JPH03163758A - Manufacture of electrode/electrolyte composite - Google Patents

Manufacture of electrode/electrolyte composite

Info

Publication number
JPH03163758A
JPH03163758A JP30242089A JP30242089A JPH03163758A JP H03163758 A JPH03163758 A JP H03163758A JP 30242089 A JP30242089 A JP 30242089A JP 30242089 A JP30242089 A JP 30242089A JP H03163758 A JPH03163758 A JP H03163758A
Authority
JP
Japan
Prior art keywords
lithium
electrode
fine particles
solid electrolyte
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30242089A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Shuichi Ido
秀一 井土
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP30242089A priority Critical patent/JPH03163758A/en
Publication of JPH03163758A publication Critical patent/JPH03163758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture

Abstract

PURPOSE:To obtain an electrode/electrolyte composite having excellent productivity, uniform thickness, and good contact capability with an electrolyte by conveying metal fine particles formed by gas phase vaporization with gas flow, and spraying them onto a solid electrolyte substrate to form a negative pole active electrode. CONSTITUTION:A polymer solid electrolyte film is obtained by crosslinling a copolymer of ethyleneoxide and propyleneoxide with hexamethylenediisocyanate. Lithium is put into a crucible in a vaporizing chamber and melted and vaporized with a high frequency induction heater to form lithium fine particles. A deposition chamber is evacuated, and the lithium fine particles are conveyed with gas flow and sprayed onto the polymer solid electrolyte film in the deposition chamber. The strong deposition body of lithium fine particles is formed on the polymer solid electrolyte film. Manganese dioxide fine particles are deposited on a stainless steel foil in the same way. Both electrodes are stuck together, and a negative pole current collector is attached to form a battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフィルム状の超薄形電池に用いる電1M/[解
質複合体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a 1M electrolyte composite for use in film-like ultra-thin batteries.

従来技術とその問題点 リチウムまたは、リチウム合金を負極とするフィルム状
の超薄形電池の提案が多くなされている。
Prior Art and Its Problems Many proposals have been made for film-shaped ultra-thin batteries using lithium or lithium alloy as a negative electrode.

しかし、リチウムンートは均一な厚みを容易に得ること
が困難であった。
However, it has been difficult to easily obtain a uniform thickness for lithium cement.

従来、ノズルから押出してシートとする方法が採用され
ていたが、この方法ではシートの厚さは0.07〜0.
1uが限界であった。これ以下では厚さが不均一となる
Conventionally, a method of extruding sheets from a nozzle has been adopted, but with this method, the thickness of the sheet is 0.07 to 0.
The limit was 1u. Below this, the thickness becomes non-uniform.

又、ロー〃圧延により薄膜化する方法もあるが、リチウ
ムがローμに付着し、生産性が悪いという欠点があった
There is also a method of thinning the film by low rolling, but this has the disadvantage that lithium adheres to the low μ and productivity is poor.

又、薄形電池に用いられるイオン伝導材料としては、固
体電解質、とりわけ高分子固体電解質を用いることが製
造が簡単で液漏れがなく、自由な形状の七μが製造可能
といった利点を持つことで有望視されている。しかしな
がら、固体電解質を用いる場合電極と電解質の接触を常
に良好に保たせるための工夫が必要である。さらに薄形
電池の内でも特にフレキシビリティーを付与した電池で
は、巻き込み形円筒電池のように、電極外部や内部から
加圧力を加えることができないため、接触の問題は非常
に重要である。
In addition, as the ion conductive material used in thin batteries, solid electrolytes, especially solid polymer electrolytes, are advantageous because they are easy to manufacture, do not leak, and can be manufactured into 7μ shapes of any shape. It is seen as promising. However, when using a solid electrolyte, it is necessary to take measures to maintain good contact between the electrode and the electrolyte. Furthermore, among thin batteries, the issue of contact is extremely important in batteries that are particularly flexible, since it is not possible to apply pressure from the outside or inside of the electrodes, unlike rolled-up cylindrical batteries.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
生産性に優れた、均一な厚みで、電解質との接触に優れ
た電極/電解質複合体を提供することを目的とするもの
である。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide an electrode/electrolyte composite that is highly productive, has a uniform thickness, and has excellent contact with an electrolyte.

発明の構戒 本発明は上記目的を達戒するべく、 ガス中蒸発法で生成した金属の微粒子を気流に乗せて基
板に吹きつけ、負極作用電極を形或するにおいて、基板
に固体電解質を用いることを特徴とする電4ft/電解
質複合体の製造法であるO 又、固体電解質が高分子固体電解質である前記電極/電
解質複合体の製造法である。
Structure of the Invention In order to achieve the above object, the present invention uses a solid electrolyte for the substrate in forming a negative working electrode by blowing fine metal particles generated by evaporation in gas onto a substrate in an air flow. A method for producing an electrode/electrolyte composite characterized in that the present invention is also a method for producing the electrode/electrolyte composite, wherein the solid electrolyte is a polymer solid electrolyte.

又、金属がリチウムである前記電極/電解質複合体の製
造法である@ 又、金属がリチウムと一種以上の他種金属からなる合金
である前記電極/電解質複合体の製造法である。
The present invention also provides a method for producing the electrode/electrolyte composite in which the metal is lithium; and a method for producing the electrode/electrolyte composite in which the metal is an alloy of lithium and one or more other metals.

又、他種金属がアμミニウムである前記電極/電解質複
合体の製造法である。
The present invention also provides a method for producing the electrode/electrolyte composite in which the other metal is aluminum.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

第1図は本発明に用いる製造装置の概略図である。FIG. 1 is a schematic diagram of a manufacturing apparatus used in the present invention.

ここで、1は蒸発室、2は坩堝、3はアーク又は高周波
誘導加熱器、4は差動排気室、5はノメμ、6はデボジ
シ曹冫室、7は真空ポンプ、8は基板、9は供給ガス流
入口である。
Here, 1 is an evaporation chamber, 2 is a crucible, 3 is an arc or high-frequency induction heater, 4 is a differential exhaust chamber, 5 is a knife, 6 is a debossing chamber, 7 is a vacuum pump, 8 is a substrate, 9 is the supply gas inlet.

過塩素酸リチウム1 0 wt%を溶解させた三宮能性
ボリエーテμ(エチレンオキシドとプロピレンオキVド
の共重合体、分子量3.000)を架橋剤にヘキサメチ
レンジイソVアナートを用いて既知の方法で架橋し、高
分子固体電解質フィ〃ム(厚み50plを得てこれをデ
ポジV曹冫室に設置した。
A known method using Sannomiya functional polyate μ (a copolymer of ethylene oxide and propylene oxide V-do, molecular weight 3.000) in which 10 wt% of lithium perchlorate was dissolved and hexamethylene diiso V-anate as a crosslinking agent. A polymer solid electrolyte film (thickness: 50 pl) was obtained and placed in a deposit chamber.

蒸発室において、坩堝の中にリチウムを入れて高周波誘
導加熱器により加熱溶融し、気化させ微粒子リチウムを
形成する。供給ガス(Heガス)の圧力を1 0 0 
torrとし、デボジV璽冫室の圧力を真空ボングによ
りO. j 2 torrとする。
In the evaporation chamber, lithium is placed in a crucible, heated and melted by a high-frequency induction heater, and vaporized to form particulate lithium. The pressure of the supply gas (He gas) is 1 0 0
torr, and the pressure in the vacuum chamber was adjusted to O. j 2 torr.

0.8X10−filのノズルを用いて、微粒子化リチ
ウムなデボジS/,冫室の高分子固体電解質フィルム上
にガス気流に乗せて吹きつける。これによって高分子固
体電解質フィ〃ム上に−.10鴫巾で長さlQw,厚さ
1 0 talllのリチウムの強固な堆積体が形威さ
れた。
Using a 0.8×10-fil nozzle, micronized lithium is sprayed onto the polymer solid electrolyte film in the chamber in a gas stream. As a result, -. A strong deposit of lithium with a length of 1Qw and a thickness of 10 tall was formed in 10 minutes.

次に坩堝の中に二酸化マンガンを入れて、アーク誘導加
熱器により加熱溶融し、気化させ得られた微粒子化二酸
化マンガンを同条件にてデボジシ雪ン室のステンレス箔
上にガス気流に乗せて吹きつける。これによって10鴎
巾で長さ10@II,厚さ1 0 pmの二酸化マンガ
ンの強固な堆積体が形或された。
Next, manganese dioxide is placed in a crucible, heated and melted using an arc induction heater, and the finely divided manganese dioxide obtained by vaporization is blown onto a stainless steel foil in a deposition chamber under the same conditions with a gas stream. Put on. This formed a solid deposit of manganese dioxide with a length of 10@II and a thickness of 10 pm.

これら両者を貼り合わせ、さらに負極集電体を取り付け
電池を構戒した。画集電停から取り出したリード線を電
流計に接続し、短絡電流を測定したところ111▲/ 
cIであった。
These two were pasted together, and a negative electrode current collector was attached, and the battery was prepared. When I connected the lead wire taken out from the power supply to an ammeter and measured the short circuit current, it was 111▲/
It was cI.

比較例 前実施例において、高分子固体電解質に代えて、ステン
レス箔をグポジシ冒冫室に設置し、同条件下でステンレ
ス箔上に二酸化マンガンの強固な堆積体を形或させた@ これに前記実施例と同様の高分子固体電解質フィルム1
リチウム及び負極集電停を取り付け、電池を構或した。
Comparative Example In the previous example, instead of the solid polymer electrolyte, a stainless steel foil was placed in the gas exposure chamber, and a strong deposit of manganese dioxide was formed on the stainless steel foil under the same conditions. Polymer solid electrolyte film 1 similar to the example
A battery was constructed by attaching lithium and negative electrode current collectors.

ステンレス箔と負極集電停から取り出したリード線を電
流計に接続し、短絡電流を測定したところ8m▲/C一
であった〇 ここで得られる堆積体は通常の溶解、凝固方法では得る
ことのできないもので、結合剤を必要としないので、乾
式で清浄な製造法であり、生産性に優れ、均一な厚みの
電極/[解質複合体を得ることが出来る。
The stainless steel foil and the lead wire taken out from the negative electrode current collector were connected to an ammeter and the short circuit current was measured, and it was 8 m▲/C. The deposit obtained here cannot be obtained by normal melting and solidification methods. Since it does not require a binder, it is a dry and clean manufacturing method, has excellent productivity, and can produce an electrode/solate composite with a uniform thickness.

発明の効果 上述した如く、生産性に優れた、均一な厚みで、電解質
との接触に優れた電1i/電解質複合体が提供できるの
で、その工業的価値は極めて大である。
Effects of the Invention As described above, it is possible to provide an electrolyte/electrolyte composite with excellent productivity, uniform thickness, and excellent contact with the electrolyte, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる製造装置の概略図である● 1・・・蒸発室     2・・・坩堝3・・・アーク
又は高周波誘導加熱器 4・・・差動排気室   5・・・ノズp6・・・デボ
ジV曽冫室  7・・・真空ポンプ8・・・基板
Figure 1 is a schematic diagram of the manufacturing apparatus used in the present invention. 1... Evaporation chamber 2... Crucible 3... Arc or high frequency induction heater 4... Differential exhaust chamber 5... Nozzle p6... Deboji V Sojutsu chamber 7... Vacuum pump 8... Board

Claims (5)

【特許請求の範囲】[Claims] (1)ガス中蒸発法で生成した金属の微粒子を気流に乗
せて基板に吹きつけ、負極作用電極を形成するにおいて
基板に固体電解質を用いることを特徴とする電極/電解
質複合体の製造法。
(1) A method for producing an electrode/electrolyte composite, which comprises using a solid electrolyte as a substrate in forming a negative working electrode by blowing fine metal particles produced by an in-gas evaporation method onto a substrate in an air stream.
(2)固体電解質が高分子固体電解質である請求項1記
載の電極/電解質複合体の製造法。
(2) The method for producing an electrode/electrolyte composite according to claim 1, wherein the solid electrolyte is a polymer solid electrolyte.
(3)金属がリチウムである請求項1記載の電極/電解
質複合体の製造法。
(3) The method for producing an electrode/electrolyte composite according to claim 1, wherein the metal is lithium.
(4)金属がリチウムと一種以上の他種金属からなる合
金である請求項1記載の電極/電解質複合体の製造法。
(4) The method for producing an electrode/electrolyte composite according to claim 1, wherein the metal is an alloy consisting of lithium and one or more other metals.
(5)他種金属がアルミニウムである請求項4記載の電
極/電解質複合体の製造法。
(5) The method for producing an electrode/electrolyte composite according to claim 4, wherein the other metal is aluminum.
JP30242089A 1989-11-20 1989-11-20 Manufacture of electrode/electrolyte composite Pending JPH03163758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30242089A JPH03163758A (en) 1989-11-20 1989-11-20 Manufacture of electrode/electrolyte composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30242089A JPH03163758A (en) 1989-11-20 1989-11-20 Manufacture of electrode/electrolyte composite

Publications (1)

Publication Number Publication Date
JPH03163758A true JPH03163758A (en) 1991-07-15

Family

ID=17908706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30242089A Pending JPH03163758A (en) 1989-11-20 1989-11-20 Manufacture of electrode/electrolyte composite

Country Status (1)

Country Link
JP (1) JPH03163758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery

Similar Documents

Publication Publication Date Title
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
US5290592A (en) Manufacturing method for electrode
CN110676420A (en) Lithium ion battery's lithium diaphragm of mending
KR20060101312A (en) Negative electrode for lithium ion secondary battery, producing method therefor, and lithium ion secondary battery using the negative electrode
WO2009095973A1 (en) Method for manufacturing electrochemical element electrode
CN111900355A (en) Carbon cathode of lithium ion battery and preparation method and application thereof
JP2008282797A (en) Collector for non-aqueous secondary battery and its manufacturing method
JPH03163758A (en) Manufacture of electrode/electrolyte composite
JP2948277B2 (en) How to make a lithium battery
JPH08287901A (en) Manufacture of positive electrode for lithium secondary battery
CN110380056A (en) A kind of modified collector in surface, preparation method and application
JPH03159069A (en) Manufacture of electrode and electrolyte complex
JPH0737578A (en) Battery electrode
CN111864183B (en) Preparation method of electrode, prepared electrode and application
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
JP2701476B2 (en) Manufacturing method of lithium anode
JPH03159070A (en) Manufacture of electrode and electrolyte complex
CN108110213A (en) A kind of lithium ion cell positive structure and lithium ion battery
JP3344175B2 (en) Method for producing porous aluminum body
CN109950528A (en) Film lithium cell and preparation method thereof, anode film material, anode thin film, positive electrode and preparation method thereof, electrical appliance
JPH03155051A (en) Manufacture of electrode/electrolyte complex
Ogumi et al. Preparation of ultra-thin solid-state lithium batteries utilizing a plasma-polymerized solid polymer electrolyte
TWI525870B (en) Methods for fabricating silicon electrode and energy storage apparatus thereof
CN110085917A (en) All-solid lithium-ion battery and preparation method thereof and electrical equipment
TWI771142B (en) Preparation method and preparation device of lithium battery electrode