JPH03153820A - Method for predicting rolling load - Google Patents

Method for predicting rolling load

Info

Publication number
JPH03153820A
JPH03153820A JP1290055A JP29005589A JPH03153820A JP H03153820 A JPH03153820 A JP H03153820A JP 1290055 A JP1290055 A JP 1290055A JP 29005589 A JP29005589 A JP 29005589A JP H03153820 A JPH03153820 A JP H03153820A
Authority
JP
Japan
Prior art keywords
rolling
transformation point
warm
load
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1290055A
Other languages
Japanese (ja)
Inventor
Kunio Isobe
磯邉 邦夫
Tomohito Koseki
智史 小関
Yukio Yarita
鑓田 征雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1290055A priority Critical patent/JPH03153820A/en
Publication of JPH03153820A publication Critical patent/JPH03153820A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To produce a steel sheet high in thickness precision by using respective rolling friction coefficients in the region above the transformation point of a material to be rolled and in the region below the transformation point to predict the rolling load in warm rolling after hot rolling. CONSTITUTION:The material is hot rolled and then warm-rolled. In this case, the Ar3 transformation point of the material is calculated. A hot rolling friction coefficient is used in the temp. region above the transformation point to predict the rolling load. A warm-rolling friction coefficient is used in the temp. region up to the transformation point to predict the rolling load. Alternately, the rolling in the temp. region above the transformation point and that in the temp. region up to the transformation point are separated, and the rolling loads are respectively learned to predict the rolling loads. Consequently, the precision in predicting the rolling load in warm rolling is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、熱間圧延とそれに引き続いた温間圧延におけ
る圧延荷重の予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for predicting rolling load during hot rolling and subsequent warm rolling.

C従来の技術] 熱延工程の終盤でAr3変態点以下の圧延(以下温間圧
延という)を行なうことは、公知の技術である。
C. Prior Art] It is a known technique to perform rolling at a temperature below the Ar3 transformation point (hereinafter referred to as warm rolling) at the final stage of the hot rolling process.

例えば、特開昭62−284016では、熱延工程の終
盤でAr3変態点以下、500℃以上の温度域で、(a
)少なくとも30%以上の圧延を行なうか、或いは(b
)潤滑を施しロールと鋼板の平均摩擦係数を0.2以下
として30%以上の温間圧延をすることにより、電磁特
性の優れた鋼板の製造方法が開示されている。
For example, in JP-A-62-284016, (a
) Rolling of at least 30% or more, or (b
) A method for manufacturing a steel sheet with excellent electromagnetic properties is disclosed by applying lubrication and performing warm rolling with an average friction coefficient of 30% or more with the average friction coefficient between the roll and the steel sheet being 0.2 or less.

又、特開昭61−159528では、TAr3+50°
CからT Ar3 + 2(10℃までの温度域で合計
50%以上、最終パス20%以上の加工を行ない、然る
後、5秒以内にlθ℃/秒以上の冷却速度でTAr3+
50°C以下まで冷却し、更に500℃以上TAr3+
50℃の温度域で50%以上の温間圧延を行なうことに
より、加工性の優れた鋼板を製造する方法が開示されて
いる。
Also, in JP-A-61-159528, TAr3+50°
C to T Ar3 + 2 (processing of 50% or more in total in the temperature range up to 10°C, 20% or more in the final pass, then TAr3+ at a cooling rate of lθ°C/sec or more within 5 seconds)
Cool down to 50°C or below, and then cool to 500°C or above TAr3+
A method for manufacturing a steel plate with excellent workability by performing warm rolling of 50% or more in a temperature range of 50° C. is disclosed.

[発明が解決しようとする課題] 上記従来技術のほかにも、熱間域での圧延に引き続いた
温間域での圧延を利用し、製品の機械的特性の優れた鋼
板の製造方法が数多く開示されているか、いずれもその
特性を向上させるための条件が開示されているにすぎず
、製品の厚みや幅等の寸法形状を所定の値に製造する技
術は開示されていない。
[Problems to be Solved by the Invention] In addition to the above-mentioned conventional techniques, there are many methods for producing steel sheets with excellent mechanical properties by utilizing rolling in a hot region followed by rolling in a warm region. However, all of them only disclose conditions for improving the characteristics, and do not disclose techniques for manufacturing products to predetermined dimensions and shapes, such as thickness and width.

一般に、熱間圧延に引き続いた温間圧延を行なうと、圧
延荷重の予測精度が悪く、結果として板厚精度の良い鋼
板を製造するのが困難である。
Generally, when hot rolling is followed by warm rolling, the accuracy of predicting the rolling load is poor, and as a result, it is difficult to manufacture a steel plate with good thickness accuracy.

本発明は、熱間圧延に引き続いた温間圧延において、板
厚精度の優れた鋼板を製造するための圧延荷重の予測方
法を提供することを目的とする。
An object of the present invention is to provide a method for predicting rolling load for manufacturing a steel plate with excellent plate thickness accuracy during warm rolling subsequent to hot rolling.

[課題を解決するための手段] 請求項1に記載の本発明は、被圧延材に熱間圧延とそれ
に引き続き温間圧延を施すに際して、被圧延材のAr3
変態点を計算し、その変態点以上の温度域ての圧延ては
熱間圧延摩擦係数を、その変態点未満の温度域での圧延
では温間圧延摩擦係数を用いて圧延荷重を予測するよう
にしたものである。
[Means for Solving the Problems] The present invention as set forth in claim 1 provides a method for reducing Ar3 of the rolled material when performing hot rolling and subsequent warm rolling on the rolled material.
The transformation point is calculated, and the rolling load is predicted using the hot rolling friction coefficient for rolling in a temperature range above the transformation point, and the warm rolling friction coefficient for rolling in a temperature range below the transformation point. This is what I did.

請求項2に記載の本発明は、被圧延材に熱間圧延とそれ
に引き続き温間圧延を施すに際して、被圧延材の変態点
以上の温度域での圧延と、その変態点未満の温度域での
圧延とを分けて、別々に圧延荷重を学習して圧延荷重を
予測するようにしたものである。
The present invention according to claim 2 provides for hot rolling and subsequent warm rolling of a material to be rolled, rolling in a temperature range above the transformation point of the material to be rolled and in a temperature range below the transformation point. The rolling load is learned separately and the rolling load is predicted separately.

[作用] 圧延荷重Pは公知の如く、次式で与えられる。[Effect] As is well known, the rolling load P is given by the following formula.

P=にm−f2d−Qp−W   ・・・(I)I2d
=、r正7ΣT       ・・・(2)ここで、k
薦:変形抵抗、J2d:投影接触弧長、Qp:圧下力間
数、W二板幅、R′:偏平ロール半径、Δh:圧延前後
の板厚差である。(1)式の変形抵抗Kmは歪ε、歪速
度ε、圧延材温度T、圧延材の化学成分Cなどの関数で
あり、(3)式で表わされる。
P = m-f2d-Qp-W ... (I) I2d
=, r positive 7ΣT...(2) Here, k
Recommendation: deformation resistance, J2d: projected contact arc length, Qp: number of rolling forces, W two plate width, R': flat roll radius, Δh: plate thickness difference before and after rolling. The deformation resistance Km in equation (1) is a function of strain ε, strain rate ε, rolled material temperature T, chemical composition C of the rolled material, etc., and is expressed by equation (3).

ki=f(ε、e、T%C・・・)  ・・・(3)又
、(1)式の圧下刃閏数QPは偏平ロール半径R′、板
厚h、圧下率r、摩擦係数μの関数であり、(4)式で
示される。
ki=f(ε, e, T%C...) ...(3) Also, the rolling blade incline number QP in equation (1) is the flat roll radius R', the plate thickness h, the rolling reduction ratio r, and the friction coefficient. It is a function of μ and is expressed by equation (4).

Qp=f (R’、h、r、u)  ”・(4)通常の
ホットストリップ仕上圧延のセットアツプでは、これら
の式を用い、圧延荷重を推定し、その圧延荷重によりロ
ール間隙が変化する量を見込んて、所定の圧下スケジュ
ールで圧延できるようにロール開度を調整していた。そ
の手順の概略は、予め決められた板厚スケジュールに基
づいて(I)圧延温度の予測(II)変形抵抗の計算(
I)圧下力関数の計算(IV)圧延荷重の計算を行なう
ことである。
Qp=f (R', h, r, u) ''・(4) In the setup of normal hot strip finishing rolling, these formulas are used to estimate the rolling load, and the roll gap changes depending on the rolling load. The roll opening degree was adjusted so that rolling could be carried out according to a predetermined reduction schedule in anticipation of the amount of rolling. Calculation of resistance (
I) Calculation of rolling force function (IV) Calculating rolling load.

弐(1)〜(4)は、熱間圧延である限り、単調な関数
なので、学習を行なうことにより圧延荷重の予測精度は
非常に良いが、ホットストリップ仕上ミル途中で材料の
変態点未満の温間圧延を含む場合には、上記(n)、(
III)が異なることから、以下の方法をとる必要があ
る。
2 (1) to (4) are monotonous functions as long as hot rolling is performed, so the accuracy of predicting the rolling load is very good by learning, but if the rolling force is below the material's transformation point during the hot strip finishing mill, If warm rolling is included, the above (n), (
III) is different, it is necessary to take the following method.

圧延材の変態点Ar3か含有化学成分に依存することは
公知の事実であり、この変態点は、該変態点で線膨張係
数が変化することや、変形抵抗が不連続的に変化するこ
となどにより測定が可能である。第2図は後者の例であ
る。従って、種々の鋼について、それらの変態点は、テ
ーブルとして持つか、化学成分を独立変数とした回帰式
により知らなければならない。
It is a well-known fact that the transformation point Ar3 of a rolled material depends on the chemical components contained, and this transformation point is determined by the following factors: the linear expansion coefficient changes at the transformation point, the deformation resistance changes discontinuously, etc. It is possible to measure by FIG. 2 is an example of the latter. Therefore, the transformation points of various steels must be known in the form of a table or by a regression equation using the chemical composition as an independent variable.

次に、変形抵抗は、第2図の如くの温度依存性があり、
然も変態点で不連続的に変化するので圧延温度が変態点
以上の温度なのか変態点未満の温度なのかは重要である
。但し、上記のようにこの不連続性は公知であるから、
変形抵抗にこれを考慮して圧延荷重の計算を行なうのは
当然である。
Next, the deformation resistance has temperature dependence as shown in Figure 2.
However, since the rolling temperature changes discontinuously at the transformation point, it is important whether the rolling temperature is above the transformation point or below the transformation point. However, as mentioned above, this discontinuity is known, so
It goes without saying that the rolling load should be calculated taking into account the deformation resistance.

次に圧下力関数であるが、独立変数R’  h、rは幾
何学的変数であり、圧延条件として与えられたり、収束
計算の過程で定まる。一方、摩擦係数μは、圧延温度の
低下とともに単調に大きくなるGe1ejiの式が知ら
れている。
Next, regarding the rolling force function, the independent variables R' h and r are geometric variables, and are given as rolling conditions or determined in the process of convergence calculation. On the other hand, Geleji's equation is known in which the friction coefficient μ monotonically increases as the rolling temperature decreases.

μ= 0.112−0.0O05T −0,056V 
 ・・・(5)ここで、T:圧延温度、V:圧延速度 ところが、温間域〜熱間域に渡ってμを測定した結果、
このμは第1図のように変態点で不連続的に変化するこ
とが明らかになった。ここで、摩擦係数は、ロールに付
けたマークの圧延材への転写マーク距離を測定して先進
率を計算し、先進率と摩擦係数に関する0rovanの
式より計算した。即ち、温間圧延域での摩擦係数を、従
来の熱間圧延域の摩擦係数の外挿として、温度が下がる
ほど大きくとると、圧下力関数の推定を誤り、圧延荷重
の予測値が実測値より大きくなり、結果として板厚が薄
くなってしまう。
μ= 0.112-0.0O05T-0,056V
... (5) Here, T: rolling temperature, V: rolling speed However, as a result of measuring μ over the warm region to hot region,
It has become clear that this μ changes discontinuously at the transformation point, as shown in FIG. Here, the friction coefficient was calculated by measuring the transfer mark distance of the mark made on the roll to the rolled material, calculating the advance rate, and using Orovan's formula regarding the advance rate and the friction coefficient. In other words, if the friction coefficient in the warm rolling zone is extrapolated from the friction coefficient in the conventional hot rolling zone and is taken to be larger as the temperature decreases, the estimation of the rolling force function will be incorrect and the predicted value of the rolling force will be the actual value. As a result, the plate thickness becomes thinner.

以上のように、摩擦係数の推定においても、圧延材の変
態温度を計算しておき、圧延温度が変態点以上なのか未
満かを計算し、それに基づいて、各々の温度領域での摩
擦係数テーブルや数式等により摩擦係数を予測しなけれ
ば、温間域での圧延荷重精度の同上は期待できない。
As mentioned above, when estimating the friction coefficient, the transformation temperature of the rolled material is calculated, and whether the rolling temperature is above or below the transformation point is calculated. Based on that, the friction coefficient table for each temperature range is calculated. Unless the friction coefficient is predicted using a formula or a mathematical formula, it is impossible to expect the same rolling load accuracy in the warm region.

従って、請求項1に記載の本発明によれば、圧延荷重の
予測のために用いる摩擦係数を、圧延温度が変態点以上
なのか変態点未満かに応じて推定するものであるため、
温間圧延域での圧延荷重の予測精度を向上し、板厚精度
の優れた鋼板を製造できる。
Therefore, according to the present invention as set forth in claim 1, the friction coefficient used for predicting the rolling load is estimated depending on whether the rolling temperature is above the transformation point or below the transformation point.
It is possible to improve the prediction accuracy of rolling loads in the warm rolling region and manufacture steel plates with excellent plate thickness accuracy.

又、請求項2に記載の本発明によれば、圧延荷重の学習
を、圧延温度が変態点以上なのか変態点未満かに応じて
別々に行なうものであるため、温間圧延域での圧延荷重
の予測精度を向上し、板厚精度の優れた鋼板を製造でき
る。
Furthermore, according to the present invention as set forth in claim 2, learning of the rolling load is performed separately depending on whether the rolling temperature is above the transformation point or below the transformation point. It is possible to improve load prediction accuracy and manufacture steel plates with excellent plate thickness accuracy.

[実施例] (実施例1) まず、請求項1に記載の本発明の具体的実施結果につい
て説明する。
[Example] (Example 1) First, specific implementation results of the present invention as set forth in claim 1 will be described.

厚み10■の低炭素鋼を800.850 、900 ’
Ck:加熱し、φ310■のロールで圧下率20%で圧
延した。結果をまとめて表1に示す。
800.850, 900' of low carbon steel with a thickness of 10cm
Ck: It was heated and rolled with a roll having a diameter of 310 mm at a reduction rate of 20%. The results are summarized in Table 1.

この材料の変態点T Ar3 = 830°Cであり、
圧延温度が900℃、850℃であるA、B材は熱間域
圧延であり、それぞれの変形抵抗は、数式から17.9
.18.5kgf/■鳳2であり、摩擦係数の推定値は
その数式か1らそれぞれ0.3.0.35であった。
The transformation point of this material T Ar3 = 830°C,
Materials A and B, whose rolling temperatures are 900°C and 850°C, are hot-rolled, and their deformation resistance is calculated from the formula as 17.9.
.. 18.5 kgf/■Otori 2, and the estimated values of the friction coefficient were 0.3 and 0.35, respectively, from the formula 1.

圧延温度が800℃である材料について従来法を適用し
たC材については、摩擦係数を従来法から推定すると0
.4となるのでOrowanの圧下力関数を計算し、a
OO℃の変形抵抗値15.0kgf/am”を用いて幅
当りの圧延荷重を計算したところ、333kgf/臘鳳
となり、実測荷重314kgf/amに比べ5.7%計
算荷重が大きかりた。
For material C, which is rolled at a rolling temperature of 800℃ using the conventional method, the friction coefficient is estimated to be 0 using the conventional method.
.. 4, so calculate Orowan's rolling force function and a
When the rolling load per width was calculated using the deformation resistance value of 15.0 kgf/am'' at OO°C, it was 333 kgf/臘鳳, which was 5.7% larger than the actual measured load of 314 kgf/am.

一方、圧延温度が800℃である材料について本発明法
を適用したD材については、本発明法により、変態点未
満の温間域でのこの鋼の摩擦係数は数式から800℃で
0.25であったのでこれを用いて幅当たりの圧延荷重
を計算した結果、計算荷重は315kgf/agiであ
り、実測値とほぼ一致した。
On the other hand, for material D, to which the method of the present invention is applied for a material whose rolling temperature is 800°C, the coefficient of friction of this steel in the warm region below the transformation point is 0.25 at 800°C from the mathematical formula. Therefore, as a result of calculating the rolling load per width using this, the calculated load was 315 kgf/agi, which almost matched the actual value.

(実施例2) 次に、請求項2に記載の本発明の具体的実施結果につい
て説明する。
(Example 2) Next, specific implementation results of the present invention as set forth in claim 2 will be described.

ホットストリップ仕上ミルにて圧延荷重の予測精度を向
上させるために学習を行なっているが、従来、熱間圧延
材と温間圧延材の学習は、特に分離せずに行なっていた
。その時の予測誤差は板厚1.2〜2.3mmの鋼板に
対して1σ=8.7%であったが、温間域と熱間域で別
々に学習するようにしたところ、本発明法により温間域
の摩擦係数の推定がより正確になったため、温間域の圧
延荷重の予測精度が10=5.1%にまで向上した。
Learning is being carried out to improve the prediction accuracy of rolling loads in hot strip finishing mills, but in the past, learning for hot-rolled materials and warm-rolled materials has not been done separately. The prediction error at that time was 1σ = 8.7% for a steel plate with a thickness of 1.2 to 2.3 mm, but when learning was performed separately for the warm region and the hot region, the method of the present invention Since the estimation of the friction coefficient in the warm region became more accurate, the prediction accuracy of the rolling load in the warm region improved to 10 = 5.1%.

[発明の効果] 以上のように本発明によれば、熱間圧延に引き続く温間
圧延において、圧延荷重の予測精度を向上し、板厚精度
の優れた鋼板を製造できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to improve the prediction accuracy of rolling load in warm rolling subsequent to hot rolling, and to manufacture a steel plate with excellent plate thickness accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は摩擦係数と圧延材温度との関係を示す線図、第
2図は圧延材の変形抵抗と温度との関係を示す線図であ
る。
FIG. 1 is a diagram showing the relationship between the friction coefficient and the temperature of the rolled material, and FIG. 2 is a diagram showing the relationship between the deformation resistance of the rolled material and the temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)被圧延材に熱間圧延とそれに引き続き温間圧延を
施すに際して、被圧延材のAr3変態点を計算し、その
変態点以上の温度域での圧延では熱間圧延摩擦係数を、
その変態点未満の温度域での圧延では温間圧延摩擦係数
を用いて圧延荷重を予測することを特徴とする圧延荷重
の予測方法。
(1) When subjecting the rolled material to hot rolling and subsequent warm rolling, calculate the Ar3 transformation point of the rolled material, and when rolling in a temperature range above the transformation point, calculate the hot rolling friction coefficient,
A method for predicting rolling load, which is characterized by predicting rolling load using a warm rolling friction coefficient during rolling in a temperature range below the transformation point.
(2)被圧延材に熱間圧延とそれに引き続き温間圧延を
施すに際して、被圧延材の変態点以上の温度域での圧延
と、その変態点未満の温度域での圧延とを分けて、別々
に圧延荷重を学習して圧延荷重を予測することを特徴と
する圧延荷重の予測方法。
(2) When performing hot rolling and subsequent warm rolling on the rolled material, separate rolling in a temperature range above the transformation point of the rolled material and rolling in a temperature range below the transformation point, A rolling load prediction method characterized by separately learning rolling loads and predicting rolling loads.
JP1290055A 1989-11-09 1989-11-09 Method for predicting rolling load Pending JPH03153820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290055A JPH03153820A (en) 1989-11-09 1989-11-09 Method for predicting rolling load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290055A JPH03153820A (en) 1989-11-09 1989-11-09 Method for predicting rolling load

Publications (1)

Publication Number Publication Date
JPH03153820A true JPH03153820A (en) 1991-07-01

Family

ID=17751204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290055A Pending JPH03153820A (en) 1989-11-09 1989-11-09 Method for predicting rolling load

Country Status (1)

Country Link
JP (1) JPH03153820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824588B2 (en) 2001-08-07 2004-11-30 Nippon Sanso Corporation Apparatus and method for purifying air used in cryogenic air separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824588B2 (en) 2001-08-07 2004-11-30 Nippon Sanso Corporation Apparatus and method for purifying air used in cryogenic air separation

Similar Documents

Publication Publication Date Title
CN100493749C (en) Roughed plate bloom temperature control method in hot-rolled process
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
US4776192A (en) Controlling the profile of sheet during rolling thereof
ATE107708T1 (en) PROCESS FOR PRODUCTION OF HOT STRIP OR HEAVY PLATE.
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JPH0284210A (en) Method and device for setting in rolling mill
JPH03153820A (en) Method for predicting rolling load
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
KR100340544B1 (en) A method for predicting hot deformation resistance in ferritic stainless steels
JPH0550128A (en) Method for predicting rolling temperature of steel sheet in hot rolling
JPS5884606A (en) Predicting method for rolling load of steel plate
JPS58100907A (en) Controlling method of sheet gauge in hot rolling mill
JP4086120B2 (en) Cold rolling method for hot rolled steel strip before pickling
Sassani et al. Prediction of spread in hot flat rolling under variable geometry conditions
JP3518504B2 (en) How to set cooling conditions for steel sheets
JP2002224726A (en) Temper rolling method for metal strip
JPS62197221A (en) Correcting method for lateral bending of metallic plate
JP3397966B2 (en) Rolling method for section steel
JPH09253718A (en) Method for rolling shape
KR100376475B1 (en) Prediction of thickness shrinkage during cooling after rolling
JPH02307611A (en) Setting up method for sheet rolling
JP3397967B2 (en) Rolling method for section steel
JPH07151717A (en) Method for learning and computing profile of reduction roll