面は異常な高温になる恐れが
ある。更に、多少蒸発が生じている状態にあっても、蒸
発量が少なく、還流液が均一に内壁面を流下しないため
、やはり蒸発伝熱面の内壁の一部がぬれない状態になる
。例えば、作動流体と接しているヒートパイプ蒸発部で
は表面温度は400℃であるのにもかかわらず、作動流
体と接していないヒートパイプ蒸発部では表面温度が8
00℃以上になるところがある。このような状態では、
密閉管材料の耐熱強度問題が起きる。したがって、加熱
開始時に密閉管損傷の恐れがあり、加熱開始時の運転が
極めて難しい場合がある。又、突沸が生じた場合、重い
多量の作動流体が凝縮部から蒸発部に落下して、蒸発部
側端板に衝撃力が加わることになる。
As mentioned above, in the thermosiphon type heat vibrator,
Normally wicks are not used. When a liquid metal working fluid is filled in 10 to 30% of the internal volume of the evaporator section, as is adopted in a normal thermosiphon heat pipe, in the case of bottom heat mode, the working fluid accumulates at the bottom of the sealed tube. ,
At the start of heating, 70 to 90% of the inner wall area of the evaporator section is heated without coming into contact with the working fluid. In addition, liquid metal has a higher density than water, etc., and therefore has a large heat capacity and a high boiling point, so it takes a long time for the liquid metal working fluid to start evaporating. Heat transfer surfaces that are not in contact may reach abnormally high temperatures. Furthermore, even if some evaporation occurs, the amount of evaporation is small and the reflux liquid does not flow down the inner wall surface uniformly, so that a portion of the inner wall of the evaporation heat transfer surface remains unwetted. For example, the surface temperature of the heat pipe evaporator part that is in contact with the working fluid is 400°C, but the surface temperature of the heat pipe evaporator part that is not in contact with the working fluid is 8°C.
There are places where the temperature reaches 00°C or higher. In such a situation,
Problems arise in the heat resistance strength of sealed pipe materials. Therefore, there is a risk of damage to the sealed tube at the start of heating, and operation at the start of heating may be extremely difficult. Further, when bumping occurs, a large amount of heavy working fluid falls from the condensing section to the evaporating section, and an impact force is applied to the end plate on the evaporating section side.

かような加熱開始時における密閉管の過熱による損傷及
び突沸による蒸発部側端板への衝撃力を出来るだけ取り
除くには、1)蒸発部にウィックを装着し出来るだけ蒸
発部伝熱面積をぬらすようにしなければならない。又、
2)衝撃力を緩和するためには作動流体量を減らし、か
つ、■)の条件を満たす必要がある。この発明は上記の
事情に鑑みてなされたもので、密閉管内壁と金網ウィッ
クとの間に出来る空隙部に生じる気泡を巧みに利用する
とともに、蒸発部の蒸気通路に円柱状物体を設けること
により蒸発部側切欠の乾き上がりを防ぎ、作動流体量を
減少させて衝撃力を緩和し、ボトムヒートモードで作動
する液体金属ヒートパイプの性能改善を目的とするもの
である。
In order to remove as much as possible the damage caused by overheating of the sealed tube at the start of heating and the impact force on the end plate of the evaporator section due to bumping, 1) Attach a wick to the evaporator section and wet the heat transfer area of the evaporator section as much as possible. You must do so. or,
2) In order to alleviate the impact force, it is necessary to reduce the amount of working fluid and satisfy the condition (2). This invention was made in view of the above circumstances, and it cleverly utilizes the air bubbles generated in the gap between the inner wall of the sealed tube and the wire mesh wick, and also by providing a cylindrical object in the steam passage of the evaporation section. The purpose is to prevent the notch on the evaporator side from drying out, reduce the amount of working fluid, and alleviate the impact force, thereby improving the performance of liquid metal heat pipes that operate in bottom heat mode.

〔発明の構造〕[Structure of the invention]

この発明は、上記の目的を達成するために、作動流体が
乾き上がりを防ぎ流出入するよう、切欠けや貫通孔をウ
ィックに設けるとともに、作動流体を減らすよう蒸発部
の蒸気通路に円柱状物体を配置したものである。より具
体的には、積層しかつ筒状に形成した複数枚の金網を主
体とする積層ウィックを密閉管の内壁面に張設し、前記
筒状積層ウィックの上下両端部に切欠けを刻設するとと
もに、前記両端部からそれぞれ軸方向へ適度に離れた位
置に半径方向貫通孔を前記筒状積層ウィックに穿設し、
前記筒状積層ウィックの内周側に形成される蒸気通路の
蒸発部に円柱状物体を前記筒状積層ウィックと同心に配
置したものである。
In order to achieve the above object, this invention provides notches and through holes in the wick to prevent the working fluid from drying out and allows it to flow in and out, and also provides a cylindrical object in the steam passage of the evaporation section to reduce the amount of working fluid. is arranged. More specifically, a laminated wick mainly consisting of a plurality of laminated wire meshes formed into a cylindrical shape is stretched over the inner wall surface of a sealed tube, and notches are carved at both upper and lower ends of the cylindrical laminated wick. At the same time, radial through holes are bored in the cylindrical laminated wick at positions appropriately spaced from both ends in the axial direction, respectively,
A cylindrical object is arranged concentrically with the cylindrical laminate wick in an evaporation section of a steam passage formed on the inner peripheral side of the cylindrical laminate wick.

〔作用〕[Effect]

ウィックを上記のように構成したヒートパイプでは、ボ
トムヒートモードで外部からの入熱を加え始めると、空
隙部にある作動流体がまず沸騰する。この時発生する気
泡は、ウィックの網目を通って蒸気通路に抜は出ること
は困難であるため、空隙部を管壁に沿って上昇する。気
泡の上昇とともに、蒸発部側切欠け、あるいは貫通孔を
通り、作動流体が蒸気通路側から吸引される。管壁に沿
って上昇する作動流体の一部は蒸気、残りは液体の形で
移動する。すなわち、二相流が形成される。
In a heat pipe with a wick configured as described above, when external heat input starts in bottom heat mode, the working fluid in the gap first boils. Since it is difficult for the bubbles generated at this time to escape to the steam passage through the mesh of the wick, they rise through the gap along the pipe wall. As the bubbles rise, the working fluid passes through the notch or through hole on the evaporator side and is sucked in from the steam passage side. A portion of the working fluid that rises along the pipe wall travels in vapor form and the rest in liquid form. That is, a two-phase flow is formed.

この時の蒸気は凝縮部で冷却され、液体となって空隙部
を通り還流するものと、凝縮部側の切欠けあるいは貫通
孔を通過し蒸気通路を通り還流するものがある。狭い空
隙部に還流した液体により、狭い空隙部内の作動流体は
、網目、蒸発部側の切欠けあるいは貫通孔を通り、蒸気
通路側に押し出される。これにより、蒸気通路側にある
作動流体の温度はすみやかに上昇する。入熱が小さい時
には狭い空隙部での作動流体の蒸発、気泡の発生、上昇
は大きなボンピング作用をなし、作動流体の加熱と循環
を行う上で、極めて重要な働きをする。
At this time, the vapor is cooled in the condensing section, becomes a liquid, and flows back through the gap, and some passes through a notch or through hole on the condensing section and flows back through the steam passage. Due to the liquid that has returned to the narrow gap, the working fluid in the narrow gap passes through the mesh, the notches or through holes on the evaporator side, and is pushed out to the steam passage side. As a result, the temperature of the working fluid on the steam passage side rises quickly. When the heat input is small, the evaporation of the working fluid in the narrow gap, the generation and rise of bubbles produces a large pumping effect, and plays an extremely important role in heating and circulating the working fluid.

入熱の増加に伴い、狭い空隙部のほかに、ウィック層の
外側でも蒸発、沸騰が生じるようになる。
As the heat input increases, evaporation and boiling begin to occur not only in the narrow voids but also outside the wick layer.

したがってウィックを設けない場合に生じる極めて大き
な沸騰の発生が押えられ、作動流体との間で常時良好な
熱交換が行われる。その結果、熱流束が増大されるとと
もに、加熱開始時の密閉管の温度上昇による破損などが
なくなり、極めて安定した作動を確保出来る。
Therefore, the occurrence of extremely large boiling that would occur if no wick is provided is suppressed, and good heat exchange with the working fluid is always performed. As a result, the heat flux is increased, and damage caused by the temperature rise of the sealed tube at the start of heating is eliminated, ensuring extremely stable operation.

〔実施例〕〔Example〕

次にこの発明例を図面によって説明する。 Next, an example of this invention will be explained with reference to the drawings.

ヒートパイプ容器である密閉管IOは、金属管の両端部
を端板10a、10bによって密閉した構造であリ、そ
の内壁面10cには、毛細管圧力を生じさせるため積層
しかつ筒状に形成した複数枚の金網を主体とする筒状積
層ウィック11が装着されているこの筒状積層ウィック
11は密閉管10の内壁面10cとの間にごく狭い空隙
部12をもって密閉管10に張設されている。また、筒
状積層ウィック11には、両端にそれぞれ切欠けlla
、llbが複数個刻設されている。更に、両端部からそ
れぞれ軸方向へ適度に離れた位置に、空隙部12と蒸気
通路13を連通ずるように複数個の半径方向貫通孔11
C111dが筒状積層ウィック11に穿設されている。
The sealed tube IO, which is a heat pipe container, has a structure in which both ends of a metal tube are sealed by end plates 10a and 10b, and the inner wall surface 10c is laminated and formed in a cylindrical shape to generate capillary pressure. The cylindrical laminated wick 11, which is equipped with a cylindrical laminated wick 11 mainly made of a plurality of pieces of wire mesh, is stretched over the hermetic tube 10 with a very narrow gap 12 between it and the inner wall surface 10c of the hermetic tube 10. There is. In addition, the cylindrical laminated wick 11 has notches lla at both ends.
, llb are engraved. Further, a plurality of radial through holes 11 are provided at positions appropriately spaced from both ends in the axial direction so as to communicate the gap 12 and the steam passage 13.
C111d is bored in the cylindrical laminated wick 11.

蒸発部伝熱面全体に作動流体が存在し、かつ、そのため
に必要な液量を出来るだけ減少するた約、蒸発部端板1
0aに一端が偏走された円柱状物体14が配置されてい
る。円柱状物体14は筒状積層ウィック11と同心状態
であり、その長さ、直径は密閉管10の内径、封入作動
流体量、蒸発部長さなどによって決められる。
The evaporator end plate 1 is designed so that the working fluid exists over the entire heat transfer surface of the evaporator and to reduce the amount of liquid required for this purpose as much as possible.
A cylindrical object 14 with one end deflected is placed at 0a. The cylindrical object 14 is concentric with the cylindrical laminated wick 11, and its length and diameter are determined by the inner diameter of the sealed tube 10, the amount of working fluid enclosed, the length of the evaporation section, and the like.

第1図に示す構造のウィック11を有するヒートパイプ
は、熱サイフオン形ヒートパイプと同様、ボトムヒート
モードで蒸発部Eに外部から熱を与えることにより、作
動流体が蒸発し、その蒸気が凝縮部Cに流れた後に、放
熱して凝縮する。その場合、加熱開始時には、蒸発部E
の空隙部12においては、作動流体が加熱されて気泡を
生じ、狭い空隙部12を一般に二相流で上昇する。気泡
の上昇に伴い、切欠けlla 、あるいは貫通孔11c
から周囲の冷たい作動流体が空隙部12に流れこむ。一
方上昇した二相流の一部は切欠けllbと貫通孔11d
を通り蒸気通路13に放出され、凝縮してウィック11
に沿って流下する。入熱の増加に伴い、空隙部12での
二相流の発生は少なくなり、蒸発部内の作動流体温度は
均一になって平均的に蒸発、沸騰が生じるようになる。
In the heat pipe having the wick 11 having the structure shown in FIG. 1, the working fluid is evaporated by applying heat from the outside to the evaporation section E in the bottom heat mode, and the vapor is transferred to the condensation section. After flowing into C, it radiates heat and condenses. In that case, at the start of heating, the evaporation section E
In the cavity 12 , the working fluid is heated to form bubbles that rise through the narrow cavity 12 in a generally two-phase flow. As the bubbles rise, the notch lla or the through hole 11c
The surrounding cold working fluid flows into the cavity 12 from the air. On the other hand, a part of the rising two-phase flow flows through the notch llb and the through hole 11d.
is discharged into the steam passage 13, condenses and becomes the wick 11.
flowing down along the As the heat input increases, the occurrence of two-phase flow in the gap 12 decreases, and the temperature of the working fluid in the evaporator becomes uniform, causing evaporation and boiling to occur on average.

空隙部12の隙間は通常のウィックを有するヒートパイ
プの場合に比べ、若干大きくなるようウィック11を張
設しである。このように、凝縮した液が常に還流するの
で、局所ドライアウトが発生しにくくなる。
The wick 11 is stretched so that the gap in the cavity 12 is slightly larger than that of a heat pipe having a normal wick. In this way, since the condensed liquid is constantly refluxed, local dryout is less likely to occur.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかのように、この発明の筒状積層ウ
ィック11及び蒸発部内部構造によれば、密閉管10の
内壁面10cとウィック11との間に生じる空隙部12
と蒸気通路13を連絡する切欠けlla 。
As is clear from the above description, according to the cylindrical laminated wick 11 and the internal structure of the evaporator section of the present invention, the gap 12 formed between the inner wall surface 10c of the sealed tube 10 and the wick 11
and a notch lla that communicates with the steam passage 13.

11bあるいは貫通孔11c、 lldによる通路を設
けることにより、空隙部12で生じる気泡のポンピング
が利用出来る。この結果、蒸気通路13の蒸発部に配置
した円柱状物体14による封入作動流体量の低減効果も
あって、ボトムヒートモードで作動させる液体金属ヒー
トバイブの運転開始時に起こる局所ドライアウトによる
密閉管損傷を回避し、突沸による端板破損の防止、熱流
束の増加が得られひいては、熱輸送能力の向上を図るこ
とが出来る11a、 llb 切欠け、llc、 llb  貫通孔、
11b or through holes 11c and lld, it is possible to utilize the pumping of air bubbles generated in the cavity 12. As a result, due to the effect of reducing the amount of sealed working fluid due to the cylindrical object 14 placed in the evaporation part of the steam passage 13, damage to the sealed tube is caused by localized dryout that occurs at the start of operation of the liquid metal heat vibrator operated in the bottom heat mode. 11a, llb notch, llc, llb through hole, which can avoid damage to the end plate due to bumping, increase heat flux, and improve heat transport ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す一部省略した略解断
面図、第2図はウィックの略解斜視図である。両図とも
ボトムヒートモードにおける姿勢で示し、下方がボトム
方向である。 10  密閉管、 11  筒状積層ウィック、第1図 Y2図
FIG. 1 is a partially omitted schematic exploded sectional view showing an embodiment of the present invention, and FIG. 2 is a schematic exploded perspective view of a wick. Both figures show the posture in bottom heat mode, with the bottom direction being downward. 10 Sealed tube, 11 Cylindrical laminated wick, Fig. 1 Y2 Fig.

Claims (1)

【特許請求の範囲】[Claims] 積層しかつ筒状に形成した複数枚の金網を主体とする積
層ウイックを密閉管の内壁に張設し、前記筒状積層ウイ
ックの上下両端部に切欠けを刻設するとともに、前記両
端部からそれぞれ軸方向へ適度に離れた位置に半径方向
貫通孔を前記筒状積層ウイックに穿設し、前記筒状積層
ウイックの内周側に形成される蒸気通路の蒸発部に円柱
状物体を前記筒状積層ウイックと同心に配置したことを
特徴としたボトムヒートモードで作動する液体金属ヒー
トパイプの構造。
A laminated wick mainly consisting of a plurality of laminated wire meshes formed into a cylindrical shape is stretched over the inner wall of the sealed tube, and notches are carved at both the upper and lower ends of the cylindrical laminated wick, and from both ends Radial through holes are formed in the cylindrical laminated wick at positions appropriately spaced apart from each other in the axial direction, and a cylindrical object is inserted into the evaporation section of the steam passage formed on the inner peripheral side of the cylindrical laminated wick. The structure of a liquid metal heat pipe operating in bottom heat mode is characterized by its concentric arrangement with a laminated wick.
JP1293076A 1989-11-10 1989-11-10 Liquid metal heat pipe structure operated in bottom heating mode Granted JPH03156293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293076A JPH03156293A (en) 1989-11-10 1989-11-10 Liquid metal heat pipe structure operated in bottom heating mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293076A JPH03156293A (en) 1989-11-10 1989-11-10 Liquid metal heat pipe structure operated in bottom heating mode

Publications (2)

Publication Number Publication Date
JPH03156293A true JPH03156293A (en) 1991-07-04
JPH0581830B2 JPH0581830B2 (en) 1993-11-16

Family

ID=17790140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293076A Granted JPH03156293A (en) 1989-11-10 1989-11-10 Liquid metal heat pipe structure operated in bottom heating mode

Country Status (1)

Country Link
JP (1) JPH03156293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079396A1 (en) * 2002-03-14 2003-09-25 Koninklijke Philips Electronics Nv Liquid metal heat pipe structure for x-ray target
WO2007029125A2 (en) * 2005-06-24 2007-03-15 Convergence Technologies Limited Heat transfer device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079396A1 (en) * 2002-03-14 2003-09-25 Koninklijke Philips Electronics Nv Liquid metal heat pipe structure for x-ray target
US6807348B2 (en) 2002-03-14 2004-10-19 Koninklijke Philips Electronics N.V. Liquid metal heat pipe structure for x-ray target
WO2007029125A2 (en) * 2005-06-24 2007-03-15 Convergence Technologies Limited Heat transfer device
WO2007029125A3 (en) * 2005-06-24 2007-09-13 Convergence Technologies Ltd Heat transfer device

Also Published As

Publication number Publication date
JPH0581830B2 (en) 1993-11-16

Similar Documents

Publication Publication Date Title
US6615912B2 (en) Porous vapor valve for improved loop thermosiphon performance
US10514211B2 (en) Vapor chamber
JP2008522129A (en) Steam chamber with boil-enhancing multi-wick structure
TWI289655B (en) Heat pipe
KR20040088554A (en) Capillary evaporator
WO1999034438A1 (en) Heat sink
CN101311662A (en) Flat type evaporator radiation system
CN112702899B (en) Ultrathin vapor chamber based on self-wetting fluid as working fluid and application thereof
JPH03156293A (en) Liquid metal heat pipe structure operated in bottom heating mode
CN214177905U (en) Ultrathin soaking plate based on self-wetting fluid as working solution
JP2007003034A (en) Cooling device
JP5300394B2 (en) Micro loop heat pipe evaporator
TW201032696A (en) Superconducting element structure
US3994336A (en) Transformer for heat pipes
JP2002062071A (en) Flat plate type heat pipe
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
US20020074108A1 (en) Horizontal two-phase loop thermosyphon with capillary structures
JP3049453B2 (en) Semiconductor cooling device
JP2000150749A (en) Heat sink
CN216282942U (en) Temperature equalizing plate
JP2016133287A (en) Loop type heat pipe
KR102183239B1 (en) Tgp unit, tgp unit intergreted heat sink and method of manufacturing tgp unit
JP2562180B2 (en) Boiling cooling type semiconductor device
KR102407158B1 (en) Vapor chamber with expanded heat dissipation surface area and manufacturing method thereof
KR100363446B1 (en) Rib Type Heat Pipe Cookwares

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term