JPH03155056A - Portable fuel cell power source device - Google Patents

Portable fuel cell power source device

Info

Publication number
JPH03155056A
JPH03155056A JP1293990A JP29399089A JPH03155056A JP H03155056 A JPH03155056 A JP H03155056A JP 1293990 A JP1293990 A JP 1293990A JP 29399089 A JP29399089 A JP 29399089A JP H03155056 A JPH03155056 A JP H03155056A
Authority
JP
Japan
Prior art keywords
refrigerant
reaction part
fuel cell
side reaction
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1293990A
Other languages
Japanese (ja)
Inventor
Masaaki Maekawa
前川 雅明
Kaoru Munekura
宗倉 薫
Tomio Hara
富夫 原
Masao Kumeta
粂田 政男
Hideo Hagino
秀雄 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP1293990A priority Critical patent/JPH03155056A/en
Publication of JPH03155056A publication Critical patent/JPH03155056A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the characteristics and life of a cell and to make the whole of a power source device compact by installing a side reaction part exposed to the outside of a reformer at the downstream side of its main reaction part and cooling the refrigerant circulating between a refrigerant reservoir where a side reaction part is housed and a refrigerant tank by a heat exchanger lying on an outside air suction passage to an air circulation routine. CONSTITUTION:The downstream side of a main reaction part 6 is exposed to the outside of an outer can 1 to form a side reaction part 7, and the side reaction part 7 is housed in a circular refrigerant reservoir 8 and the inlet pipe 9 of the refrigerant reservoir 8 is communicated to a refrigerant tank 12 through a circulating pump 10 and an outlet pipe 11 is communicated thereto through a heat exchanger HX, respectively, to constitute a circulating route of refrigerant. The refrigerant sent to the refrigerant reservoir 8 from the refrigerant tank 12 by a pump 10 takes heat from the side reaction part 7 to increase its temperature to a high degree, and this high temperature refrigerant radiates heat through the heat exchanger HX, and then circulates to the tank 12. The side reaction part 7 is cooled by this circulating refrigerant to be kept at a temperature for promoting a conversion reaction of CO. It is thereby possible to improve the characteristics and the life of fuel cell and also make a portable fuel cell power source device compact and highly stable.

Description

【発明の詳細な説明】 本発明は可搬型リン酸燃料電池電源装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a portable phosphoric acid fuel cell power supply.

可搬型電源装置では、メタノール改質器で生成した改質
ガスを燃料電池の燃料ガスとして用いるが、改質ガス中
の一酸化炭素(Co)は装置内の発熱及び外気温の変動
により高濃度となり、電池性能を低下させる原因となっ
ていた。
In a portable power supply unit, the reformed gas generated by the methanol reformer is used as the fuel gas for the fuel cell, but carbon monoxide (Co) in the reformed gas becomes highly concentrated due to heat generation within the unit and fluctuations in outside temperature. This was a cause of deterioration in battery performance.

一般にCO濃度は、改質用燃焼ガスの流路に対し改質反
応部の長さを大きくとり、上流側と下流側で温度差をも
たせることにより成程度低減できるが、改質器全体の寸
法が大きくなると共にCOの変成反応 CO+H*O→CO*+Ht  −9,8Kcal/m
o!が発熱反応である関係上、前記温度差を充分とるこ
とができないという問題があった。
In general, the CO concentration can be reduced by increasing the length of the reforming reaction section relative to the flow path of the reforming combustion gas and creating a temperature difference between the upstream and downstream sides, but the overall size of the reformer As the value increases, the transformation reaction of CO CO+H*O→CO*+Ht -9.8Kcal/m
o! Since this is an exothermic reaction, there was a problem in that the temperature difference could not be sufficiently maintained.

本発明は改質ガス中のCOを外気温に影響されることな
く低濃度に抑えることにより電池の特性・寿命を向上す
ると共に電源装置全体のコンパクト化を図るものである
The present invention aims to improve the characteristics and life of the battery and to make the entire power supply device more compact by suppressing the concentration of CO in the reformed gas to a low concentration without being affected by the outside temperature.

本発明の可搬型電源装置は、空気が反応空気及び冷却空
気として循環供給される燃料電池と、メタノールを蒸気
改質して前記電池に供給される燃料ガスを生成する改質
器と、前記反応空気と燃料ガスとの電気化学反応により
発生する直流電力を交流に変換する電力変換器とを備え
、前記改質器主反応部の下流側に器外に露出させた副反
応部を設け、該副反応部を収納した冷媒槽と冷媒タンク
との間を循環する冷媒が、前記空気の循環経路への外気
吸引路に介在する熱交換器により冷却されるようにした
ものである。
The portable power supply device of the present invention includes a fuel cell to which air is circulated and supplied as reaction air and cooling air, a reformer that steam-reforms methanol to generate a fuel gas to be supplied to the cell, and a power converter that converts DC power generated by an electrochemical reaction between air and fuel gas into AC power; a side reaction part exposed outside the reformer is provided downstream of the main reaction part of the reformer; The refrigerant circulating between the refrigerant tank and the refrigerant tank housing the side reaction section is cooled by a heat exchanger interposed in the outside air suction path to the air circulation path.

本発明では改質器外に露出した副反応部がそのまわりを
循環する冷媒により冷却されるので、外気温に影響され
ることなく、−酸化炭素濃度を著しく低減し、電池に支
障をきたすことなく安定した運転が可能となる。また冷
媒は、電池の空気循環経路へ吸引される外気と熱交換さ
れて冷却されるため、空気循環経路の循環ブロワが熱交
換器冷却用ファンを兼用することができる。
In the present invention, the side reaction part exposed outside the reformer is cooled by the refrigerant circulating around it, so it is not affected by the outside temperature - the concentration of carbon oxide can be significantly reduced, and the concentration of carbon oxides can be significantly reduced, preventing battery damage. This enables stable operation without any problems. Further, since the refrigerant is cooled by exchanging heat with outside air drawn into the air circulation path of the battery, the circulation blower in the air circulation path can also serve as a fan for cooling the heat exchanger.

以下本発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明電源装置のシステムフロー図、第2図は
同上改質器の縦断面図、第3図は第2図の要部断面図で
ある。
FIG. 1 is a system flow diagram of the power supply device of the present invention, FIG. 2 is a longitudinal sectional view of the same reformer, and FIG. 3 is a sectional view of the main part of FIG. 2.

燃料電池(FC)は燃料極・空気極及びその間に介在す
る電解質マトリックスからなるセルと、表裏各面に燃料
ガスチャンネル及び反応空気チャンネルを交錯方向に夫
々形成したガス分離板とを交互に積重し、数セル毎に前
記反応空気チャンネルと平行な冷却空気チャンネルを有
する冷却板を介在させ、積重方向に締付けて構成される
A fuel cell (FC) consists of cells consisting of fuel electrodes, air electrodes, and an electrolyte matrix interposed between them, and gas separation plates in which fuel gas channels and reaction air channels are formed in intersecting directions on each of the front and back surfaces, which are stacked alternately. A cooling plate having a cooling air channel parallel to the reaction air channel is interposed every few cells, and is tightened in the stacking direction.

第1図では簡単化のために燃料極(N)・空気極(P)
・電解質マトリックス(E)からなる単セルに冷却板(
C)を付設した模式図として示した。
In Figure 1, for simplicity, the fuel electrode (N) and air electrode (P) are
・A cooling plate (
C) is shown as a schematic diagram.

メタノール改質器(RF)は、断熱外装缶(1)の上部
にバーナー(2)とファン(3)を有し、バーナー燃焼
ガスの案内筒(4)内には気化部(5)が、案内筒(4
)外には、触媒を充填した環状の主反応部(6)が夫々
配置されている。又主反応部(6)の下流側は、外装缶
(1)外に露出して副反応部(7)を形成している。
The methanol reformer (RF) has a burner (2) and a fan (3) in the upper part of an insulated outer can (1), and a vaporization part (5) in a guide cylinder (4) for burner combustion gas. Guide tube (4
) An annular main reaction section (6) filled with a catalyst is arranged outside the reactor. Further, the downstream side of the main reaction section (6) is exposed outside the outer can (1) to form a side reaction section (7).

この副反応部(7)は環状の冷媒槽(8)内に収納され
、冷媒槽(8)の入口管(9)が循環ポンプ(10)を
介して、出口管(11)が熱交換器(HX)を介して夫
々冷媒タンク(12)に連通し、冷媒の循環路を構成し
ている。
This side reaction part (7) is housed in an annular refrigerant tank (8), and the inlet pipe (9) of the refrigerant tank (8) is connected to a circulation pump (10), and the outlet pipe (11) is connected to a heat exchanger. (HX) and communicate with the refrigerant tank (12), respectively, to form a refrigerant circulation path.

冷媒タンク(12)からポンプ(10)で冷媒槽(8)
に送られた冷媒は、副反応部(7)から熱を奪って高温
となり、この高温冷媒は熱交換器(HX)で放熱して後
タンク(12)に還流する。この循環冷媒により副反応
部(7)が冷却されCO転化反応を促進する温度に維持
される。
From the refrigerant tank (12) to the refrigerant tank (8) with the pump (10)
The refrigerant sent to the reactor absorbs heat from the side reaction section (7) and becomes high temperature, and this high temperature refrigerant radiates heat in the heat exchanger (HX) and flows back to the post tank (12). This circulating refrigerant cools the side reaction section (7) and maintains it at a temperature that promotes the CO conversion reaction.

主反応部(6)の温度は上流側〜下流側に向かい約30
0〜230℃であるが、副反応部(7)の温度は約11
0〜180℃に制御されるため、改質ガス中の濃度は0
.5%以下に低下する。この改質ガスは燃料ガスとして
電池(FC)の燃料極(N)に供給され、空気極(P)
に送られる反応空気との間で電池反応にあづかる。
The temperature of the main reaction section (6) is about 30°C from the upstream side to the downstream side.
0 to 230°C, but the temperature of the side reaction section (7) is about 11°C.
Since the temperature is controlled between 0 and 180℃, the concentration in the reformed gas is 0.
.. It decreases to 5% or less. This reformed gas is supplied as fuel gas to the fuel electrode (N) of the cell (FC), and the air electrode (P)
A battery reaction takes place between the reaction air sent to the

循環ブロワ(BW)により電池(FC)に送り込まれた
空気の一部分は反応空気として空気極(P)に、他の大
部分は冷却空気として冷却板(C)に配分され、夫々電
池反応と電池冷却を行って後、送り出された約180℃
の高温空気は、規定量がダンパ(13)の開度調整によ
り系外に排出される。これと同時に同量の外気が空気循
環路(L)に吸引され、電池に還流する空気温度を約1
35℃程度に低下させると共に反応により消費された酸
素分圧を補償する。この吸引空気路に前記冷媒用熱交換
器(HX )が介在し、循環ブロワ(BW)が熱交換器
(HX)の冷却ファンを兼ねる。
A part of the air sent to the battery (FC) by the circulation blower (BW) is distributed as reaction air to the air electrode (P), and the other part is distributed as cooling air to the cooling plate (C), which is used for the battery reaction and the battery, respectively. Approximately 180℃ sent out after cooling
A specified amount of the high-temperature air is discharged out of the system by adjusting the opening of the damper (13). At the same time, the same amount of outside air is drawn into the air circulation path (L), reducing the temperature of the air flowing back into the battery by approximately 1
The temperature is lowered to about 35° C. and the oxygen partial pressure consumed by the reaction is compensated for. The refrigerant heat exchanger (HX) is interposed in this suction air path, and the circulation blower (BW) also serves as a cooling fan for the heat exchanger (HX).

電池の直流電力は電力変換器(14)で交流に変換され
負荷(LO)に給電される。
The DC power of the battery is converted into AC power by a power converter (14) and then supplied to the load (LO).

図中(15)はメタノールと水の混合液の導入管、(1
6)は改質ガスの導出管、(17)はバーナー燃料の供
給管である。
In the figure, (15) is the introduction pipe for the methanol and water mixture, and (1
6) is a reformed gas outlet pipe, and (17) is a burner fuel supply pipe.

尚改質器副反応部(7)の冷却に用いる冷媒は、少なく
とも300℃程度の沸点と一30℃程度の凝固点をもつ
流体であり、これら条件を充すものとして例えばアルキ
ルビフェニル(商品名サームエス600.700.80
0  新日本製鉄化学工業)が挙げられる。
The refrigerant used for cooling the reformer side reaction section (7) is a fluid with a boiling point of at least about 300°C and a freezing point of about -30°C. 600.700.80
0 Nippon Steel Chemical Industries).

上述の如く本発明によれば、外気温に影響されることな
く改質ガス中の一酸化炭素濃度を著しく低減し、燃料電
池の特性及び寿命を向上することが可能となると共に、
コンパクトで安定性にすぐれた可搬型燃料電池電源装置
を提供することができる。
As described above, according to the present invention, it is possible to significantly reduce the concentration of carbon monoxide in the reformed gas without being affected by the outside temperature, and improve the characteristics and life of the fuel cell.
A portable fuel cell power supply device that is compact and has excellent stability can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電源装置のシステム70−図、第2図は
同上改質器の縦断面図、第3図は第2図の要部断面図で
ある。 FC;燃料電池、N;燃料極、P;空気極、C;冷°却
板、L;空気循環経路、BW;循環ブロワ、13;ダン
パ RF;改質器、6;主反応部、7;副反応部、8;
冷媒槽、9;冷媒循環路、HX;熱交換器。 第1図
FIG. 1 is a diagram of a system 70 of the power supply device of the present invention, FIG. 2 is a longitudinal sectional view of the same reformer, and FIG. 3 is a sectional view of the main part of FIG. 2. FC: fuel cell, N: fuel electrode, P: air electrode, C: cooling plate, L: air circulation path, BW: circulation blower, 13; damper RF: reformer, 6; main reaction section, 7; Side reaction part, 8;
Refrigerant tank, 9; refrigerant circulation path, HX; heat exchanger. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)空気が反応空気及び冷却空気として循環供給され
る燃料電池と、メタノールを蒸気改質して前記電池に供
給される燃料ガスを生成する改質器と、前記反応空気と
燃料ガスとの反応により発生する直流電力を交流に変換
する電力変換器とを備え、前記改質器主反応部の下流側
に、器外に露出させた副反応部を設け、該副反応部を収
納した冷媒槽と冷媒タンクとの間を循環する冷媒が、前
記空気の循環経路への外気吸引路に介在する熱交換器に
より冷却されることを特徴とする可搬型燃料電池電源装
置。
(1) A fuel cell in which air is circulated and supplied as reaction air and cooling air; a reformer that steam-reforms methanol to generate fuel gas to be supplied to the cell; A refrigerant comprising a power converter that converts DC power generated by the reaction into alternating current, a side reaction section exposed outside the reformer on the downstream side of the main reaction section of the reformer, and housing the side reaction section. A portable fuel cell power supply device characterized in that a refrigerant circulating between a tank and a refrigerant tank is cooled by a heat exchanger interposed in an outside air suction path to the air circulation path.
(2)前記冷媒は凝固点が少なくも零点下であり、沸点
が少なくとも主反応部の触媒温度以上のの液体であるこ
とを特徴とする請求項1の可搬型燃料電池電源装置。
(2) The portable fuel cell power supply device according to claim 1, wherein the refrigerant is a liquid having a freezing point at least below zero and a boiling point at least higher than the catalyst temperature of the main reaction section.
(3)前記冷媒がアルキルビフェニルであることを特徴
とする請求項2の可搬型燃料電池電源装置。
(3) The portable fuel cell power supply device according to claim 2, wherein the refrigerant is alkyl biphenyl.
JP1293990A 1989-11-14 1989-11-14 Portable fuel cell power source device Pending JPH03155056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293990A JPH03155056A (en) 1989-11-14 1989-11-14 Portable fuel cell power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293990A JPH03155056A (en) 1989-11-14 1989-11-14 Portable fuel cell power source device

Publications (1)

Publication Number Publication Date
JPH03155056A true JPH03155056A (en) 1991-07-03

Family

ID=17801820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293990A Pending JPH03155056A (en) 1989-11-14 1989-11-14 Portable fuel cell power source device

Country Status (1)

Country Link
JP (1) JPH03155056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823498A1 (en) * 2001-04-11 2002-10-18 Renault Thermal management of reformer for production of fuel for fuel cell of electrically propelled motor vehicle comprises obtaining energy from condensation of refrigerant fluid
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274063A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Fuel cell power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274063A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Fuel cell power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823498A1 (en) * 2001-04-11 2002-10-18 Renault Thermal management of reformer for production of fuel for fuel cell of electrically propelled motor vehicle comprises obtaining energy from condensation of refrigerant fluid
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment

Similar Documents

Publication Publication Date Title
US10644338B2 (en) Dynamically responsive high efficiency CCHP system
US7563524B2 (en) Fuel cell system
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
EP1929568B1 (en) Fuel cell stacks and systems with fluid-responsive temperature regulation
JP4994731B2 (en) Fuel cell power generation system
JPS5918830B2 (en) power plant
US8617752B2 (en) Cold start compressor control and mechanization in a fuel cell system
JPS5856230B2 (en) power plant
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
CN1307735C (en) Fuel cell system
US7485384B2 (en) Cooling apparatus for fuel cell and fuel cell system having the same
US6277509B1 (en) Hydride bed water recovery system for a fuel cell power plant
EP1284515A2 (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system
JP2006073518A (en) Stack for fuel cell
JP3575932B2 (en) Cooling system for fuel cell stack
JP2005044630A (en) Fuel cell system
JP4015225B2 (en) Carbon monoxide removal equipment
JPH03155056A (en) Portable fuel cell power source device
JPH10312821A (en) Fuel cell system
KR101817432B1 (en) Fuel cell system
EP1791208A2 (en) Fuel cell system
JP2001068135A (en) Reforming system for fuel cell
JP5024717B2 (en) CO removal method and apparatus for polymer electrolyte fuel cell
JP2002208427A (en) Reforming device for fuel cell
JP3114270B2 (en) Plate type shift converter