JPH03155051A - Manufacture of electrode/electrolyte complex - Google Patents

Manufacture of electrode/electrolyte complex

Info

Publication number
JPH03155051A
JPH03155051A JP29339989A JP29339989A JPH03155051A JP H03155051 A JPH03155051 A JP H03155051A JP 29339989 A JP29339989 A JP 29339989A JP 29339989 A JP29339989 A JP 29339989A JP H03155051 A JPH03155051 A JP H03155051A
Authority
JP
Japan
Prior art keywords
electrode
producing
electrolyte
electrolyte composite
composite according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29339989A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Shuichi Ido
秀一 井土
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP29339989A priority Critical patent/JPH03155051A/en
Publication of JPH03155051A publication Critical patent/JPH03155051A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To obtain an electrode/electrolyte complex having its uniform-thickness ultrathin-film of excellent productivity and also its excellent adhesion to a solid electrolyte by using the solid electrolyte for a basic plate when metallic fine-grains formed each through a method of in-gas evaporation are put on a gaseous current to be sprayed upon the basic plate so as to form a positive working-electrode. CONSTITUTION:A solid electrolyte is used for a basic plate 8 when metallic fine-grains formed each through a method of in-gas evaporation are put on a gaseous current to be sprayed upon the basic plate 8 so as to form a positive working-electrode. Then, fine-grained manganese dioxide is sprayed upon a macromolecular solid electrolytic film in a deposition chamber 6 by use of a nozzle 5 while being put on the gaseous current to form a strong deposit body of the manganese dioxide on the macromolecular solid electrolytic film. Since the deposit body is such a coat that can not be obtained through an ordinary melting and setting method and requires no binding-agent, this is a dry and purificatory manufacturing method. This method results in obtainment of an electrode/electrolyte complex having a uniform-thickness ultrathin-film electrode of excellent productivity and also excellent adhesion to the solid electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフィルム状の超薄形電池に用いる電極/電解質
複合体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an electrode/electrolyte composite for use in ultra-thin film batteries.

従来技術とその問題点 従来の薄形電池の正極としては、導電材、結着剤、正極
作用物質を混合し、シート状の薄膜としていた。
Prior Art and Its Problems The positive electrode of a conventional thin battery was formed into a sheet-like thin film by mixing a conductive material, a binder, and a positive electrode active material.

この場合、シートの厚さは正極作用物質の粒径または・
充填率に依存している。
In this case, the sheet thickness is determined by the particle size of the cathode active material or
It depends on the filling rate.

前者はサブミクロンナイズの製法が困難であり、後者で
は充填率を上げることが困難であるという点で、10μ
m以下の厚みの薄膜正極を製造することは容易ではなか
った。
In the former case, it is difficult to produce submicronization, and in the latter case, it is difficult to increase the filling rate.
It has not been easy to manufacture a thin film positive electrode with a thickness of less than m.

又、薄形電池に用いられるイオン伝導材料としては、固
体電解質、とりわけ高分子固体電解質を用いることが、
製造が容易であり、液漏れがなく、自由な形状の+L/
I/の製造が可能であるという利点を持つことで有望視
されている。
In addition, solid electrolytes, especially solid polymer electrolytes, can be used as ion-conducting materials for thin batteries.
Easy to manufacture, no leakage, free shape +L/
It is viewed as promising because it has the advantage of being able to produce I/.

しか、しながら、固体電解質を用いる場合、電極と電解
液の接触を常に良好に保たせるために工夫が必要であり
、薄形電池、とりわけ7レキシビリテイーを付与させた
電池においては、角形や巻き込み形円筒電池のように、
電極外部や内部から加圧力を加えることが困難であった
However, when using a solid electrolyte, it is necessary to always maintain good contact between the electrode and the electrolyte, and thin batteries, especially batteries with 7 flexibility, are not suitable for prismatic or Like a rolled-up cylindrical battery,
It was difficult to apply pressure from outside or inside the electrode.

発明の目的 本発明は、上記従来の問題点tcgみなされたもので、
生産性に優れた、均一な厚みの超薄膜の電極であり、固
体電解質との密着性に優れたtli/電解質複合体を提
供することを目的とするものである。
Purpose of the Invention The present invention solves the above-mentioned problems of the conventional art,
The purpose of this invention is to provide a tli/electrolyte composite that is an ultra-thin electrode with a uniform thickness and excellent productivity, and has excellent adhesion to a solid electrolyte.

発明の構成 本発明は上記目的を達成するべく、 ガス中蒸発法で生成した金属の微粒子を気流に乗せ基板
に吹きつけ正極作用正極を形成するにおいて、基板に固
体電解質を用いたことを特徴とする電極/電解質複合体
の製造法である。
Structure of the Invention In order to achieve the above-mentioned object, the present invention is characterized in that a solid electrolyte is used for the substrate in forming a positive electrode by placing fine metal particles generated by evaporation in gas in an air stream and blowing them onto the substrate. This is a method for manufacturing an electrode/electrolyte composite.

又、固体電解質が高分子固体電解質である前記の電極/
電解質複合体の製造法である。
Further, the above-mentioned electrode/where the solid electrolyte is a polymer solid electrolyte
This is a method for producing an electrolyte complex.

又、蒸発源にマンガン酸化物を用いた前記の電極/電解
質複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using manganese oxide as an evaporation source.

又、蒸発源にバナジウム酸化物を用いた前記の電極/電
解質複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using vanadium oxide as an evaporation source.

又、蒸発源にモリブデン酸化物を用いた前記の電極/電
解質複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using molybdenum oxide as an evaporation source.

又、蒸発源にコバμト酸化物を用いた前記の電極/電解
質複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using cobalt oxide as an evaporation source.

又、蒸発源にチタン硫化物を用いた前記の電極/電解質
複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using titanium sulfide as an evaporation source.

又、蒸発源にニオブセレン化物を用いた前記の電極/電
解質複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using niobium selenide as an evaporation source.

又、蒸発源にクロム酸化物を用いた前記の電極/電解質
複合体の製造法である。
Further, there is a method for producing the electrode/electrolyte composite described above using chromium oxide as an evaporation source.

又、蒸発源にモリブデン硫化物を用いた前記の電1f/
電解質複合体の製造法である。
In addition, the above-mentioned electrode 1f/ using molybdenum sulfide as an evaporation source
This is a method for producing an electrolyte complex.

又、蒸発源に純金属を用い、ガス中に金属蒸気と反応す
るガスを混合させて作用物質を生成する前記の電11/
電解質複合体の製造法である@又、金属蒸気と反応する
ガスが酸素である前記の電極/電解質複合体のIJJI
造法で速決。
In addition, the above-mentioned method 11/1 uses a pure metal as the evaporation source and mixes a gas that reacts with the metal vapor in the gas to produce the active substance.
IJJI of the electrode/electrolyte composite described above, in which the gas reacting with metal vapor is oxygen.
Fast decision making using the construction method.

又、純金属がマンガンである前記の電極/を解質複合体
の製造法である。
Further, there is a method for producing the above-mentioned electrode/electrolyte composite in which the pure metal is manganese.

又、純金属がバナジウムである前記のtFM/電解質複
合体の製造法である。
Further, there is a method for producing the above-mentioned tFM/electrolyte composite in which the pure metal is vanadium.

又、純金属がコバルトである前記の[極/電解質複合体
の#速決である・ 又、純金属がクロ上である前記の電極/電解質複合体の
製造法である@ 実施例 以下・本発明の詳細について一実施例により説明する。
In addition, there is a method for producing the electrode/electrolyte composite described above in which the pure metal is cobalt, and a method for manufacturing the electrode/electrolyte composite described above in which the pure metal is cobalt. The details will be explained using an example.

第1図は本発明の製造装置の概略図である。FIG. 1 is a schematic diagram of the manufacturing apparatus of the present invention.

ここで1は蒸発室、2は坩堝、3はアーク加熱器、4は
差動排気室、5はノズル、6はデボジV9Iン室、7は
真空ポンプ、8は基板、9は供給ガス流入口である。
Here, 1 is an evaporation chamber, 2 is a crucible, 3 is an arc heater, 4 is a differential pumping chamber, 5 is a nozzle, 6 is a deposition chamber, 7 is a vacuum pump, 8 is a substrate, and 9 is a supply gas inlet It is.

過塩素酸リチウム10 wt%を溶解させた三官能性ボ
リエーテIv(エチレンオキシドとプロピレンオキシド
の共重合体、分子量3.000 )を架橋剤にヘキサメ
チレンジイソシアナートを用いて既知の方法で架橋し、
高分子固体電解質フィμム(厚さ50声#I)を得た。
Trifunctional polyate Iv (copolymer of ethylene oxide and propylene oxide, molecular weight 3.000) in which 10 wt% of lithium perchlorate was dissolved was crosslinked by a known method using hexamethylene diisocyanate as a crosslinking agent,
A polymer solid electrolyte film (thickness: 50 layers #I) was obtained.

このフィμムをデボジF、ン室に設置した。This film was placed in a deposition chamber.

蒸発室において、坩堝の中に二酸化マンガンを入れて、
アーク加熱器により加熱溶融し、気化させ微粒子化二酸
化マンガンを形成する。供給ガス(Hetf、lの圧力
を100torrとし一デボジV1ン室の圧力を真空ポ
ンプにより0.12torrトfる。0−8XIQts
のノズ〜を用いて、微粒子化二酸化マンガンをデボジシ
習ン室の高分子固体電解質74fi/ム上にガス気流に
乗せて吹きつける。これによって高分子固体電解質フイ
ルム1に、101111巾で長さ110−110pの二
酸化マンガンの強固な堆積体が形成された。
In the evaporation chamber, put manganese dioxide into the crucible,
It is heated and melted using an arc heater and vaporized to form finely divided manganese dioxide. The pressure of the supply gas (Hetf) is set to 100 torr, and the pressure in the vacuum chamber is increased to 0.12 torr by a vacuum pump.0-8XIQts
Micronized manganese dioxide was sprayed onto the polymer solid electrolyte 74fi/m in the debossing training room using the nozzle. As a result, a strong deposit of manganese dioxide having a width of 101111 and a length of 110-110p was formed on the solid polymer electrolyte film 1.

得られた電極/電解質複合体にリチウム及び正・負極集
電体を取り付け、電池を構成した。
Lithium and positive and negative electrode current collectors were attached to the obtained electrode/electrolyte composite to construct a battery.

画集電体から取り出したリード線を電流計に接続し、短
絡電流を測定したところ14解ム/ciであった。
The lead wire taken out from the current collector was connected to an ammeter and the short circuit current was measured and found to be 14 rms/ci.

比較例 前記実施例において、高分子固体電解質に代えてステン
レス箔を用いデボジン曹ン室に設置した。同一条件下で
ステンレス箔上に二酸化マンガンの強固な堆積体を形成
させた。これを用いて、前記実施例と同様の高分子固体
電解質フィルム、リチウム及び負極集電体から取り出し
たリード線を電流針に接続し、短絡電流を測定したとこ
ろ、8mA/cJであった。
Comparative Example In the above example, stainless steel foil was used instead of the solid polymer electrolyte, and the stainless steel foil was installed in the devodine carbon chamber. A strong deposit of manganese dioxide was formed on the stainless steel foil under the same conditions. Using this, lead wires taken out from the polymer solid electrolyte film, lithium, and negative electrode current collector similar to those in the above example were connected to a current needle, and the short circuit current was measured to be 8 mA/cJ.

尚、前記実施例において蒸発源にマンガン酸化物を用い
たがこれに代えてバナジウム酸化物、モリブデン酸化物
、コバ〃ト酸化物、チタン硫化物、ニオブセレン化物、
クロム酸化物、モリブデン硫化物を用いても同様の結果
を得た。
In the above examples, manganese oxide was used as the evaporation source, but vanadium oxide, molybdenum oxide, cobalt oxide, titanium sulfide, niobium selenide,
Similar results were obtained using chromium oxide and molybdenum sulfide.

さらに、蒸発源の化合物に代えて、純金属を用いガス中
に該金属蒸気と反応するガスを混合させて作用物質を生
成させたものでも同様の結果を得た。
Furthermore, similar results were obtained when a pure metal was used instead of the compound as the evaporation source, and a gas that reacted with the metal vapor was mixed in the gas to produce the active substance.

尚、純金属としてマンガン、バナジウム1コバ〃ト、ク
ロムを用いて、該金属蒸気と反応する酸素ガスを混合さ
せて作用物質を生成させたものでも同様の結果を得た。
Similar results were obtained when manganese, vanadium 1 cobalt, and chromium were used as pure metals, and the active substance was produced by mixing the metal vapor with oxygen gas that reacts with the pure metals.

本発明による堆積体は、通常の溶解、凝固方法では得る
ことのできないものであり、結合剤を必要としないので
、乾式で清浄な製造法である。生産性に優れ、均一な厚
みの超薄形のtaiiである。
The deposited body according to the present invention cannot be obtained by ordinary melting and solidification methods and does not require a binder, so it is a dry and clean manufacturing method. It is an ultra-thin type with excellent productivity and uniform thickness.

発明の効果 上述した如く本発明は生産性に優れた、均一な厚みの超
薄膜の!極であり、固体電解質との密着性に優れた電極
/電解質複合体を提供することが出来るので、その工架
的価値は極めて大である・
Effects of the Invention As mentioned above, the present invention provides an ultra-thin film with a uniform thickness and excellent productivity! Since it is possible to provide an electrode/electrolyte composite with excellent adhesion to the solid electrolyte, its construction value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造装置の概略図である。 FIG. 1 is a schematic diagram of the manufacturing apparatus of the present invention.

Claims (16)

【特許請求の範囲】[Claims] (1)ガス中蒸発法で生成した金属の微粒子を気流に乗
せ基板に吹きつけ正極作用電極を形成するにおいて、基
板に固体電解質を用いたことを特徴とする電極/電解質
複合体の製造法。
(1) A method for producing an electrode/electrolyte composite, characterized in that a solid electrolyte is used for the substrate, in which a positive working electrode is formed by blowing fine metal particles produced by evaporation in a gas onto a substrate in an air stream.
(2)固体電解質が高分子固体電解質である請求項1記
載の電極/電解質複合体の製造法。
(2) The method for producing an electrode/electrolyte composite according to claim 1, wherein the solid electrolyte is a polymer solid electrolyte.
(3)蒸発源にマンガン酸化物を用いた請求項1記載の
電極/電解質複合体の製造法。
(3) The method for producing an electrode/electrolyte composite according to claim 1, wherein a manganese oxide is used as the evaporation source.
(4)蒸発源にバナジウム酸化物を用いた請求項1記載
の電極/電解質複合体の製造法。
(4) The method for producing an electrode/electrolyte composite according to claim 1, wherein vanadium oxide is used as the evaporation source.
(5)蒸発源にモリブデン酸化物を用いた請求項1記載
の電極/電解質複合体の製造法。
(5) The method for producing an electrode/electrolyte composite according to claim 1, wherein molybdenum oxide is used as the evaporation source.
(6)蒸発源にコバルト酸化物を用いた請求項1記載の
電極/電解質複合体の製造法。
(6) The method for producing an electrode/electrolyte composite according to claim 1, wherein cobalt oxide is used as the evaporation source.
(7)蒸発源にチタン硫化物を用いた請求項1記載の電
極/電解質複合体の製造法。
(7) The method for producing an electrode/electrolyte composite according to claim 1, wherein titanium sulfide is used as the evaporation source.
(8)蒸発源にニオブセレン化物を用いた請求項1記載
の電極/電解質複合体の製造法。
(8) The method for producing an electrode/electrolyte composite according to claim 1, wherein niobium selenide is used as the evaporation source.
(9)蒸発源にクロム酸化物を用いた請求項1記載の電
極/電解質複合体の製造法。
(9) The method for producing an electrode/electrolyte composite according to claim 1, wherein chromium oxide is used as the evaporation source.
(10)蒸発源にモリブデン硫化物を用いた請求項1記
載の電極/電解質複合体の製造法。
(10) The method for producing an electrode/electrolyte composite according to claim 1, wherein molybdenum sulfide is used as the evaporation source.
(11)蒸発源に純金属を用い、ガス中に該金属蒸気と
反応するガスを混合させて作用物質を生成する請求項1
記載の電極/電解質複合体の製造法。
(11) Claim 1, wherein a pure metal is used as the evaporation source, and a gas that reacts with the metal vapor is mixed in the gas to produce the active substance.
Method of manufacturing the described electrode/electrolyte composite.
(12)金属蒸気と反応するガスが酸素である請求項1
1記載の電極/電解質複合体の製造法。
(12) Claim 1, wherein the gas that reacts with the metal vapor is oxygen.
1. A method for producing an electrode/electrolyte composite according to 1.
(13)純金属がマンガンである請求項11記載の電極
/電解質複合体の製造法。
(13) The method for producing an electrode/electrolyte composite according to claim 11, wherein the pure metal is manganese.
(14)純金属がバナジウムである請求項11記載の電
極/電解質複合体の製造法。
(14) The method for producing an electrode/electrolyte composite according to claim 11, wherein the pure metal is vanadium.
(15)純金属がコバルトである請求項11記載の電極
/電解質複合体の製造法。
(15) The method for producing an electrode/electrolyte composite according to claim 11, wherein the pure metal is cobalt.
(16)純金属がクロムである請求項11記載の電極/
電解質複合体の製造法。
(16) The electrode according to claim 11, wherein the pure metal is chromium.
Method for producing electrolyte complexes.
JP29339989A 1989-11-10 1989-11-10 Manufacture of electrode/electrolyte complex Pending JPH03155051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29339989A JPH03155051A (en) 1989-11-10 1989-11-10 Manufacture of electrode/electrolyte complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29339989A JPH03155051A (en) 1989-11-10 1989-11-10 Manufacture of electrode/electrolyte complex

Publications (1)

Publication Number Publication Date
JPH03155051A true JPH03155051A (en) 1991-07-03

Family

ID=17794265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29339989A Pending JPH03155051A (en) 1989-11-10 1989-11-10 Manufacture of electrode/electrolyte complex

Country Status (1)

Country Link
JP (1) JPH03155051A (en)

Similar Documents

Publication Publication Date Title
US5290592A (en) Manufacturing method for electrode
US4985317A (en) Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
WO1996017392A1 (en) Secondary lithium cell
JP2000340226A (en) Lithium manganese composite oxide particle and manufacture thereof
JPH07302588A (en) Negative electrode for lithium secondary battery and its manufacture
JPH0896799A (en) Carbon / polymer combination electrode for rechargeable electrochemical lithium battery
CN110190240A (en) Compound oxidate for lithium film and the preparation method and application thereof
WO2017206063A1 (en) Magnesium ion battery and preparation method therefor
JPH0636800A (en) Lithium secondary battery
JPH02250264A (en) Lithium ion conductive solid electrolyte
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JPH03155051A (en) Manufacture of electrode/electrolyte complex
JP4273568B2 (en) Lithium manganese composite oxide particulate composition and its production and application to lithium ion secondary battery
JPS5840781A (en) Secondary battery
CN113437248A (en) Processing method of negative pole piece, sodium metal negative pole piece and electrochemical device
JPH07307152A (en) Negative electrode for lithium secondary battery and manufacture thereof
JPH03159069A (en) Manufacture of electrode and electrolyte complex
JPH05325961A (en) Lithium battery
JPH01315950A (en) Structure of positive electrode active material
JPS63264865A (en) Manufacture of negative electrode for secondary battery
Ogumi et al. Preparation and characterization of a thin film of polymer electrolyte by plasma CVD part IV. All-solid-state lithium batteries
JPH03159070A (en) Manufacture of electrode and electrolyte complex
JPH03163758A (en) Manufacture of electrode/electrolyte composite