JPH03156259A - Absorption type cold/hot water producer - Google Patents

Absorption type cold/hot water producer

Info

Publication number
JPH03156259A
JPH03156259A JP29504589A JP29504589A JPH03156259A JP H03156259 A JPH03156259 A JP H03156259A JP 29504589 A JP29504589 A JP 29504589A JP 29504589 A JP29504589 A JP 29504589A JP H03156259 A JPH03156259 A JP H03156259A
Authority
JP
Japan
Prior art keywords
absorber
solution
refrigerant
absorption type
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29504589A
Other languages
Japanese (ja)
Inventor
Michihiko Aizawa
相沢 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29504589A priority Critical patent/JPH03156259A/en
Publication of JPH03156259A publication Critical patent/JPH03156259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To interrupt the operation of load side instruments in diluting operation by connecting a refrigerant tank absorber of an evaporator and a solution lower header through opening/closing means which is closed upon power supply and opened upon interruption of the power supply. CONSTITUTION:There is installed, between a refrigerant tank 16 and a solution lower header 6, a piping 20 including opening/closing means which is closed upon power supply and close upon interruption of the power supply, say, a solenoid valve 19, one end of which piping 20 is opened to a proper height in the refrigerant tank 16 and the other end of which is opened to the lower header 6 of an absorber A. When the operation is interrupted and diluted operation is started, a refrigerant pump 3 and a heat source 10 are interrupted, with a solution pump 7 successively in operation. A refrigerant is thus prevented from being sprayed on a group of pipes of the evaporator, and although cooling water is immediately interrupted from its flowing there is no fear that cooling water in the evaporator pipes is excessively cooled and frozen. Thereupon, since the solenoid valve 19 is also opened simultaneously, a predetermined amount of the refrigerant remaining in the refrigerant tank 16 flows into the absorber lower header 6 and hence a diluted solution is fed by the solution pump 7 to both regenerators for dilution of the whole system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収式冷温水機、特に空冷のものに好適な吸
収式冷温水機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absorption type water chiller/heater, particularly an absorption type water chiller/heater suitable for air-cooling.

〔従来の技術〕[Conventional technology]

従来、水冷の吸収式冷温水機において、冷媒ブロ一方式
のものがある。
BACKGROUND ART Conventionally, among water-cooled absorption type water coolers and hot water machines, there is one type that uses a refrigerant blower.

なお、この種のものとして関連するものに例えば特開昭
63−65257号公報記載のものが挙げられる。
Incidentally, related examples of this type include those described in Japanese Unexamined Patent Publication No. 63-65257.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、冷媒タンクを蒸発器より上に設け、か
つ、蒸発器用の冷媒ポンプを具備していないので、凝縮
器からの戻り冷媒のみを、蒸発器管群上にスプレィする
都合上、蒸発器の伝熱係数が悪化し、大形の蒸発器にす
る必要がある。
In the above-mentioned conventional technology, the refrigerant tank is provided above the evaporator, and the refrigerant pump for the evaporator is not provided. The heat transfer coefficient of the evaporator deteriorates, requiring a larger evaporator.

又、吸収式冷温水機は、熱媒として臭化リチウム水溶液
を使用しており、この水溶液の濃度は。
In addition, absorption type water cooler/heater uses a lithium bromide aqueous solution as a heat medium, and the concentration of this aqueous solution is .

運転中最高濃度部分で、65%程度に達し、このまま放
置すると、停止時結晶が析出するので、般に停止時結晶
析出を防止するための稀釈運転が行なわれる。
At the highest concentration during operation, the concentration reaches about 65%, and if left as is, crystals will precipitate when stopped, so dilution operation is generally performed to prevent crystal precipitation when stopped.

稀釈運転は、加熱源を加えることなく溶液及び冷媒ポン
プを運転し、濃溶液による残留吸収能力を放出させて冷
媒を吸収させ、結果として液の濃度を放置しても結晶が
析出しない程度に迄稀薄にする操作である。従って稀釈
運転中は、全負荷運転時に比較して能力は減少するもの
の、若干の冷凍能力が発生し、このために冷水ポンプ、
空調機など負荷側の機器を運転しつづけることが必要で
あった。
In dilution operation, the solution and refrigerant pumps are operated without adding a heating source, and the residual absorption capacity of the concentrated solution is released to absorb the refrigerant.As a result, the concentration of the liquid is increased to such an extent that crystals do not precipitate even if left unattended. It is a dilution operation. Therefore, during dilution operation, although the capacity is reduced compared to full-load operation, some refrigeration capacity is generated, and for this reason, the chilled water pump,
It was necessary to continue operating load-side equipment such as air conditioners.

これは、1つの建物を中央に放置した冷温水機で空調す
る場合など、あらかじめ稀釈に要する時間を考慮して運
転を停止し、残留能力で冷房しつつ、稀釈完了後に負荷
側の機器を停止するなどの方法をとることもできるが、
近年の様に空調に対する要求が多様化し、同じビルの中
でも、フロア−によりまた室毎に冷房を必要とする部分
としない部分とが混在する様な状況では、中央で一括し
て機械の発停をする方法は必ずしも便利でなくなってき
て、室毎の端末に発停装置を取りつけ、ここからの指令
で、必要な部屋数に見合う冷房をする分散空調方式が増
加してきた。この方式においては、いつすべての必要冷
房負荷がゼロになるかわからないので稀釈運転中の負荷
側の機器の運転が非常に菫しくなるという欠点があった
When a building is air-conditioned using a water cooler/heater left in the center, operation is stopped in advance by considering the time required for dilution, cooling is performed using the remaining capacity, and the equipment on the load side is stopped after dilution is completed. You can also take methods such as
In recent years, demands for air conditioning have become more diverse, and even within the same building, there are parts that require cooling and parts that do not need cooling, depending on the floor or room. This method is no longer necessarily convenient, and more and more distributed air conditioning systems are being used, in which a turn-on/off device is attached to a terminal in each room, and commands are sent from this device to cool the required number of rooms. This method has the disadvantage that it is not known when all the required cooling loads will reach zero, so the operation of the equipment on the load side during dilution operation becomes extremely turbulent.

すなわち、冷房を必要とする部屋がないのに稀釈運転を
続行すると、冷凍能力は部屋を冷やす為には用いられず
専ら、冷水配管の中を循環している少量の冷水を冷やす
為に用いられるので、冷水温度は急速に低下し、凍結に
至り、体積膨張のために冷水系伝熱管を破裂させるなど
の重大故障をひきおこす原因となるという問題があった
In other words, if dilution operation continues even though there is no room that requires cooling, the refrigeration capacity will not be used to cool the room, but will be used exclusively to cool the small amount of cold water circulating in the cold water pipes. Therefore, there was a problem in that the temperature of the chilled water rapidly decreased, resulting in freezing, which caused serious failures such as rupture of the chilled water system heat transfer tubes due to volumetric expansion.

つまり吸収式冷温水機は、その稀釈運転の故に分散空調
方式には向かない冷温水であるとされており、稀釈運転
中に負荷側の機器を停止することができるようにするこ
とが、吸収式冷温水機を分散空調方式に使用するための
大きな技術改善であった。
In other words, absorption type water chillers and hot water machines are said to produce chilled and hot water that is not suitable for distributed air conditioning systems due to their dilution operation. This was a major technological improvement for the use of water coolers and hot water machines in distributed air conditioning systems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、蒸発器の冷媒タンクと前記
吸収器とを通電時に閉、非通電時に開となる開閉手段で
接続したものである。そして運転を停止し、これから稀
釈運転に入ろうとする時間に、この開閉手段を開とし、
冷媒タンク内に保持されている冷媒のうちの一定量が溶
液タンク内に流入するようにした。さらにこれと同時に
冷媒ポンプを停止し、冷媒が蒸発器管群に撒散され冷凍
能力を発揮するのを瞬間的に停止させるようにした。
In order to achieve the above object, the refrigerant tank of the evaporator and the absorber are connected by an opening/closing means that is closed when energized and opened when not energized. Then, when the operation is stopped and the dilution operation is about to start, this opening/closing means is opened,
A certain amount of the refrigerant held in the refrigerant tank was made to flow into the solution tank. Furthermore, at the same time, the refrigerant pump was stopped, thereby instantaneously stopping the refrigerant from being spread into the evaporator tube group and exerting its refrigerating ability.

これに加えて溶液ポンプのみは運転を継続させ冷媒タン
ク内の冷媒を落して稀釈された溶液を再生器側に送り込
み、全体サイクルを均一な稀釈溶液とするための液循環
を行ない、この運転時間をタイマーまたは再生器からの
戻り溶液の温度を検知することによって、決定するよう
にした。
In addition to this, only the solution pump continues to operate, dropping the refrigerant in the refrigerant tank and sending the diluted solution to the regenerator side, and circulating the liquid to make the entire cycle a uniform diluted solution. was determined by a timer or by sensing the temperature of the return solution from the regenerator.

さらに停電時などにも、冷媒タンク内の冷媒を溶液側に
自動的に送り込むことができるので結晶発生防止に役立
つ様にした。
Furthermore, even in the event of a power outage, the refrigerant in the refrigerant tank can be automatically sent to the solution side, which helps prevent crystal formation.

〔作用〕[Effect]

空冷吸収式冷温水機においては、空気で溶液を冷却しな
くてはならないので、吸収器は伝熱管内に溶液を流し、
伝熱管外にフィンなどを付けて、空気側の伝熱向上をは
かつている。
In an air-cooled absorption type water cooler/heater, the solution must be cooled with air, so the absorber flows the solution into a heat transfer tube,
Fins are attached to the outside of the heat transfer tube to improve heat transfer on the air side.

このため、伝熱管は垂直に設置し、上部から伝熱管の内
面に沿って濃溶液を流下させ、外気によって冷却し、伝
熱管の内部を流れる水蒸気を吸収させる構造となってい
る。
For this reason, the heat exchanger tube is installed vertically, and the structure is such that a concentrated solution flows down from the top along the inner surface of the heat exchanger tube, is cooled by the outside air, and absorbs the water vapor flowing inside the heat exchanger tube.

これらの配置構造上の必要から溶液タンクは垂直伝熱管
の下部に配置し、かつ蒸発器から流入する蒸気は垂直伝
熱管の上部に近い位置に置くことが圧損低減のために必
要なので、自ら蒸発器、冷媒タンクは、冷温水機の上部
に設けられる。従って、必ず冷媒が溶液側に向って流れ
込む方向になり、逆に溶液が冷媒側に流入することはあ
り得ない6冷媒タンクの中の冷媒量が多い時でも少ない
時でも、いつでも必要な稀釈量の冷媒が正確に溢流する
。たとえば停止する前のサイクル内の溶液濃度がすでに
十分稀い時には、冷媒タンクの中の冷媒量は少ないので
、流下する冷媒量は少なくなり、不必要に稀釈しすぎる
ということがない。
Due to these structural requirements, the solution tank is placed at the bottom of the vertical heat transfer tube, and the steam flowing in from the evaporator needs to be placed close to the top of the vertical heat transfer tube in order to reduce pressure drop, so it can evaporate by itself. The container and refrigerant tank are installed at the top of the water cooler/heater. Therefore, the refrigerant always flows in the direction toward the solution side, and conversely, the solution cannot flow into the refrigerant side. 6. Regardless of whether the amount of refrigerant in the refrigerant tank is large or small, the dilution amount required at any time. refrigerant overflows accurately. For example, when the solution concentration in the cycle is already sufficiently dilute before stopping, the amount of refrigerant in the refrigerant tank is small, so the amount of refrigerant flowing down is small, and unnecessary over-dilution is not caused.

また、停電時には開閉手段が開き冷媒は溶液タンクに流
入する。これだけでは再生器側の溶液を稀釈したことに
はならないが、停電がおこると溶液を吸収器から再生器
に送り上げている溶液ポンプも停止するので、再生器側
の大気圧近い圧力と。
Further, in the event of a power outage, the opening/closing means opens and the refrigerant flows into the solution tank. This alone does not mean that the solution on the regenerator side has been diluted, but if a power outage occurs, the solution pump that sends the solution from the absorber to the regenerator will also stop, so the pressure on the regenerator side will be close to atmospheric pressure.

真空に近い吸収器側の圧力差により、熱交換器内などの
濃溶液が全部−旦吸収器側に押し戻され、溶液タンク内
の稀釈された溶液に混じって、その抜栓々に戻ってくる
ので、例えば配管途中における結晶がおこらなくなると
いう効果を発揮することができる。
Due to the pressure difference on the absorber side, which is close to vacuum, all of the concentrated solution in the heat exchanger is pushed back to the absorber side, mixes with the diluted solution in the solution tank, and returns to the valves. For example, the effect of preventing crystallization in the middle of piping can be achieved.

〔実施例〕〔Example〕

以下1本発明の一実施例について第1図に従って説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

冷房に供される冷水1は、蒸発器2の管内を流れる際、
冷媒ポンプ3により管群上にスプレーされる冷媒に蒸発
熱を奪われて蒸発気化する。この蒸気は、吸収器Aの上
部ヘッダ4に流入し、スプレーされる濃溶液に管群5の
中で吸収され稀溶液となって下部ヘッダ6に溜る。稀溶
液は、溶液ポンプ7により低温再生器8及び高温再生器
9に送り込まれ、各々の再生器で加熱濃縮される。高温
再生器9では熱源10がバーナ11に供給されて内部で
燃焼し1発生した蒸気は低温再生器8の管内で凝縮し凝
縮器Cの上部へラダ12に供給される。この際低温再生
器管外で発生した蒸気はダクト13を経て直接凝縮器1
2に至る0両再生器で加熱濃縮された濃溶液は、熱交換
器14を経て、溶液ポンプ7から来た稀溶液の一部と共
にヘッダ4に撒布される。一方凝縮器管群15で凝縮液
化した冷媒は、冷媒タンク16に戻り冷媒タンク16内
の冷媒と共に冷媒ポンプ3により蒸発器管群上に撒布さ
れる0機器の上部には、冷却用のファン17がモータ1
8により駆動され、空冷吸収器A及び空冷凝縮器Cを冷
却する空気を排出している。
When the cold water 1 used for cooling flows through the pipe of the evaporator 2,
The refrigerant sprayed onto the tube group by the refrigerant pump 3 takes away the heat of evaporation and evaporates. This vapor flows into the upper header 4 of the absorber A, is absorbed by the sprayed concentrated solution in the tube bank 5, and becomes a dilute solution which accumulates in the lower header 6. The dilute solution is sent to a low temperature regenerator 8 and a high temperature regenerator 9 by a solution pump 7, and is heated and concentrated in each regenerator. In the high-temperature regenerator 9, a heat source 10 is supplied to a burner 11 and burned therein, and the generated steam is condensed in the pipes of the low-temperature regenerator 8 and is supplied to the upper part of the condenser C to the rudder 12. At this time, the steam generated outside the low temperature regenerator tube passes through the duct 13 and directly into the condenser 1.
The concentrated solution heated and concentrated in the regenerator 2 passes through the heat exchanger 14 and is sprayed onto the header 4 along with a portion of the diluted solution coming from the solution pump 7. On the other hand, the refrigerant condensed and liquefied in the condenser tube group 15 returns to the refrigerant tank 16 and is distributed together with the refrigerant in the refrigerant tank 16 onto the evaporator tube group by the refrigerant pump 3.A cooling fan 17 is installed at the top of the equipment. is motor 1
8, and discharges air that cools the air-cooled absorber A and the air-cooled condenser C.

冷媒タンク16と溶液下部へラダ6との間には、通電時
に閉、非通電時に閉となる開閉手段、例えば電磁弁19
をもつ配管20が設置され、配管20の一端は冷媒タン
ク16内の適当な高さに開口しており、他端は吸収器A
の下部ヘッダ6に開口している。
Between the refrigerant tank 16 and the ladder 6 to the lower part of the solution, there is an opening/closing means, such as a solenoid valve 19, which is closed when energized and closed when de-energized.
One end of the pipe 20 is opened to an appropriate height inside the refrigerant tank 16, and the other end is connected to the absorber A.
It opens into the lower header 6 of.

運転を停止して稀釈動作に入る時には、まず冷媒ポンプ
3.熱源10が停止され、溶液ポンプ7は運転を継続し
ている。冷媒ポンプ3が停止されるので、冷媒は、もは
や蒸発器管群上にスプレィされることはなくなり、冷水
はただちに流れを停止しても、蒸発器C管内に残留する
冷水が過度に冷却されて凍結に至る心配はない。
When stopping operation and starting dilution operation, first the refrigerant pump 3. The heat source 10 is stopped, and the solution pump 7 continues to operate. Since the refrigerant pump 3 is stopped, refrigerant is no longer sprayed onto the evaporator tube bank, and even though the chilled water immediately stops flowing, the remaining chilled water in the evaporator C tubes is not over-cooled. There is no need to worry about freezing.

この時電磁弁19も同時に開くので、冷媒タンク16内
に残留している冷媒のうち一定量は、吸収器下部へラダ
6に流入し稀釈された溶液は溶液ポンプ7により両再生
器に送られ、系全体の稀釈が実行される。この間冷却フ
ァン17及びモータ18も停tt=しているので、稀釈
中の必要な動力は。
At this time, the solenoid valve 19 is also opened, so a certain amount of the refrigerant remaining in the refrigerant tank 16 flows into the ladder 6 into the lower part of the absorber, and the diluted solution is sent to both regenerators by the solution pump 7. , a dilution of the entire system is performed. During this time, the cooling fan 17 and motor 18 are also stopped, so the power required during dilution is:

溶液ポンプ7を運転するわずかの電力のみとなり、省エ
ネルギーにも役立つ。
Only a small amount of electric power is required to operate the solution pump 7, which is useful for energy saving.

溶液ポンプ7を運転する時間を決める方法は例えば単に
タイマーで所定時間運転するか又は運転を停止した時点
で(すでにある程度溶液濃度が稀くなっているならば、
一定時間の稀釈は無駄なので)高温再生器戻り液温検出
器21低温再生器戻り液温検出器22合流後の液温検出
器23などの位置での液温か所定値以下になるまで運転
するように制御装置24が溶液ポンプ7に指示する。
The method of determining the time to operate the solution pump 7 is, for example, by simply operating it for a predetermined time using a timer, or by stopping the operation (if the solution concentration has already become rare to a certain extent,
Since dilution for a certain period of time is wasteful), operate until the liquid temperature at a position such as the high temperature regenerator return liquid temperature detector 21, the low temperature regenerator return liquid temperature detector 22, or the liquid temperature detector 23 after merging, becomes below a predetermined value. The controller 24 instructs the solution pump 7 to:

なお、本実施例によれば、運転中に停電した場合などで
も、冷媒タンク16内の冷媒が下部タンク6に流下し、
かつ溶液ポンプ7も停止するので、高温再生器9からの
圧力で、途中配管や、液液熱交換器14内の溶液が吸収
器側に押し戻され、下部タンク6内の稀釈液と混合して
、全体の液濃度が稀くなった後、高温再生器9内の圧力
が下がるにつれて、再び精液が配管及び熱交換器14内
を満たすので、結晶が起きにくい、この場合は、ポンプ
7をまわしでの稀釈に比べて高温再生器9内に滞溜して
いる液は、濃いままで残るので完全な意味での稀釈には
ならないが、通路が確保されているので、復電後の運転
が非常にやりやすくなる。
According to this embodiment, even if there is a power outage during operation, the refrigerant in the refrigerant tank 16 will flow down to the lower tank 6,
In addition, since the solution pump 7 is also stopped, the pressure from the high temperature regenerator 9 pushes the solution in the intermediate pipes and the liquid-liquid heat exchanger 14 back to the absorber side, and mixes it with the diluted solution in the lower tank 6. After the overall liquid concentration becomes diluted, as the pressure inside the high-temperature regenerator 9 decreases, semen fills the piping and the heat exchanger 14 again, making it difficult for crystals to occur.In this case, turn the pump 7. Compared to the dilution at It becomes very easy to do.

以上述べた様に本実施例で稀釈中の冷水ポンプ、冷却フ
ァンモータ等を運転停止できるので、分散空調などのよ
うに、稀釈中の冷水ポンプの運転ができない場合の冷温
水機として最適であり、従来困難とされた吸収式による
分散空調を可能にするものである。
As mentioned above, this embodiment can stop the operation of the chilled water pump, cooling fan motor, etc. during dilution, so it is ideal as a water cooler/heater for cases where the chilled water pump cannot be operated during dilution, such as in distributed air conditioning. This makes it possible to perform absorption-type distributed air conditioning, which was previously considered difficult.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、稀釈運転において、冷媒タンク内の冷
媒を自動的に溶液側に移し、溶液ポンプのみの運転によ
り稀釈が完了するので、冷水ポンプの即時停止などの運
転が可能となる。
According to the present invention, during dilution operation, the refrigerant in the refrigerant tank is automatically transferred to the solution side, and dilution is completed by operating only the solution pump, so operations such as immediate stop of the cold water pump are possible.

また停電などの場合にも、ポンプ類の運転をすることな
く、吸収器内の溶液を稀釈し、さらに高温再生器、低温
再生器と吸収器の間の管路および液々熱交換器内の溶液
を稀釈することができる。
In addition, in the event of a power outage, the solution in the absorber can be diluted without operating pumps, and the pipes between the high-temperature regenerator, low-temperature regenerator and absorber, and the liquid-liquid heat exchanger can be diluted. The solution can be diluted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の吸収式冷温水機のシステム図である。 2・・・蒸発器、3・・・冷媒ポンプ、7・・・溶液ポ
ンプ、8・・・低温再生器、9・・・高温再生器、19
・・・電磁弁、21・・・高温再生器戻り液温検出器、
22・・・低温再生器戻り液温検出器、23・・・合流
後の戻り液温検%l  図 C−擬催券
FIG. 1 is a system diagram of an absorption type water chiller/heater according to the present invention. 2... Evaporator, 3... Refrigerant pump, 7... Solution pump, 8... Low temperature regenerator, 9... High temperature regenerator, 19
... Solenoid valve, 21 ... High temperature regenerator return liquid temperature detector,
22... Low temperature regenerator return liquid temperature detector, 23... Return liquid temperature measurement after merging %l Figure C - Simulated ticket

Claims (1)

【特許請求の範囲】 1、蒸発器、再生器、吸収器、凝縮液々熱交換器及びポ
ンプを備える吸収式冷温水機において、前記蒸発器の冷
媒タンクと前記吸収器とを通電時に閉、非通電時に開と
なる開閉手段で接続することを特徴とする吸収式冷温水
機。 2、請求項1記載のものにおいて、吸収器及び凝縮器が
空冷であることを特徴とする冷温水機。 3、蒸発器、再生器、吸収器、凝縮器、液々熱交換器及
びポンプを備える吸収式冷温水機において、前記蒸発器
の冷媒タンクと前記吸収器とを通電時に閉、非通電時に
開となる開閉手段と、冷温水機の運転を停止し、かつ冷
媒ポンプを停止した後、溶液ポンプを所定時間運転する
制御装置とを設けることを特徴とする吸収式冷温水機。 4、請求項3記載のものにおいて、吸収器及び凝縮器が
空冷であることを特徴とする吸収式冷温水機。 5、蒸発器、再生器、吸収器、凝縮器、液々熱交換器、
及びポンプを備える吸収式冷温水機において、前記蒸発
器の冷媒タンクと前記吸収器とを通電時に閉、非通電時
に開となる開閉手段と、冷温水機の運転を停止し、かつ
冷媒ポンプを停止した後、溶液ポンプを高温再生器から
の戻り溶液の温度が所定値になるまで運転する制御装置
とを設けることを特徴とする吸収式冷温水機。 6、請求項5記載のものにおいて、吸収器及び凝縮器が
空冷であることを特徴とする吸収式冷温水機。 7、請求項5記載のものにおいて、高温再生器から戻る
溶液の液温を検出する液温検出器を設け、この液温検出
器からの信号によつて制御装置を制御することを特徴と
する吸収式冷温水機。 8、蒸発器、再生器、吸収器、凝縮器、液々熱交換器、
及びポンプを備える吸収式冷温水機において、前記蒸発
器の冷媒タンクと前記吸収器とを通電時に閉、非通電時
に開となる開閉手段と、冷温水機の運転を停止し、かつ
冷媒ポンプを停止した後、溶液ポンプを低温再生器から
の戻り溶液の温度が所定値になるまで運転する制御装置
を設けることを特徴とする吸収式冷温水機。 9、請求項8記載のものにおいて、吸収器及び凝縮器が
空冷であることを特徴とする吸収式冷温水機。 10、請求項8項記載のものにおいて、低温再生器から
戻る溶液の液温を検出する液温検出器を設け、この液温
検出器からの信号によつて制御装置を制御することを特
徴とする吸収式冷温水機。
[Claims] 1. In an absorption type water chiller/heater comprising an evaporator, a regenerator, an absorber, a condensate liquid heat exchanger, and a pump, the refrigerant tank of the evaporator and the absorber are closed when energized; An absorption type water chiller/heater characterized by being connected by an opening/closing means that opens when power is not applied. 2. The water chiller/heater according to claim 1, wherein the absorber and the condenser are air-cooled. 3. In an absorption type water chiller/heater equipped with an evaporator, a regenerator, an absorber, a condenser, a liquid-liquid heat exchanger, and a pump, the refrigerant tank of the evaporator and the absorber are closed when energized and open when not energized. What is claimed is: 1. An absorption type water chiller/heater comprising: an opening/closing means, and a control device that operates a solution pump for a predetermined period of time after stopping operation of the chiller/heater and stopping a refrigerant pump. 4. The absorption type water chiller/heater according to claim 3, wherein the absorber and the condenser are air-cooled. 5. Evaporator, regenerator, absorber, condenser, liquid-liquid heat exchanger,
and an absorption type water chiller/heater equipped with a pump, an opening/closing means that closes the refrigerant tank of the evaporator and the absorber when energized and opens when not energized; 1. An absorption chiller/heater comprising: a control device that operates the solution pump after the solution pump is stopped until the temperature of the solution returned from the high-temperature regenerator reaches a predetermined value. 6. The absorption type water chiller/heater according to claim 5, wherein the absorber and the condenser are air-cooled. 7. The device according to claim 5, characterized in that a liquid temperature detector is provided to detect the temperature of the solution returned from the high temperature regenerator, and the control device is controlled by a signal from the liquid temperature detector. Absorption type water cooler/heater. 8. Evaporator, regenerator, absorber, condenser, liquid-liquid heat exchanger,
and an absorption type water chiller/heater equipped with a pump, an opening/closing means that closes the refrigerant tank of the evaporator and the absorber when energized and opens when not energized; 1. An absorption type cold/hot water machine characterized by being provided with a control device that operates the solution pump after the solution pump is stopped until the temperature of the solution returned from the low-temperature regenerator reaches a predetermined value. 9. The absorption type water chiller/heater according to claim 8, wherein the absorber and the condenser are air-cooled. 10. The device according to claim 8, characterized in that a liquid temperature detector is provided to detect the temperature of the solution returned from the low-temperature regenerator, and the control device is controlled by a signal from the liquid temperature detector. Absorption type water cooler/heater.
JP29504589A 1989-11-15 1989-11-15 Absorption type cold/hot water producer Pending JPH03156259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29504589A JPH03156259A (en) 1989-11-15 1989-11-15 Absorption type cold/hot water producer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29504589A JPH03156259A (en) 1989-11-15 1989-11-15 Absorption type cold/hot water producer

Publications (1)

Publication Number Publication Date
JPH03156259A true JPH03156259A (en) 1991-07-04

Family

ID=17815608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29504589A Pending JPH03156259A (en) 1989-11-15 1989-11-15 Absorption type cold/hot water producer

Country Status (1)

Country Link
JP (1) JPH03156259A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160566A (en) * 1980-05-15 1981-12-10 Daikin Ind Ltd Suction type refrigerating machine
JPS5831262A (en) * 1981-08-19 1983-02-23 三洋電機株式会社 Preventive device for crystallization of absorbing liquid of absorption heat pump
JPS6217765B2 (en) * 1979-12-18 1987-04-20 Hitachi Ltd
JPH01273964A (en) * 1988-04-25 1989-11-01 Sanyo Electric Co Ltd Absorption refrigerating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217765B2 (en) * 1979-12-18 1987-04-20 Hitachi Ltd
JPS56160566A (en) * 1980-05-15 1981-12-10 Daikin Ind Ltd Suction type refrigerating machine
JPS5831262A (en) * 1981-08-19 1983-02-23 三洋電機株式会社 Preventive device for crystallization of absorbing liquid of absorption heat pump
JPH01273964A (en) * 1988-04-25 1989-11-01 Sanyo Electric Co Ltd Absorption refrigerating machine

Similar Documents

Publication Publication Date Title
JP2560550B2 (en) Absorption cooling / heating device and control method thereof
JP2960218B2 (en) Control method of absorption air conditioner
JP2000018762A (en) Absorption refrigerating machine
CN116358141A (en) Air conditioner refrigeration control system and control method thereof
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP2002295917A (en) Control method for absorption freezer
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPH03156259A (en) Absorption type cold/hot water producer
JP2003004334A (en) Waste heat recovery air conditioner
JP3448680B2 (en) Absorption air conditioner
JP2003004330A (en) Exhaust heat recovery air conditioner
JP2639969B2 (en) Absorption refrigerator
JP2984459B2 (en) Absorption chiller / heater
JP2779422B2 (en) Absorption chiller / heater
JP3167491B2 (en) Absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JPH05312430A (en) Absorption refrigerator
JPH06294559A (en) Absorption water cooling/heating apparatus
JP4105463B2 (en) Air conditioning system
JP3157668B2 (en) Absorption chiller / heater
JPH11304275A (en) Absorption refrigerating machine
JPH0814689A (en) Control of number of parallel installation type absorption freezers set in operation