JP2002224726A - Temper rolling method for metal strip - Google Patents

Temper rolling method for metal strip

Info

Publication number
JP2002224726A
JP2002224726A JP2001030524A JP2001030524A JP2002224726A JP 2002224726 A JP2002224726 A JP 2002224726A JP 2001030524 A JP2001030524 A JP 2001030524A JP 2001030524 A JP2001030524 A JP 2001030524A JP 2002224726 A JP2002224726 A JP 2002224726A
Authority
JP
Japan
Prior art keywords
rolling
rolling load
load
temper
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001030524A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Umagoe
義幸 馬越
Atsushi Aizawa
敦 相沢
Kenji Hara
健治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001030524A priority Critical patent/JP2002224726A/en
Publication of JP2002224726A publication Critical patent/JP2002224726A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which enables precise temper rolling of a metal strip under rolling load calculated using an estimation equation of rolling load. SOLUTION: In temper rolling of a metal strip by a temper rolling mill, taking extension ratio and strip width as variables, rolling load is expressed in the equations, p=a.r+b, P=W.p wherein, p is rolling load for a unit width, r is extension ratio, P is rolling load, W is strip width, and a, b are sensitivity coefficients. The temper rolling mill is controlled to roll, based on the rolling load estimated by this mathematical model composed of the equations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、調質圧延機を用いた金
属帯の圧延において圧延荷重を精度良く予測し、目標通
りの伸び率や金属帯形状が得られるように圧延を行う方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately predicting a rolling load in rolling of a metal strip using a temper rolling mill, and performing a rolling operation so as to obtain a target elongation and a metal strip shape. Things.

【0002】[0002]

【従来の技術】鋼帯の冷間圧延プロセスにおいては、目
標厚さに仕上げられた冷延鋼板を焼鈍し、その後所定の
伸び率が得られるように調質圧延して製品とすることが
多い。調質圧延機は、目標の伸び率が得られるように計
算機制御されるが、この計算機制御においては、圧延時
に発生する圧延荷重を予測する必要がある。また、圧延
荷重は仕上げられた冷延鋼帯の形状に大きな影響を及ぼ
すため、形状のプリセット制御の観点からも圧延荷重の
予測が重要になる。
2. Description of the Related Art In the process of cold rolling a steel strip, a cold-rolled steel sheet finished to a target thickness is often annealed and then temper-rolled to obtain a predetermined elongation to obtain a product. . The temper rolling mill is computer-controlled so that a target elongation rate is obtained. In this computer control, it is necessary to predict a rolling load generated during rolling. Further, since the rolling load has a great effect on the shape of the finished cold-rolled steel strip, it is important to predict the rolling load from the viewpoint of shape preset control.

【0003】従来、圧延荷重の予測モデルとして、式
(1)に示される周知慣用のBland &Fordの圧延荷重式
等が使用されてきた。 Pb&f=f(km,t1,t2)QPP (1) Pb&f:圧延荷重、km:平均変形抵抗、QP:圧下力関
数 LP:接触弧長、t1,t2:入側、出側ユニット張力
Conventionally, as a rolling load prediction model, a well-known and commonly used Bland & Ford rolling load equation shown in equation (1) has been used. P b & f = f (k m, t 1, t 2) Q P L P (1) P b & f: rolling load, k m: Mean deformation resistance, Q P: rolling force function L P: Contact arc length, t 1, t 2 : Inlet / outlet unit tension

【0004】ところが、調質圧延のような圧下率が小さ
い圧延の場合には、Bland & Fordの圧延荷重式を用いて
圧延荷重を予側すると、実績圧延荷重と計算圧延荷重が
大きく異なる。これは、Bland & Fordの圧延荷重式にお
いては、図1に示すように、ロールバイト内における圧
延方向のロール形状が円弧を保つことを前提にしている
が、調質圧延のように圧下率が小さい場合には、図2に
示すように、板から受ける力によりロールの扁平変形量
ΔRが圧下量Δtと同程度になる場合があり、ロール形
状のうねりが無視できなくなるためである。
However, in the case of rolling with a small rolling reduction such as temper rolling, if the rolling load is estimated using the Bland & Ford rolling load formula, the actual rolling load and the calculated rolling load are significantly different. This is based on the assumption that the roll shape in the rolling direction in the roll tool maintains an arc as shown in FIG. 1 in the rolling load formula of Bland & Ford, but the rolling reduction is similar to that of temper rolling. If it is small, as shown in FIG. 2, the flat deformation amount ΔR of the roll may become almost equal to the rolling reduction amount Δt due to the force received from the plate, and the undulation of the roll shape cannot be ignored.

【0005】そこで、調質圧延における圧延荷重予測制
度向上のため、文献「第42回塑加連講論、(199
1)、P.465」に例示されているように、ロールの
形状のうねりを考慮した圧延荷重解析モデルが提案され
ている。本解析モデルでは、ロール間隙の圧延方向分
布、すなわち板厚分布を仮定して圧延圧力分布を計算
し、これから得られるロール間隙の分布が仮定値に一致
するまで繰返し計算を行うことにより、圧延圧力分布を
求め、圧延荷重を算出している。
[0005] Therefore, in order to improve the rolling load prediction system in temper rolling, the literature "The 42nd Lecture on Plasticity, (199)
1), p. 465 ", a rolling load analysis model that considers the undulation of the roll shape has been proposed. In this analysis model, the rolling pressure distribution is calculated assuming the rolling direction distribution of the roll gap, that is, the sheet thickness distribution, and the rolling pressure distribution is calculated repeatedly until the obtained roll gap distribution matches the assumed value. The distribution is determined and the rolling load is calculated.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらの圧延
荷重解析モデルは、ロール形状と板厚分布の適合解が得
られるまで収束計算を行なって圧延荷重を算出するもの
であり、コンピュータの処理能力の点から、オンライン
で圧延荷重を計算する数式モデルとして用いることは難
しい。そこで、Bland & Fordの圧延荷重式等が依然とし
て使用されており、圧延荷重の推測精度が悪く、目標と
する伸び率や金属帯形状が得られないことが多いと言う
問題がある。本発明は、このような問題を解消すべく案
出されたものであり、オンラインで使用可能な精度の良
い調質圧延における圧延荷重予測式を用いることによ
り、精度良く金属帯の調質圧延を行う方法を提供するこ
とを目的とする。
However, these rolling load analysis models calculate the rolling load by performing convergence calculation until a suitable solution of the roll shape and the thickness distribution is obtained. Therefore, it is difficult to use the formula as a mathematical model for calculating the rolling load online. Therefore, the Bland & Ford rolling load equation and the like are still used, and there is a problem that the estimation accuracy of the rolling load is poor, and a target elongation rate and a metal strip shape cannot be obtained in many cases. The present invention has been devised to solve such a problem, and by using a rolling load prediction formula in a high-precision temper rolling that can be used online, the temper rolling of a metal strip can be performed with high accuracy. The aim is to provide a way to do so.

【0007】[0007]

【課題を解決するための手段】本発明の金属帯の調質圧
延方法は、その目的を達成するため、調質圧延機を用い
た金属帯の圧延において、伸び率と板幅を変数として圧
延荷重を表す下記の式 p=a・r+b P=W・p ここで、p:単位幅当たりの圧延荷重、r:伸び率 P:圧延荷重、W:板幅、a,b:影響係数 から構成される数式モデルにより圧延荷重を予測し、こ
の予測圧延荷重に基いて圧延機を制御して圧延を行うこ
とを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the object, a method for temper rolling a metal strip according to the present invention comprises, in rolling a metal strip using a temper rolling mill, rolling by using the elongation percentage and the sheet width as variables. The following expression representing the load: p = ar · b + b P = W · p where p: rolling load per unit width, r: elongation percentage P: rolling load, W: plate width, a, b: influence coefficient The rolling load is predicted by a mathematical model to be performed, and rolling is controlled by controlling a rolling mill based on the predicted rolling load.

【0008】[0008]

【発明の実施の態様】本発明者等は、調質圧延において
オンラインで使用可能な精度の良い圧延荷重予測方法に
ついて種々調査検討した。その結果、単位幅当たりの圧
延荷重が伸びとほぼ直線的な関係にあることに着目し、
圧延荷重に伸び率が及ぼす影響を取り込んだ数式モデル
を用いると、精度良く圧延荷重を予測できることを見出
した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various investigations and studies on a highly accurate rolling load prediction method which can be used online in temper rolling. As a result, paying attention to the fact that the rolling load per unit width is almost linear with the elongation,
It has been found that the rolling load can be accurately predicted by using a mathematical model incorporating the effect of the elongation on the rolling load.

【0009】以下、本発明を詳細に説明する。本発明者
等は、前記文献「第42回塑加連講論、(1991)、
P.465」に例示されているのと同様に,ロール形状
のうねりを考慮した調質圧延における圧延荷重解析モデ
ルを作成した。本解析モデルは、ロールの弾性変形解析
と材料の塑性変形解析を連成させたモデルであり、圧延
圧力分布から数値解析によるロール形状を算出している
ことを特徴としている。
Hereinafter, the present invention will be described in detail. The inventor of the present invention described in the above-mentioned document "The 42nd Plastic Lending Lecture, (1991),
P. 465 ", a rolling load analysis model in temper rolling in consideration of the roll undulation was prepared. This analysis model is a model in which an elastic deformation analysis of a roll and a plastic deformation analysis of a material are coupled, and is characterized in that a roll shape is calculated by a numerical analysis from a rolling pressure distribution.

【0010】圧延荷重に影響を及ぼす因子には、板幅、
板厚、材質、張力、潤滑状態および伸び率がある。この
うち、板幅の影響について考えると、圧延荷重が板幅に
比例するので、単位幅当たりの圧延荷重に及ぼす他の因
子について検討すればよい。また、板厚、材質の影響に
ついては板厚、材質の各区分毎に数式モデル中の影響係
数をテーブル設定すればよいし、影響係数を板厚、材質
の関数として数式化することも可能である。張力の影響
については、通常同一の板厚、材質区分ではほぼ等しい
張力で圧延されるので一定値として数式モデル中に取り
込むことができる。潤滑状態については、その変動が摩
擦係数の変動となって圧延荷重に影響を及ぼすが、これ
までの実績圧延データから前記の圧延荷重解析モデルに
よる摩擦係数を逆算し、その平均値を数式モデル中に取
り込めばよい。
Factors affecting the rolling load include the sheet width,
There are plate thickness, material, tension, lubrication state and elongation. Of these, considering the effect of the sheet width, the rolling load is proportional to the sheet width, so other factors that affect the rolling load per unit width may be considered. In addition, regarding the influence of the sheet thickness and the material, an influence coefficient in a mathematical model may be set in a table for each section of the sheet thickness and the material, and the influence coefficient may be expressed as a function of the sheet thickness and the material. is there. Regarding the influence of the tension, since the rolling is performed with almost the same tension in the same sheet thickness and the same material category, it can be taken into the mathematical model as a constant value. As for the lubrication state, the change affects the rolling load as a change in the friction coefficient. It should be taken in.

【0011】潤滑状態については、その変動が摩擦係数
の変動となって圧延荷重に影響を及ぼす。実機における
圧延中の摩擦係数は実験的に求めることができないた
め、圧延荷重解析モデルに任意の摩擦係数を入力し、シ
ミュレーションにより得られた圧延荷重が実機における
圧延荷重と一致するように摩擦係数を逆算し、その平均
値を、圧延荷重解析モデルを用いて圧延荷重を算出する
ときの摩擦係数として取り入れればよい。
With respect to the lubricating state, the fluctuation changes the friction coefficient and affects the rolling load. Since the friction coefficient during rolling in the actual machine cannot be determined experimentally, an arbitrary friction coefficient is input to the rolling load analysis model, and the friction coefficient is set so that the rolling load obtained by simulation matches the rolling load in the actual machine. The reverse calculation is performed, and the average value may be taken as the friction coefficient when calculating the rolling load using the rolling load analysis model.

【0012】次に、伸び率の圧延荷重に及ぼす影響につ
いて検討した。前記の圧延荷重解析モデルを用いて、板
厚2.6mmの中炭素鋼熱間圧延板を伸び率0.6〜
2.0%の範囲で圧延するシミュレーションを行った結
果、図3に示すように伸び率と単位幅当たりの圧延荷重
はほぼ直線的な関係で整理できる。したがって圧延荷重
予測式は式(2)、(3)のように表される。 p=a・r+b (2) P=W・p (3) 式中、pは単位幅当たりの圧延荷重、rは伸び率、Pは
圧延荷重、Wは板幅、a,bは影響係数を示す。
Next, the effect of the elongation on the rolling load was examined. Using the above-mentioned rolling load analysis model, a medium-carbon steel hot-rolled sheet having a sheet thickness of 2.6 mm has an elongation of 0.6 to
As a result of performing a simulation of rolling in the range of 2.0%, as shown in FIG. 3, the elongation and the rolling load per unit width can be arranged in a substantially linear relationship. Therefore, the rolling load prediction formula is expressed as in equations (2) and (3). p = ar · b + (2) P = W · p (3) where p is a rolling load per unit width, r is an elongation, P is a rolling load, W is a sheet width, and a and b are influence coefficients. Show.

【0013】影響係数a、bは、板厚および材質によっ
て定まる定数であり、実験または前記の圧延荷重解析モ
デルのようなロールの弾性変形解析と素材の塑性変形解
析とを連成させた解析モデルによるシミュレーションか
らそれぞれ求められる。影響係数aは伸び率rと単位幅
当たりの圧延荷重pとの間の直線関係における傾きとし
て、影響係数bは、その関係における定数項として求め
られ、図3においてはそれぞれa=2.608kN/m
m、b=5.602kN/mmである。各影響係数は、
表1に示すように板厚および材質区分毎にテーブル設定
してもよいし、板厚および材質の関数として数式化する
こともできる。
The influence coefficients a and b are constants determined by the sheet thickness and the material, and are analysis models obtained by coupling the elastic deformation analysis of the roll and the plastic deformation analysis of the material such as an experiment or the above-mentioned rolling load analysis model. From the simulation by The influence coefficient a is obtained as a gradient in a linear relationship between the elongation rate r and the rolling load p per unit width, and the influence coefficient b is obtained as a constant term in the relation. In FIG. 3, a = 2.608 kN / m
m and b = 5.602 kN / mm. Each influence coefficient is
As shown in Table 1, a table may be set for each sheet thickness and material classification, or a mathematical expression may be made as a function of the sheet thickness and material.

【0014】 [0014]

【0015】目標伸び率を式(2)に代入して単位幅当
たりの圧延荷重pが算出され、得られた単位幅当たりの
圧延荷重pと板幅Wを式(3)に代入して圧延荷重が算
出される。この圧延荷重予測式により算出された圧延荷
重と、圧延荷重解析モデルにより直接算出された圧延荷
重を図4に比較して示すが、その差の平均値が0.97
%、標準偏差が1.4%と良く一致している。そして、
この算出圧延荷重に基き、伸びや形状を制御する。
The rolling load p per unit width is calculated by substituting the target elongation into equation (2), and the obtained rolling load p per unit width and sheet width W are substituted into equation (3) for rolling. The load is calculated. FIG. 4 shows a comparison between the rolling load calculated by the rolling load prediction formula and the rolling load directly calculated by the rolling load analysis model.
% And the standard deviation are well in agreement with 1.4%. And
Elongation and shape are controlled based on the calculated rolling load.

【0016】[0016]

【実施例】本発明を調質圧延機の実機に適用して、圧延
荷重予測式の精度を検証した。圧延機は、ロール径65
0mmの4段圧延機を使用し、板幅800〜1200m
m、板厚1.4〜4.5mmの低炭素鋼熱延板を圧延し
た。板厚2.3mm、板幅866mmの低炭素鋼を目標
伸び1.75%で圧延する場合、従来法に基き、Bland
& Fordの圧延荷重式により予測した圧延荷重は6804
kNであり、実施の圧延中に荷重計により測定した実績
圧延荷重は6300kNである。図5(a)に示すよう
に、圧延中に荷重計により測定した実績圧延荷重よりも
計算圧延荷重の方が大きくなる傾向があり、その差は平
均値で7.8%、標準偏差も5.9%となっている。
EXAMPLES The present invention was applied to an actual temper rolling mill to verify the accuracy of a rolling load prediction formula. The rolling mill has a roll diameter of 65.
Using a 4-mm rolling mill of 0 mm, plate width 800 to 1200 m
m, a low carbon steel hot rolled sheet having a sheet thickness of 1.4 to 4.5 mm was rolled. When rolling low-carbon steel with a thickness of 2.3 mm and a width of 866 mm at a target elongation of 1.75%, Bland is applied based on the conventional method.
The rolling load predicted by &Ford's rolling load formula is 6804
kN and the actual rolling load measured by a load cell during the actual rolling is 6300 kN. As shown in FIG. 5A, the calculated rolling load tends to be larger than the actual rolling load measured by a load cell during rolling, and the difference is 7.8% in average and the standard deviation is 5%. 0.9%.

【0017】一方、本発明法において、同一の圧延条件
で予め算出しておいた影響係数a=1.921(kN/
mm)、b=3.884(kN/mm)を用いて式
(2)、(3)の圧延荷重予測式で計算した。板厚2.
3mm、板幅866mmの低炭素鋼を目標伸び率1.7
5%で圧延する場合には圧延荷重6275kNとなり、
実績圧延荷重の6300kNとよく一致している。各板
厚、板幅、伸び率について圧延荷重の計算値および実測
値を求めプロットしたものが図5(b)である。計算圧
延荷重と実績圧延荷重の差は、平均値で2.2%、標準
偏差も1.6%となっており、従来法に比べて予測精度
が向上している。
On the other hand, in the method of the present invention, the influence coefficient a = 1.921 (kN /
mm) and b = 3.884 (kN / mm), and were calculated by the rolling load prediction formulas of Expressions (2) and (3). Board thickness 2.
3mm, 866mm low carbon steel with target elongation of 1.7
When rolling at 5%, the rolling load is 6275 kN,
This is in good agreement with the actual rolling load of 6300 kN. FIG. 5 (b) shows the calculated and measured values of the rolling load for each sheet thickness, sheet width, and elongation, and plots them. The difference between the calculated rolling load and the actual rolling load is 2.2% on average and the standard deviation is 1.6%, and the prediction accuracy is improved as compared with the conventional method.

【0018】[0018]

【発明の効果】以上に説明したように、本発明によれ
ば、ロール形状のうねりを考慮した圧延荷重解析モデル
から得られた伸び率と圧延荷重の直線的関係を考慮した
オンラインで使用可能な圧延荷重予測式により圧延荷重
を算出しているので、圧延荷重を精度良く予測でき、目
標とする伸び率や金属帯形状を得ることができる。
As described above, according to the present invention, the present invention can be used on-line in consideration of the linear relationship between the elongation percentage and the rolling load obtained from the rolling load analysis model in consideration of the undulation of the roll shape. Since the rolling load is calculated by the rolling load prediction formula, the rolling load can be accurately predicted, and the target elongation and the shape of the metal strip can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 円弧を保つことを前提にしたロール形状を示
す図
FIG. 1 is a diagram showing a roll shape on the assumption that an arc is maintained.

【図2】 ロール形状のうねりを示す図FIG. 2 is a diagram showing a roll-shaped undulation

【図3】 伸び率と単位幅当たりの圧延荷重との直線的
関係を示す説明図
FIG. 3 is an explanatory diagram showing a linear relationship between elongation and rolling load per unit width.

【図4】 本発明における圧延荷重予測式により算出さ
れる圧延荷重と圧延荷重解析モデルにより直接算出され
た圧延荷重を比較して示した図
FIG. 4 is a diagram showing a comparison between a rolling load calculated by a rolling load prediction formula according to the present invention and a rolling load directly calculated by a rolling load analysis model.

【図5】 (a)従来法と(b)本発明法とで計算圧延
荷重と実績圧延荷重を比較して示した図
FIG. 5 is a diagram showing a comparison between a calculated rolling load and an actual rolling load in (a) a conventional method and (b) a method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 健治 兵庫県尼崎市鶴町1番地 日新製鋼株式会 社技術研究所内 Fターム(参考) 4E024 AA01 BB01 CC02 EE02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Hara 1 Tsurucho, Amagasaki-shi, Hyogo F-term in Nisshin Steel Co., Ltd. Technical Research Institute 4E024 AA01 BB01 CC02 EE02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 調質圧延機を用いた金属帯の圧延におい
て、伸び率と板幅を変数として圧延荷重を表す下記の式 p=a・r+b P=W・p ここで、p:単位幅当たりの圧延荷重、r:伸び率 P:圧延荷重、W:板幅、a,b:影響係数 から構成される数式モデルにより圧延荷重を予測し、こ
の予測圧延荷重に基いて圧延機を制御して圧延を行うこ
とを特徴とする金属帯の調質圧延方法。
1. In the rolling of a metal strip using a temper rolling mill, the following equation expressing the rolling load with elongation and strip width as variables: p = ar · b P = W · p, where p: unit width Rolling load per unit, r: elongation percentage, P: rolling load, W: plate width, a, b: influence coefficient, and the rolling load is predicted by a mathematical model, and the rolling mill is controlled based on the predicted rolling load. A temper rolling method for a metal strip, characterized by performing rolling.
JP2001030524A 2001-02-07 2001-02-07 Temper rolling method for metal strip Withdrawn JP2002224726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030524A JP2002224726A (en) 2001-02-07 2001-02-07 Temper rolling method for metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030524A JP2002224726A (en) 2001-02-07 2001-02-07 Temper rolling method for metal strip

Publications (1)

Publication Number Publication Date
JP2002224726A true JP2002224726A (en) 2002-08-13

Family

ID=18894734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030524A Withdrawn JP2002224726A (en) 2001-02-07 2001-02-07 Temper rolling method for metal strip

Country Status (1)

Country Link
JP (1) JP2002224726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115426A (en) * 2006-11-06 2008-05-22 Nippon Steel Corp Method for predicting width-directional quality of skin-pass rolled steel sheet, and method for operating continuous annealing line used for above method
CN100438998C (en) * 2005-03-28 2008-12-03 宝山钢铁股份有限公司 Extension coefficient and plate shape integrated control method in steel strip flattening process
JP2009160626A (en) * 2008-01-09 2009-07-23 Jfe Steel Corp Method of temper-rolling steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438998C (en) * 2005-03-28 2008-12-03 宝山钢铁股份有限公司 Extension coefficient and plate shape integrated control method in steel strip flattening process
JP2008115426A (en) * 2006-11-06 2008-05-22 Nippon Steel Corp Method for predicting width-directional quality of skin-pass rolled steel sheet, and method for operating continuous annealing line used for above method
JP2009160626A (en) * 2008-01-09 2009-07-23 Jfe Steel Corp Method of temper-rolling steel strip

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
TW200909087A (en) Method and lubrication application device for regulating the flatness and/or roughness of a metal strip
Jiang et al. Analysis of cold rolling of ultra thin strip
Wang et al. Adaptive calculation of deformation resistance model of online process control in tandem cold mill
Jiang et al. Effect of rolling parameters on cold rolling of thin strip during work roll edge contact
JP2002224726A (en) Temper rolling method for metal strip
JP2008115426A (en) Method for predicting width-directional quality of skin-pass rolled steel sheet, and method for operating continuous annealing line used for above method
JP4986463B2 (en) Shape control method in cold rolling
Deltombe et al. A new methodology to analyse iron fines during steel cold rolling processes
TWI323197B (en) Method for increasing the process stability, especially the absolute thickness accuracy and the plant safety-during hot rolling of steel or nonferrous materials
Shatalov et al. Development and application of the theory of rigid ends in thin-sheet rolling
Ogarkov et al. Theoretical analysis of formation of automobile sheet roughness during temper rolling in shot-blasted rolls
JP3235449B2 (en) High speed cold rolling method
Jung et al. Fuzzy algorithm for calculating roll speed variation based on roll separating force in hot rolling
JP4671544B2 (en) Sheet width control method in cold tandem rolling
Antonov et al. Roller stress and strain in a broad-strip cold-rolling mill
JP2002292414A (en) Shape control method in cold rolling
JPS61199507A (en) Control method of forward slip in metallic sheet rolling
JP2005177818A (en) Shape control method for cold rolling
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
JP4086120B2 (en) Cold rolling method for hot rolled steel strip before pickling
JP3205130B2 (en) Strip width control method in hot rolling
JP4227686B2 (en) Edge drop control method during cold rolling
RU2238809C2 (en) Method for continuous rolling of thin strips on multiple-stand rolling mill
RU2060846C1 (en) Method of making rolled sheets of low-perlite steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513