JPH03155677A - Mosfet of conductivity modulation type - Google Patents
Mosfet of conductivity modulation typeInfo
- Publication number
- JPH03155677A JPH03155677A JP5308590A JP5308590A JPH03155677A JP H03155677 A JPH03155677 A JP H03155677A JP 5308590 A JP5308590 A JP 5308590A JP 5308590 A JP5308590 A JP 5308590A JP H03155677 A JPH03155677 A JP H03155677A
- Authority
- JP
- Japan
- Prior art keywords
- region
- bipolar transistor
- junction
- electrode
- high resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 230000003071 parasitic effect Effects 0.000 abstract description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000000969 carrier Substances 0.000 description 11
- 235000012431 wafers Nutrition 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 6
- 229910021332 silicide Inorganic materials 0.000 description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 1
- 241000155247 Ixos Species 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電力用スイッチング素子として用いられる伝
導度変調型MO3FETに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conductivity modulated MO3FET used as a power switching element.
近年、電力用スイッチング素子への要望はより高速そし
て高耐圧、高電力デバイスへとますます拡大しつつある
。このような背景のもと、大電力MO3FET (絶縁
型大電力MO3FET)がスイッチング電源用途を主体
として大きな伸長をみせている。また一方、伝導度変調
型MOSFET(!GBT)は、従来のバイポーラトラ
ンジスタより高耐圧、高電力そしてより高速なスイッチ
ングデバイスとして、特にインバータ制御用途にその主
用途を広げ、ますますその応用分野を広げようとしてい
る。In recent years, the demand for power switching elements has been expanding to higher speed, higher voltage resistance, and higher power devices. Against this background, high-power MO3FETs (insulated high-power MO3FETs) are showing great growth, mainly for switching power supply applications. On the other hand, conductivity modulated MOSFETs (!GBTs) are used as switching devices with higher breakdown voltage, higher power, and higher speed than conventional bipolar transistors, and their main applications are expanding, especially to inverter control applications, and their field of application continues to expand. I am trying to do.
第2図はnチャネルIGBTの基本構造を示し、通常の
縦型DMO3といわれる大電力MO3FETのドレイン
領域となるn+領領域p+コレクタ領域1におきかえた
も・のということができる。このp中領域に接するn−
ドリフト領域20表面部にはpベース領域3が選択的に
形成され、このpペース領域30表面部には二つのn+
ソース領域4が、また中央部にはp領域より深いp゛ウ
エル5形成されている。n+ソース領域4とn−ドリフ
ト領域2の・露出部にはさまれたpベース領域3oにn
チャネルを形成するために、絶縁膜6を介してゲート端
子Gに接続されるゲート電極7が設けられてぃる。tt
AIR膜6に開けられたコンタクトホールにおいて、エ
ミッタ端子Eに接続されるエミッタ電極8がpウェル5
およびn+ソース領域4に接触している。また、p、′
コレクタ領域1にはコレクタ端子Cに接続されるコレク
タ電極9が接触している。FIG. 2 shows the basic structure of an n-channel IGBT, which can be said to be replaced with an n+ region p+ collector region 1 which becomes the drain region of a high power MO3FET called a normal vertical DMO3. n- which is in contact with this p middle region
A p base region 3 is selectively formed on the surface of the drift region 20, and two n+
A source region 4 is formed in the center, and a p well 5 deeper than the p region is formed. The p base region 3o sandwiched between the exposed portions of the n+ source region 4 and the n− drift region 2 is
A gate electrode 7 connected to a gate terminal G via an insulating film 6 is provided to form a channel. tt
In the contact hole opened in the AIR film 6, the emitter electrode 8 connected to the emitter terminal E is connected to the p-well 5.
and in contact with n+ source region 4. Also, p,′
A collector electrode 9 connected to a collector terminal C is in contact with the collector region 1 .
このIGETのエミッタ端子Eを接地し、ゲート端子G
およびコレクタ端子Cに正の電圧を印加すると、大電力
MO3FETと同じ原理でゲート電極7の下のpベース
層3の表面が反転して電子のチャネルが形成される。従
って、n−領域2がアース電位に接続された形となり、
p+コレクタ領域1から正孔電流が注入される。つまり
、高抵抗層領域であるn−ドリフト領域2に少数キャリ
ア(正孔)の注入がおこる。この少数キャリアの注入は
、電荷中性条件を満たすために多数キャリアである電子
の濃度をひきあげ、このn−領域2の抵抗を大幅に低減
させる、いわゆる伝導度変調効果によってオン抵抗が十
分低いデバイスとなる。The emitter terminal E of this IGET is grounded, and the gate terminal G
When a positive voltage is applied to the collector terminal C, the surface of the p base layer 3 under the gate electrode 7 is inverted to form an electron channel, based on the same principle as in a high-power MO3FET. Therefore, the n-region 2 is connected to the ground potential,
A hole current is injected from the p+ collector region 1. In other words, minority carriers (holes) are injected into the n-drift region 2, which is a high resistance layer region. This injection of minority carriers increases the concentration of electrons, which are majority carriers, in order to satisfy the charge neutrality condition, and the resistance of this n-region 2 is significantly reduced, resulting in a device with sufficiently low on-resistance due to the so-called conductivity modulation effect. becomes.
第3図の図中に示されているように、エミッタ電流はL
= lh+ Ixosであり、pベース領域3゜n−ド
リフト領域2. pゝコレクタ領域1からなるpnp
)ランリスタ21の電流利得をαPIIP とじたてx
h(正孔電流)が変化し、つまり+ GBTの電流が変
化する。I gosは電子電流である。第4図はターン
オフ時の代表的なスイッチング波形であって、第一、第
二のフェイズ41.42があることがわかる。第一の期
間41ではチャネルが消え、電子電流が0になるために
、その分だけ瞬時に電流が減少する。次の第二の期間で
は、n−層中に残留したキャリアによって、pn−p+
バイポーラトランジスタの作用で流れる電流が、オーブ
ンベース状態に、おいて、キャリアの寿命τによる再結
合消滅で減少する。従って、この領域は正孔電流の注入
レベルあるいはキャリア寿命τによって決まる。より高
周波化へ対応できる素子とするために、従来は、pゝ基
板とn−高抵抗領域間にバッファn1層を形成し正孔電
流の注入レベルを制御すること(I EEE、 I
EDM Technical Digest、 4.
3(1983)pp、 79 =82参照)、あるいは
p+基板の濃度をコントロールすること、または、キャ
リア寿命τを低減するために電子線照射あるいは重金属
拡散などのライフタイムコントロールプロセスを適用す
ること(I E E E 、 Trans、 1E1e
ctron、 Eロー31(1984)pp、 179
0〜1795参照)が行われていた。しかし、これまで
の方法では、オン電圧との強いトレードオフ関係が存在
していた。p“基板領域あるいは別な1譲へのキャリア
のひき出し方法が適用できれば、このトレードオフを大
幅に改善できるものと考えられる。As shown in FIG. 3, the emitter current is L
= lh+ Ixos, p base region 3° n-drift region 2. pnp consisting of pゝcollector region 1
) The current gain of the run lister 21 is αPIIP.
h (hole current) changes, that is, +GBT current changes. I gos is the electron current. FIG. 4 shows a typical switching waveform at turn-off, and it can be seen that there are first and second phases 41 and 42. In the first period 41, the channel disappears and the electron current becomes 0, so the current instantly decreases by that amount. In the next second period, pn-p+
The current flowing due to the action of the bipolar transistor decreases in the oven base state due to recombination annihilation due to carrier lifetime τ. Therefore, this region is determined by the hole current injection level or carrier lifetime τ. In order to make the device compatible with higher frequencies, conventionally, a buffer n1 layer was formed between the p substrate and the n high resistance region to control the hole current injection level (I EEE, I
EDM Technical Digest, 4.
3 (1983) pp. 79 = 82), or by controlling the concentration of the p+ substrate, or by applying lifetime control processes such as electron beam irradiation or heavy metal diffusion to reduce the carrier lifetime τ (I EEE, Trans, 1E1e
ctron, E Law 31 (1984) pp, 179
0 to 1795) was performed. However, in the conventional methods, there has been a strong trade-off relationship with the on-voltage. It is believed that this trade-off can be greatly improved if a method for extracting carriers to the p'' substrate region or another method can be applied.
さて、IGBTにはさらに大きな一つの問題が存在して
いる。それは、第3図に示すようにpnp寄生バイポー
ラトランジスタ21のほかに、n+ソース領域4.pベ
ース領域3. n−ドリフト領域2からなる寄生np
nバイポーラトランジスタ22が存在する。これらの寄
生バイポーラトランジスタはそれぞれ電流利得αPII
Pおよびα、−を有し、結果的にnpnpサイリスク構
造となっている。Now, there is one even bigger problem with IGBTs. As shown in FIG. 3, in addition to the pnp parasitic bipolar transistor 21, the n+ source region 4. p base region 3. Parasitic np consisting of n-drift region 2
An n bipolar transistor 22 is present. These parasitic bipolar transistors each have a current gain αPII
It has P and α, -, resulting in an npnp cyrisk structure.
それぞれの電流利得の和が1に等しくなるかまたはlよ
り大きくなるとき、すなわちaMPII+α1.。When the sum of the respective current gains is equal to 1 or greater than l, i.e. aMPII+α1. .
≧1においてサイリスタがオン状態になる現象、つまり
ラッチングをおこす。−たびラッチングをおこすと、I
GBTは電流のゲート制御を失い、ついに破壊に至る。≧1, a phenomenon in which the thyristor turns on, that is, latching occurs. -When latching occurs, I
The GBT loses current gate control and eventually breaks down.
この突然の破壊現象ラッチング破壊は、特にインバータ
制御応用では防止すべき重要課題の一つである。従来、
このラッチング現象の防止のために、それぞれの寄生ト
ランジスタの活性化を防止するため、p+ウェル5のベ
ース抵抗の低減(I E E E、 Trans、巳1
ectron、 Devicestin−32(+98
5)p、 2554参照)、pベース接合部の多数キャ
リアの低減あるいは素子のエミッタ・ベース接合部に接
近して集中する電流の低減(USPatent 4,8
09,045参照)などの方策が講じられてきた。しか
しながら、未だ従来素子であるバイポーラ大電力トラン
ジスタの破壊レベル(負荷短絡モード)に達していない
。いずれかのバイポーラトランジスタの電流利得を大幅
に低減することができればラッチング現象は大きく改善
できると考えられる。This sudden destructive phenomenon, latching failure, is one of the important issues to be prevented, especially in inverter control applications. Conventionally,
In order to prevent this latching phenomenon, in order to prevent the activation of each parasitic transistor, the base resistance of the p+ well 5 is reduced (I E E E, Trans, Mi 1
ectron, Devicestin-32 (+98
5) p, 2554), reduction of majority carriers in the p-base junction or reduction of current concentrated close to the emitter-base junction of the device (US Patent 4,8
09,045) have been taken. However, it has not yet reached the level of destruction (load short-circuit mode) of the conventional bipolar high-power transistor. It is believed that the latching phenomenon can be greatly improved if the current gain of any of the bipolar transistors can be significantly reduced.
本発明の目的は、上記の問題を解決し、デバイスのスイ
ッチング速度、特にフォールタイムとオン電圧のトレー
ドオフを大幅に改善するとともに、ラッチング現象を防
止するために基板内に形成される寄生バイポーラトラン
ジスタの電流利得αを低減したIGBTを提供すること
にある。The purpose of the present invention is to solve the above problems and significantly improve the switching speed of the device, especially the trade-off between fall time and on-voltage, as well as to prevent parasitic bipolar transistors formed in the substrate to prevent latching phenomena. An object of the present invention is to provide an IGBT with a reduced current gain α.
上記の目的を達成するために、本発明は、n型の半導体
層板の少なくとも一面側に高抵抗層を有し、この高抵抗
層の表面部にp型のベース領域が選択的に形成され、こ
のベース領域の表面部の端部に基板の露出部との間にチ
ャネル領域が残るようにn型のソース領域が選択的に形
成され、前記チャネル領域上にゲート絶縁膜を介してゲ
ート電極を備え、半導体基板の他面側に基板とショット
キーバリア接合を形成する電極が接触するものとする。In order to achieve the above object, the present invention has a high resistance layer on at least one side of an n-type semiconductor layer plate, and a p-type base region is selectively formed on the surface of the high resistance layer. An n-type source region is selectively formed so that a channel region remains between the end of the surface portion of the base region and the exposed portion of the substrate, and a gate electrode is formed on the channel region via a gate insulating film. , and an electrode forming a Schottky barrier junction with the substrate is in contact with the other surface of the semiconductor substrate.
絶縁ゲート構造と反対側の面で接触する電極と半導体基
板によりショットキーダイオード(SBD)が形成され
る。n型SBDにおいては、順バイアス時における主た
るキャリアは熱的に放出された電子である。しかしなが
ら、SBDの電流成分には金属側から半導体側への正孔
の注入による少数キャリア電流も存在する。1lhod
e著“MeLaiSe+n1conductor Co
ntacts ″(1978年)によれば、あられされ
る。ここで真性状態の電子密度をn。A Schottky diode (SBD) is formed by an electrode and a semiconductor substrate in contact on the opposite side of the insulated gate structure. In an n-type SBD, the main carriers during forward bias are thermally emitted electrons. However, the SBD current component also includes a minority carrier current due to hole injection from the metal side to the semiconductor side. 1lhod
Author: “MeLaiSe+n1conductor Co
ntacts'' (1978), where n is the electron density in the intrinsic state.
ドナー度をN、とじたときP、=n+’/N、+であり
、qは電子電荷絶対値、Dhはバルク半導体中の正孔の
拡散定数、Lはその広巾性領域の厚さである。When the donor degree is N, P = n+'/N, +, where q is the absolute value of electron charge, Dh is the diffusion constant of holes in the bulk semiconductor, and L is the thickness of the extensive region. .
そして、SBDのトータル電流J=Jh+J、に対する
少数キャリア(正孔)電流jhの比は正孔注入率γhで
あり、
となる。ここで八〇は実効リチャードソン定数である。Then, the ratio of the minority carrier (hole) current jh to the total current J=Jh+J of the SBD is the hole injection rate γh, which is as follows. Here, 80 is the effective Richardson constant.
一般的なSBDにおいては、φbzO,8eV、 N
d−=10”cm−’、 L; 5 Xl0−’am
程度であり、その時、rh>10−’ で正孔の注入は
一般的に無視できるほど小さい。これがSBDが多数キ
ャリアデバイスといわれるゆえんである。しかし上記理
論から障壁高さφ、を大きく、またはN1度を小さくす
れば、rhは10−2以上にできることがわかる。つま
り、少数キャリアの注入をショットキーバリア電極を利
用して実現できる。少数キャリアの注入が可能であれば
、n−高抵抗領域における伝導度変調がおこり、オン電
圧を低減できる。そして、少数キャリアの注入レベルの
コントロールはバリア高すφbおよびNda度によって
できる。また、ショットキー接合を流れるトータル電流
Jが増加する時rhも大きくなることが知られており、
電流とともに大きな少数キャリアの注入が期待できる。In a general SBD, φbzO, 8eV, N
d-=10"cm-', L; 5 Xl0-'am
at rh>10-', the hole injection is generally negligible. This is why SBDs are called majority carrier devices. However, from the above theory, it can be seen that rh can be increased to 10-2 or more by increasing the barrier height φ or decreasing N1 degrees. In other words, injection of minority carriers can be realized using a Schottky barrier electrode. If minority carrier injection is possible, conductivity modulation occurs in the n-high resistance region and the on-state voltage can be reduced. The injection level of minority carriers can be controlled by adjusting the barrier height φb and the degree Nda. It is also known that when the total current J flowing through the Schottky junction increases, rh also increases.
A large amount of minority carriers can be expected to be injected along with current.
一方、スイッチオフ時を考えてみると、n−高抵抗領域
に蓄積された正孔、電子キャリアは、従来型のIGBT
であればベースオーブン時のオフ状態に等しく、はとん
どキャリアライフタイムτによる低減で制限されている
。しかし、本発明のショットキー接合型IGBTでは、
スイッチオフ時にn−高抵抗領域の電子は容易にドレイ
ン電極に引き込まれる。したがって、より早いスイッチ
ングオフ時間を達成可能となる。n−高抵抗領域におけ
るキャリア寿命rを従来’(7) I G B Tはど
には低減する必要がないこと、またショットキーバリア
電圧降下がPN接合拡散電位より小さいことからオン電
圧とスイッチング時間のトレードオフ関係を大幅に改善
できる。さらにもう一つの大きな課題であるラッチング
現象の防止についても、前記でそのメカニズムを説明し
たように、本発明では一つの寄生バイポーラトランジス
タはショットキー接合がエミッタである pn−pバイ
ポーラトランジスタ構造となり、このショットキー接合
エミッタpn−p、バイポーラトランジスタはその電流
利得αがpn接合 pn”’pバイポーラトランジリス
より大幅に低くなり、ラッチング現象からほとんどデバ
イスを回避させることができる。On the other hand, considering the switch-off time, the holes and electron carriers accumulated in the n-high resistance region are
If so, it is equivalent to the off state during the base oven, and is mostly limited by the reduction by carrier lifetime τ. However, in the Schottky junction IGBT of the present invention,
When the switch is turned off, electrons in the n-high resistance region are easily drawn into the drain electrode. Therefore, a faster switching off time can be achieved. Since there is no need to reduce the carrier life r in the n-high resistance region in the conventional '(7) IGBT, and the Schottky barrier voltage drop is smaller than the PN junction diffusion potential, the on-voltage and switching time can be reduced. The trade-off relationship can be significantly improved. Furthermore, regarding the prevention of the latching phenomenon, which is another major issue, as the mechanism was explained above, in the present invention, one parasitic bipolar transistor has a pn-p bipolar transistor structure in which the Schottky junction is the emitter. The Schottky junction emitter pn-p bipolar transistor has its current gain α much lower than the pn junction pn'''p bipolar transistor, which can largely avoid the device from latching phenomena.
以下、第2図と共通の部分に同一の符号を付した図を引
用して本発明のメタル・コレクタIGBTの実施例につ
いて説明する。第1図に示した実施例にふいては n−
高抵抗領域20表面部に第2図と同様のpベース領域3
、n2ソース領域4およびp+ウェル5が形成され、表
面上にはゲート酸化膜6および多結晶シリコンゲート電
極7を備えている。裏面側では、高抵抗領域2に直接シ
ョットキーバリア接合のための金属電極10が接触し、
図示しない示その上をはんだ付可能fJNi−Au層あ
るいはNi−Ag層が被覆している。Hereinafter, an embodiment of the metal collector IGBT of the present invention will be described with reference to a diagram in which parts common to those in FIG. 2 are given the same reference numerals. In the embodiment shown in FIG.
A p base region 3 similar to that shown in FIG. 2 is formed on the surface of the high resistance region 20.
, an n2 source region 4 and a p+ well 5 are formed, and a gate oxide film 6 and a polycrystalline silicon gate electrode 7 are provided on the surface. On the back side, a metal electrode 10 for Schottky barrier bonding is in direct contact with the high resistance region 2,
A solderable fJNi-Au layer or a Ni-Ag layer is coated thereon (not shown).
第5図は他の実施例で、せまいn−高抵抗領域2で降伏
電圧を達成するために、n−高抵抗領域下にそれより高
濃度の5×101′〜10目C11−3の不純物濃度を
もつn領域11を形成し、そのn領域11上にコレクタ
電極としてショットキーバリア金属膜10を被着したも
のである。バリア金属として、Pd、 Al。FIG. 5 shows another embodiment in which, in order to achieve a breakdown voltage in the narrow n-high resistance region 2, an impurity of 5×101' to 10 C11-3 is added under the n-high resistance region at a higher concentration. An n region 11 having a high concentration is formed, and a Schottky barrier metal film 10 is deposited on the n region 11 as a collector electrode. Pd and Al are used as barrier metals.
pt、 ptけい化物、^u、 Mo、 Moけい化物
、 Cr、 Crけい化物、 Ni、 Niけい化物、
Ti、 Tiけい化物などが使用される。必要な少数
キャリアの注入量によって、適当な障壁高さφ、をもつ
バリア金属が選択される。例えば、ショットキー接合ト
ータル電流100 A / cd時に注入比γ、が1O
−3以上になるようにする。なお、ゲート電極7は、エ
ミッタ電極8の開口部を通じて引き出される導体71を
介してゲート端子Gに接続されている。pt, pt silicide, ^u, Mo, Mo silicide, Cr, Cr silicide, Ni, Ni silicide,
Ti, Ti silicide, etc. are used. A barrier metal having an appropriate barrier height φ is selected depending on the required injection amount of minority carriers. For example, when the Schottky junction total current is 100 A/cd, the injection ratio γ is 1O
- Make sure it is 3 or more. Note that the gate electrode 7 is connected to the gate terminal G via a conductor 71 drawn out through the opening of the emitter electrode 8.
第6図はさらに別の実施例を示す。これは、正孔の注入
量を増大させたい場合に適用されるもので、コレクタ部
には、ショットキーバリアコンタクト部20とp″コレ
クタ部1からなっており、この面積比率によって少数キ
ャリア注入比率を変化できる。また、n−領域2に蓄積
したキャリアの弓きぬきもコントロールできる。FIG. 6 shows yet another embodiment. This is applied when it is desired to increase the amount of holes injected.The collector part consists of a Schottky barrier contact part 20 and a p'' collector part 1, and the minority carrier injection ratio is determined by this area ratio. It is also possible to control the amount of carriers accumulated in the n-region 2.
このようなメタル・コレクタIGETは次に示す製造工
程によって製造される。IGBTの性能向上を図るには
、必要降伏電圧を得るための最小n−高抵抗幅を使用す
ることが望ましい。n−領域2の不純物濃度が1014
0Ia−3とすると、n−領域幅はおよそ100〜15
0μm程度で十分である。しかしながら、このような厚
さのウェハを使用して製造プロセスを行うことは実際的
ではない。なぜなら、極めて薄くて割れ易いウェハをウ
ェハプロセスの最初から取り扱うことには様々な問題が
伴う。従って次のような製造プロセスを行う。まず、n
型。Such a metal collector IGET is manufactured by the following manufacturing process. To improve IGBT performance, it is desirable to use a minimum n-high resistance width to obtain the required breakdown voltage. The impurity concentration of n-region 2 is 1014
0Ia-3, the n-region width is approximately 100-15
A thickness of about 0 μm is sufficient. However, it is impractical to perform the manufacturing process using wafers of such thickness. This is because handling extremely thin and fragile wafers from the beginning of the wafer process involves various problems. Therefore, the following manufacturing process is performed. First, n
Type.
不純物濃度8X1013am−ζ結晶軸<100>のF
Z中性子照射ウェハを準備する。厚さ約2H〜25(l
Almのウェハに50μm程度の深さで、表面不純物
濃度的10”cm−3のn型拡散領域をイオン注入によ
って形成する。次いで、そのウェハを厚さ300μm程
度のCZウェハとSiO,llを介して接着する。これ
で500μm程度の厚さのウェハができる。このウェハ
のFZウェハ表面にフィールド酸化膜を形成し、ベース
拡散層の一部となる深さ8μm程度のp+ウェル5を形
成する。この後、厚さ800人のゲート酸化膜6を形成
、その上に厚さ10000人の多結晶シリコン膜よりな
るゲート電極7を形成し、その電極膜をマスクとして深
さ5μm程度のpベース拡散領域3を形成し、次に同一
マスク上からn″ソース拡散領域4を0.25μmの深
さで形成する。これでゲート電極7の下にチャネル領域
30が形成される。F with impurity concentration 8X1013am-ζ crystal axis <100>
Prepare a Z neutron irradiation wafer. Thickness approx. 2H to 25(l)
An n-type diffusion region with a surface impurity concentration of 10"cm-3 is formed at a depth of about 50 μm on an Alm wafer by ion implantation.Then, the wafer is bonded to a CZ wafer with a thickness of about 300 μm through SiO, ll. This creates a wafer with a thickness of about 500 μm.A field oxide film is formed on the FZ wafer surface of this wafer, and a p+ well 5 with a depth of about 8 μm, which will become a part of the base diffusion layer, is formed. After this, a gate oxide film 6 with a thickness of 800 μm is formed, and a gate electrode 7 made of a polycrystalline silicon film with a thickness of 10,000 μm is formed thereon, and the p-base is diffused to a depth of about 5 μm using the electrode film as a mask. Region 3 is formed, and then an n'' source diffusion region 4 is formed to a depth of 0.25 μm from the same mask. A channel region 30 is now formed under the gate electrode 7.
第5図の実施例の場合について説明すると、その後、C
VD酸化膜を成長させ、それにコンタクトホールを開け
てから^1−Si合金を堆積させエミッタ電極8.ゲー
ト接続導体71を形成する。次に、裏面側より300〜
350μmはど、つまりFZウェハのうちのn聖域散層
IN表面不純物濃度約10”am−3)があられれるま
でけずりおとす。この裏面を鏡面しあげしたあとで、p
tあるいはPtけい化物の膜10を形成し完了する。To explain the case of the embodiment shown in FIG.
A VD oxide film is grown, a contact hole is made in it, and a ^1-Si alloy is deposited to form an emitter electrode 8. A gate connection conductor 71 is formed. Next, from the back side, 300~
The 350 μm surface of the FZ wafer is polished until the surface impurity concentration (approximately 10" am-3) is removed. After mirror-finishing this back surface, p
The process is completed by forming a film 10 of T or Pt silicide.
本発明によれば、縦型DMO3構造の絶縁ゲート部と反
対側でn型半導体基板にショットキーバリア接合を形成
する電極を接触させることにより、バリア金属の障壁高
さを選ぶことによって、従来のI GBTにおけるオン
電圧とスイッチング時間のトレードオフ関係を大幅に改
善することが可能になった。また、寄生pnpバイポー
ラトランジスタが、pn接合バイポーラトランジスタか
らシヨツトキー接合エミッタバイポーラトランジスタに
なることにより、その電流利得αが大幅に低くなり、ラ
ッチング現象のおこりにくいIGBTを得ることができ
る。According to the present invention, by bringing an electrode forming a Schottky barrier junction into contact with an n-type semiconductor substrate on the side opposite to the insulated gate portion of the vertical DMO3 structure, and by selecting the barrier height of the barrier metal, It has become possible to significantly improve the trade-off relationship between on-voltage and switching time in IGBTs. Further, by changing the parasitic pnp bipolar transistor from a pn junction bipolar transistor to a Schottky junction emitter bipolar transistor, its current gain α is significantly lowered, and an IGBT in which latching phenomenon is less likely to occur can be obtained.
第1図は本発明の一実施例のI GBTの要部断面図、
第2図は従来のIGBTの要部断面図、第3図は第2図
のIGETにふける電流の流れと等価回路を記入した断
面図、第4図はターンオフ時のコレクタ電流の減衰波形
図、第5図、第6図はそれぞれ本発明の異なる実施例の
IGBTの要部断面図である。
1・p”コレクタ領域、2 高抵抗ドリフト領域、3
pベース領域、30 チャネル領域、4n0ソース領
域、6 絶縁膜、7・ゲート電極、8ミツタ電極、10
ショットキーバリア金属膜。
第2図
第1図
第3図FIG. 1 is a sectional view of a main part of an IGBT according to an embodiment of the present invention.
Fig. 2 is a sectional view of the main parts of a conventional IGBT, Fig. 3 is a sectional view showing the current flow and equivalent circuit in the IGET shown in Fig. 2, and Fig. 4 is a diagram of the attenuation waveform of the collector current at turn-off. 5 and 6 are sectional views of main parts of IGBTs according to different embodiments of the present invention, respectively. 1.p'' collector region, 2 high resistance drift region, 3
p base region, 30 channel region, 4n0 source region, 6 insulating film, 7 gate electrode, 8 mitsuta electrode, 10
Schottky barrier metal film. Figure 2 Figure 1 Figure 3
Claims (1)
有し、この高抵抗層の表面部にp型のベース領域が選択
的に形成され、このベース領域の表面部の端部に基板の
露出部との間にチャネル領域が残るようにn型のソース
領域が選択的に形成され、前記チャネル領域上にゲート
絶縁膜を介してゲート電極を備え、半導体基板の他面側
に基板とショットキーバリア接合を形成する電極が接触
することを特徴とする伝導度変調型MOSFET。1) A high-resistance layer is provided on at least one side of an n-type semiconductor substrate, a p-type base region is selectively formed on the surface of this high-resistance layer, and a substrate is formed on an end of the surface of this base region. An n-type source region is selectively formed so that a channel region remains between the exposed portion of the semiconductor substrate, a gate electrode is provided on the channel region via a gate insulating film, and a substrate and a substrate are provided on the other side of the semiconductor substrate. A conductivity modulated MOSFET characterized in that electrodes forming a Schottky barrier junction are in contact with each other.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5308590A JPH03155677A (en) | 1989-08-19 | 1990-03-05 | Mosfet of conductivity modulation type |
DE19904026121 DE4026121B4 (en) | 1989-08-19 | 1990-08-17 | Conductivity modulated MOSFET |
US07/815,761 US5273917A (en) | 1989-08-19 | 1992-01-02 | Method for manufacturing a conductivity modulation MOSFET |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-213968 | 1989-08-19 | ||
JP21396889 | 1989-08-19 | ||
JP5308590A JPH03155677A (en) | 1989-08-19 | 1990-03-05 | Mosfet of conductivity modulation type |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03155677A true JPH03155677A (en) | 1991-07-03 |
Family
ID=26393796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5308590A Pending JPH03155677A (en) | 1989-08-19 | 1990-03-05 | Mosfet of conductivity modulation type |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH03155677A (en) |
DE (1) | DE4026121B4 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001135814A (en) * | 1999-11-02 | 2001-05-18 | Shindengen Electric Mfg Co Ltd | Vertical mos field-effect transistor |
JP2002252350A (en) * | 2000-08-30 | 2002-09-06 | Shindengen Electric Mfg Co Ltd | Field-effect transistor |
JP2002345242A (en) * | 2001-05-14 | 2002-11-29 | Shindengen Electric Mfg Co Ltd | World wide power supply |
WO2005067057A1 (en) * | 2004-01-07 | 2005-07-21 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor device |
US20050227461A1 (en) * | 2000-05-05 | 2005-10-13 | International Rectifier Corporation | Semiconductor device having increased switching speed |
JP2007208037A (en) * | 2006-02-02 | 2007-08-16 | Sanken Electric Co Ltd | Semiconductor device |
JP2007273647A (en) * | 2006-03-30 | 2007-10-18 | Shindengen Electric Mfg Co Ltd | Method for manufacturing igbt |
JP2008047772A (en) * | 2006-08-18 | 2008-02-28 | Sanken Electric Co Ltd | Insulated gate bipolar transistor |
JP2008109028A (en) * | 2006-10-27 | 2008-05-08 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method therefor |
JP2010045123A (en) * | 2008-08-11 | 2010-02-25 | Mitsubishi Electric Corp | Semiconductor device and method of manufacturing the same |
WO2013058191A1 (en) * | 2011-10-17 | 2013-04-25 | ローム株式会社 | Semiconductor device and manufacturing method therefor |
JP5460320B2 (en) * | 2007-07-31 | 2014-04-02 | ローム株式会社 | Semiconductor device and manufacturing method thereof |
US8766325B2 (en) | 2011-10-17 | 2014-07-01 | Rohm Co., Ltd. | Semiconductor device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3182463A1 (en) * | 2015-12-17 | 2017-06-21 | ABB Technology AG | Reverse blocking power semiconductor device |
CN117153892B (en) * | 2023-08-07 | 2024-07-30 | 深圳市盛邦半导体有限公司 | Radiation-resistant reinforced Schottky diode and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61150280A (en) * | 1984-12-24 | 1986-07-08 | Shindengen Electric Mfg Co Ltd | Vertical mos transistor |
JPH02281660A (en) * | 1989-04-21 | 1990-11-19 | Nec Corp | Vertical type insulated gate conductivity modulation type transistor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3628857A1 (en) * | 1985-08-27 | 1987-03-12 | Mitsubishi Electric Corp | SEMICONDUCTOR DEVICE |
US4809045A (en) * | 1985-09-30 | 1989-02-28 | General Electric Company | Insulated gate device |
-
1990
- 1990-03-05 JP JP5308590A patent/JPH03155677A/en active Pending
- 1990-08-17 DE DE19904026121 patent/DE4026121B4/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61150280A (en) * | 1984-12-24 | 1986-07-08 | Shindengen Electric Mfg Co Ltd | Vertical mos transistor |
JPH02281660A (en) * | 1989-04-21 | 1990-11-19 | Nec Corp | Vertical type insulated gate conductivity modulation type transistor |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001135814A (en) * | 1999-11-02 | 2001-05-18 | Shindengen Electric Mfg Co Ltd | Vertical mos field-effect transistor |
US8314002B2 (en) * | 2000-05-05 | 2012-11-20 | International Rectifier Corporation | Semiconductor device having increased switching speed |
US20050227461A1 (en) * | 2000-05-05 | 2005-10-13 | International Rectifier Corporation | Semiconductor device having increased switching speed |
JP2002252350A (en) * | 2000-08-30 | 2002-09-06 | Shindengen Electric Mfg Co Ltd | Field-effect transistor |
JP2002345242A (en) * | 2001-05-14 | 2002-11-29 | Shindengen Electric Mfg Co Ltd | World wide power supply |
WO2005067057A1 (en) * | 2004-01-07 | 2005-07-21 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor device |
KR100816702B1 (en) * | 2004-01-07 | 2008-03-27 | 신덴겐코교 가부시키가이샤 | Semiconductor device |
US7282764B2 (en) | 2004-01-07 | 2007-10-16 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor device |
JP2007208037A (en) * | 2006-02-02 | 2007-08-16 | Sanken Electric Co Ltd | Semiconductor device |
JP2007273647A (en) * | 2006-03-30 | 2007-10-18 | Shindengen Electric Mfg Co Ltd | Method for manufacturing igbt |
JP2008047772A (en) * | 2006-08-18 | 2008-02-28 | Sanken Electric Co Ltd | Insulated gate bipolar transistor |
JP2008109028A (en) * | 2006-10-27 | 2008-05-08 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method therefor |
JP5460320B2 (en) * | 2007-07-31 | 2014-04-02 | ローム株式会社 | Semiconductor device and manufacturing method thereof |
JP2010045123A (en) * | 2008-08-11 | 2010-02-25 | Mitsubishi Electric Corp | Semiconductor device and method of manufacturing the same |
WO2013058191A1 (en) * | 2011-10-17 | 2013-04-25 | ローム株式会社 | Semiconductor device and manufacturing method therefor |
US8766325B2 (en) | 2011-10-17 | 2014-07-01 | Rohm Co., Ltd. | Semiconductor device |
US8927347B2 (en) | 2011-10-17 | 2015-01-06 | Rohm Co., Ltd. | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
DE4026121B4 (en) | 2006-04-06 |
DE4026121A1 (en) | 1991-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110061050B (en) | Semiconductor device and insulated gate bipolar transistor with barrier region | |
US4967243A (en) | Power transistor structure with high speed integral antiparallel Schottky diode | |
JP3141769B2 (en) | Insulated gate thyristor and manufacturing method thereof | |
JP5033335B2 (en) | Semiconductor device and inverter device using the same | |
JP5191132B2 (en) | Semiconductor device | |
US4969027A (en) | Power bipolar transistor device with integral antisaturation diode | |
US9900002B2 (en) | Methods of operating a double-base-contact bidirectional bipolar junction transistor | |
JPH10284718A (en) | Insulated gate type thyristor | |
JPH03155677A (en) | Mosfet of conductivity modulation type | |
Yi et al. | Simulation study of a novel snapback free reverse-conducting SOI-LIGBT with embedded P-type Schottky barrier diode | |
JPH043981A (en) | Conductivity-modulation mosfet | |
US5079607A (en) | Mos type semiconductor device | |
JPH09139492A (en) | Insulated gate type thyristor | |
JP2002261281A (en) | Manufacturing method of insulated gate bipolar transistor | |
US5621229A (en) | Semiconductor device and control method | |
US5455442A (en) | COMFET switch and method | |
JPH023980A (en) | Perpendicular field effect transistor | |
Liu et al. | A Novel Lateral Reverse Conducting Trench IGBT on SOI employing NPN bipolar with small area penalty and switching energy loss | |
US7173290B2 (en) | Thyristor switch with turn-off current shunt, and operating method | |
CN111211167B (en) | RC-IGBT device structure for eliminating negative resistance effect | |
US9209287B2 (en) | Power semiconductor device | |
JPH06112494A (en) | Insulated gate bipolar transistor | |
US6965131B2 (en) | Thyristor switch with turn-off current shunt, and operating method | |
US20150187869A1 (en) | Power semiconductor device | |
JPH07226511A (en) | Semiconductor device |