JPH0315324A - Tank for cultivating algae and method for using it - Google Patents
Tank for cultivating algae and method for using itInfo
- Publication number
- JPH0315324A JPH0315324A JP2126536A JP12653690A JPH0315324A JP H0315324 A JPH0315324 A JP H0315324A JP 2126536 A JP2126536 A JP 2126536A JP 12653690 A JP12653690 A JP 12653690A JP H0315324 A JPH0315324 A JP H0315324A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- culture tank
- algae
- medium
- maintained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000013535 sea water Substances 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 239000011574 phosphorus Substances 0.000 claims abstract description 4
- 230000029553 photosynthesis Effects 0.000 claims abstract description 3
- 238000010672 photosynthesis Methods 0.000 claims abstract description 3
- 230000007774 longterm Effects 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 241001474374 Blennius Species 0.000 claims description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims 1
- 150000007522 mineralic acids Chemical class 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 2
- 241000206575 Chondrus crispus Species 0.000 abstract 1
- 239000012530 fluid Substances 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 9
- 241000206576 Chondrus Species 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 235000010418 carrageenan Nutrition 0.000 description 4
- 229920001525 carrageenan Polymers 0.000 description 4
- 239000000679 carrageenan Substances 0.000 description 4
- 229940113118 carrageenan Drugs 0.000 description 4
- 241000894007 species Species 0.000 description 4
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 4
- 230000005791 algae growth Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- HBVOEGGRCJCMLG-DTHCKZEYSA-N (2e)-2-methyl-6-[(1s)-4-methylcyclohex-3-en-1-yl]hepta-2,6-dien-1-ol Chemical compound OCC(/C)=C/CCC(=C)[C@H]1CCC(C)=CC1 HBVOEGGRCJCMLG-DTHCKZEYSA-N 0.000 description 1
- 241000196261 Bryopsis Species 0.000 description 1
- 241001467331 Gracilaria sp. Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000003132 food thickener Nutrition 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G33/00—Cultivation of seaweed or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/18—Open ponds; Greenhouse type or underground installations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/18—Flow directing inserts
- C12M27/20—Baffles; Ribs; Ribbons; Auger vanes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/26—Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Environmental Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Environmental & Geological Engineering (AREA)
- Clinical Laboratory Science (AREA)
- Cultivation Of Seaweed (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はマクロ藻類の培養のための屋外タンクであって
、このタンク内を流れる海水中で藻類が漂っているタン
クと、このタンクを用いる培養方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an outdoor tank for culturing macroalgae, in which algae float in seawater flowing within the tank, and a culture method using this tank.
藻類は製薬、化学および食品産業において、原料として
広く用いられている。藻類の幾つかの種は、様々な国に
おいて、採取されたまま或いは水で戻されたものが食用
に供されている。しかしながら、天然の藻類の採取量は
、特にフランスの海岸では減少している。従って、少な
くとも幾つかの種の藻類については、海岸地帯の戸外で
あって、暴風雨および潮夕現象を被らない場所に位置し
た、海水が供給されるタンク内での培養によって生産す
るのが望ましい。Algae are widely used as raw materials in the pharmaceutical, chemical and food industries. Several species of algae are eaten as-collected or rehydrated in various countries. However, the availability of natural algae is decreasing, especially on the French coast. Therefore, it is desirable to produce at least some species of algae by cultivation in tanks supplied with seawater, located outdoors in coastal areas and away from storms and tides. .
このようにして、多くの藻類種を培養することができる
。例えば、Chondrus crlspusSGlg
artina stellata, Calllble
pharis cillata et lanceol
ataSLailnarfa sp. 、Sol1er
la Chordalls, CysLoclonlu
m purpureua,Palmarla pa
lmata,Gracilaria sp.、Ulv
a sp.、EnLeromorpha sp.、
Bryopsis sp.等である。Many algae species can be cultured in this way. For example, Chondrus crlspusSGlg
artina stellata, Callble
pharis cillata et lanceol
ataSLailnarfa sp. , Sol1er
la Chordalls, CysLoclonlu
m purpurua, Palmarla pa
lmata, Gracilaria sp. , Ulv
a sp. , EnLeromorpha sp. ,
Bryopsis sp. etc.
例えば、食品の増粘剤としての作用を示す多糖類である
カラギーナンが抽出される紅藻類であるツノマタ、特に
ヨーロッパで処理されるトン数が非辞に多いChond
rus crlspusに関しては、経済的に競争力の
ある培養条件を見出だすことが非常に望ましい。幾つか
のグループの専門家が、既にこの問題について研究して
いる。例えば、カナダのR.G.S.Bidvellの
研究グループであり、このグループはrBotanic
a Marlna J第28巻、第87〜97頁(19
85年)において、Chondrus cr1spus
(これはトチャカとも呼ばれる)の培養のためのタン
クであって、海水、栄養素および炭酸ガスが供給され、
藻類の撹拌が、深さ約80ca+のタンクの底部からの
空気の吹き込みによって行われるタンクについて5己載
している。For example, Chondoma, a red algae from which carrageenan, a polysaccharide that acts as a food thickener, is extracted, and Chond, which is processed in particularly large numbers in Europe,
For S. rus crlspus, it is highly desirable to find economically competitive culture conditions. Several groups of experts are already studying this problem. For example, Canada's R. G. S. Bidvell's research group, this group is rBotanic
a Marlna J Vol. 28, pp. 87-97 (19
In 1985), Chondrus cr1spus
(also called tochaca), which is supplied with seawater, nutrients and carbon dioxide,
Five tanks were used in which agitation of the algae was performed by blowing air from the bottom of the tank, which was approximately 80 ca+ deep.
著者らによれば、この装置によって、藻類の戊長に有利
な断続的な藻類の受光量を確保でき、且つ炭素源および
専門家にはよく知られている必要なその他の栄養素を規
則的に分配することができる。一方、パレット車装置は
以前にSimpsonらによる撹拌のために使用されて
おり、r Bot.Mar.J第2l巻、第229〜2
35頁( 1978年)に記載されているものであるが
、これは明らかに効率が劣り、収益性も低い。その理由
は、植物の流れが悪く、植物がタンクの底部に沈殿する
傾向があるため、成長が遅く、着生植物が戊長し、病気
が起こり易いからである。なお、別の装置を見出だすの
が望ましかった。これは、空気の吹き込みによるタンク
の撹拌は、様々な欠点を示すからである。これらの欠点
には、エネルギーおよび炭酸ガスの多量消費、並びにタ
ンクの製作費が高いこと等が含まれる。これらのタンク
には腐食しない空気供給管が備えられなければならず、
また適切な撹拌を得るには、タンクの深さは光の浸透深
さの4〜5倍でなければならない。According to the authors, this device ensures intermittent light reception for the algae, which is favorable for algae growth, and provides a regular supply of carbon sources and other necessary nutrients that are well known to experts. can be distributed. On the other hand, a pallet car device has previously been used for stirring by Simpson et al. and r Bot. Mar. J Vol. 2l, No. 229-2
35 (1978), but this is clearly less efficient and less profitable. This is because the flow of the plants is poor and the plants tend to settle to the bottom of the tank, resulting in slow growth, epiphyte elongation and disease proneness. It would have been desirable to find another device. This is because tank agitation by air blowing presents various drawbacks. These disadvantages include high consumption of energy and carbon dioxide, and high cost of manufacturing the tank. These tanks must be equipped with non-corrosive air supply pipes;
Also, to obtain proper agitation, the depth of the tank should be 4 to 5 times the depth of light penetration.
本発明に従うタンクによれば、その形状ならびに羽根車
により駆動される液体媒質の進路上に適切に配置された
障害物の存在によって、フランス国内の英仏海峡の沿岸
および大西洋岸のように程々に陽光に恵まれた温暖な地
帯において、藻類、特にChondrus crlsp
usの培養が高収率で可能になる。The tank according to the invention, by virtue of its shape and the presence of suitably placed obstacles in the path of the liquid medium driven by the impeller, can be used in a moderate manner, such as on the coast of the English Channel and on the Atlantic coast in France. In warm, sunny areas, algae, especially Chondrus crlsp.
This makes it possible to culture US with high yield.
藻類は、従来の培養条件において急速に成長する。これ
らの培養条件は、例えばR.GJ.BIdwelによっ
て、前記文献に記載されている。或いは、Nelshら
によってrcanadian Jounal of’
Botany J第55巻、第2263〜227l頁(
1977年)に記載されている。Algae grow rapidly in conventional culture conditions. These culture conditions are described, for example, by R. G.J. BIdwel in the above-mentioned document. Alternatively, as described in the Canadian Journal of' by Nelsh et al.
Botany J Vol. 55, pp. 2263-227l (
(1977).
表面積1ユニット当りの生産率は、藻類がその自然環境
にある場合よりlO〜l5倍も高い。更に、天然の藻類
と本発明によるタンクで培養された藻類との間には、僅
かな様相の差、特に組成の差が見られた。これは、培養
藻類にはカッパ力ラギーナンの前駆物質であるミューフ
ラクションが殆ど見られず、専らこのカラギーナンのみ
が見られるからである。前駆物質を転換し、且つ天然の
植物からカラギーナンの全部を抽出するためには、pH
12での塩基処理が必要であるが、これによって僅かに
アルカリ化された水中において、植物の解離による抽出
を実施することが可能になる。The production rate per unit of surface area is 10 to 15 times higher than when the algae are in their natural environment. Furthermore, slight differences in appearance, especially in composition, were observed between the natural algae and the algae cultured in tanks according to the invention. This is because almost no mu fraction, which is a precursor of kappa lageenan, is found in cultured algae, and only this carrageenan is found. In order to convert the precursors and extract all of the carrageenan from natural plants, the pH
A base treatment with 12 is necessary, which makes it possible to carry out the extraction by dissociation of the plant in slightly alkaline water.
本発明によるタンクは、水平面では外壁と内部核との間
に画定された、長袖に沿った平たい楕円形のクラウン(
環)形状を有している。この内部核は、単純な平面にす
ることもでき、これは楕円の長袖に位置する。この面は
、例えば具体的には壁として表される。この壁は、液体
媒質が中心核の回りを絶えず流れることができるように
、どちらの側もタンクの外壁から、楕円の短軸に略等し
い距離のところで終端している。地上ではこれより大き
な面積が必要であり、且つ性能が少し劣りはするが、同
等のタンクが、実質的な相似形状を有する二つの楕円の
間に入った円筒状クラウンからなる。長袖の長さが短軸
の長さの2〜8倍であり、且つ壁の厚さは、抵抗率、即
ち壁の材料(土、コンクリート、セメントブロック)に
よって約8cm−t.aoc−を確保するのに丁度よい
ものであるのが好ましい。The tank according to the invention has a flat oval crown (
It has a ring) shape. This inner core can also be a simple plane, which is located in the long sleeve of the ellipse. This surface is, for example, specifically represented as a wall. This wall terminates on either side at a distance approximately equal to the short axis of the ellipse from the outer wall of the tank so that the liquid medium can flow continuously around the central core. On land, an equivalent tank, although requiring a larger area and with slightly less performance, consists of a cylindrical crown between two ellipses of substantially similar shape. The length of the long sleeve is 2 to 8 times the length of the short axis, and the wall thickness is approximately 8 cm-t. It is preferable that it is just right to ensure aoc-.
例えば、第1図に平面図で示されたタンク10は、細長
い楕円形を有する。同図ではタンクの半分だけが示され
ており、残りの半分は、x−x”線で示した横断垂直面
に対して対称である。For example, the tank 10 shown in plan view in FIG. 1 has an elongated oval shape. In the figure only half of the tank is shown, the other half being symmetrical with respect to the transverse vertical plane indicated by the line xx''.
このタンクは、外壁11と中心核12との間に画定され
ている。この実施例では、中心核12はタンクの二つの
末端部からの所定の距離のところで終端した壁として単
純化されている。これは、タンク内において、タンクに
人っている水のための閉鎖流通回路を画定している。The tank is defined between an outer wall 11 and a central core 12. In this embodiment, the central core 12 is simplified as a wall terminating at a predetermined distance from the two ends of the tank. This defines a closed circulation circuit within the tank for the water contained in the tank.
タンクは、半分だけ地中に埋設あるいは埋め込んだ状態
で、地面に設置することができる。加えて、このタンク
には少なくとも一つの羽根車14が備えられている。該
羽根車の回転によって、タンクの中心核12の回りにお
ける液体媒質の流通が確実に行われる。従って、この軸
は該地点においてタンクの半径と一致している。その羽
根16は全長に互って液体媒質を駆動するのに十分な深
さまで、水中に浸漬されている。当業者は、液体の移動
速度が寄生マクロファイト(n+aerophyte)
藻類の多量の成長を妨げるのに十分なもの(実際には0
.30m/秒以上)でなければならないことを知れば、
羽根の大きさ、水中の浸漬部分の高さ、タンクの形状お
よび大きさの特徴に応じて、並びに特に水の高さに応じ
て軸の回転速度を計算することができるであろう。The tank can be installed in the ground with only half buried or embedded in the ground. In addition, this tank is equipped with at least one impeller 14. The rotation of the impeller ensures the circulation of the liquid medium around the central core 12 of the tank. This axis therefore coincides with the radius of the tank at that point. The vanes 16 are immersed in water to a depth sufficient to drive the liquid medium over their entire length. Those skilled in the art will understand that the rate of movement of the liquid is due to parasitic macrophytes (n+aerophytes).
Enough to prevent heavy algae growth (actually 0)
.. 30m/sec or more).
Depending on the size of the blades, the height of the immersed part in the water, the shape and size characteristics of the tank, and especially depending on the height of the water, it would be possible to calculate the rotation speed of the shaft.
よく攪拌されたゾーンのそばにデッドゾーンが形成され
ないように、タンク内の所定位置、特に環状タンク内で
は正反対に向き合った位置に、二つの羽根車14、14
′を配置するのが好ましい。In order to avoid the formation of dead zones next to the well-stirred zone, two impellers 14, 14 are installed at predetermined positions in the tank, in particular in diametrically opposed positions in annular tanks.
′ is preferably placed.
或いは、平たい中心核を有するタンクの場合には、楕円
の細長い部分であって、二つの流れを、第1図に示され
たように反対方向にカットする部分に配置するのが好ま
しい。しかしながら、羽根車は、タンクの対称軸内にな
くともよい。それらの軸間の距離は、タンクの長さの2
73までであってもよい。Alternatively, in the case of a tank with a flat central core, it is preferable to locate the two streams in an elongated section of the ellipse that cuts in opposite directions as shown in FIG. However, the impeller need not be within the axis of symmetry of the tank. The distance between their axes is 2 of the length of the tank
It may be up to 73.
タンク内の水の高さは、培養される藻類の種、それらの
密度および大きさ、並びに適度な陽光に依存する。この
高さは、液体の充分な流れおよび最大深さ位置への充分
な受光度を確実に得るためには、一般には0.3〜l―
、好ましくは0.40a程度であろう。The height of the water in the tank depends on the species of algae being cultured, their density and size, as well as adequate sunlight. This height is generally between 0.3 and 1-20 lbs. to ensure sufficient liquid flow and sufficient light reception to the maximum depth position.
, preferably about 0.40a.
最後に、これは本発明の重要な特徴でもあるが、このタ
ンクには液体媒質の進路上に位置する少なくともニグル
ープの障害物18.20が具備されている。これらの障
害物は、例えば垂直な、或いは少し傾斜した、好ましく
は液体の上部レベルすれすれの低い小壁からなる。その
長さは、せいぜいl夜体流の幅の半分に等しい。これら
のグループの一つは、実質的にタンクの長袖に沿った場
所に位置し、中心核12の延長線上にある。もう一方は
、一つ又は複数の羽根車14、14゛の下流にあり、こ
の流れと90〜160度、好ましくは130度の角度を
なす。この障害物は渦巻きを作り、局部的に流れを加速
し、これにより媒質のより良い均質化および藻類の水面
への再上昇が確実に行われる。培養の生産率は、下記の
ような幾つかの障害物の存在下に非常に顕著に改良され
る。即ち、このような障害物は、好ましくは流れが層流
状態となる帯域、或いは流れの速度が緩められることに
なる帯域において、適切に配置されているものである。Finally, and this is also an important feature of the invention, the tank is equipped with at least two groups of obstacles 18.20 located in the path of the liquid medium. These obstacles consist, for example, of vertical or slightly inclined small walls, preferably low, just below the upper level of the liquid. Its length is at most equal to half the width of the body stream. One of these groups is located substantially along the long sleeve of the tank and is an extension of the central core 12. The other is downstream of the impeller or impellers 14, 14' and makes an angle with this flow of 90 to 160 degrees, preferably 130 degrees. This obstruction creates a vortex and locally accelerates the flow, which ensures better homogenization of the medium and re-rising of the algae to the water surface. The production rate of the culture is very significantly improved in the presence of several obstacles as described below. That is, such obstructions are preferably located appropriately in zones where the flow is laminar or where the flow velocity is to be slowed down.
それに対して、障害物の数を増加したり、サイズを大き
くするのは不利である。On the other hand, increasing the number or size of obstacles is disadvantageous.
従って、第1図に示されたタンクの場合には四つの障害
物が具備されているが、これによる年間平均生産率は、
同じ形状ではあるが羽根車によってのみ攪拌されるタイ
プのタンクの2.5倍である。Therefore, in the case of the tank shown in Figure 1, which is equipped with four obstacles, the average annual production rate is:
This is 2.5 times as large as a tank of the same shape but agitated only by an impeller.
更に、従来のタンクのように、図示されていない海水の
取り入れ口、並びに好ましくはもう一方の末端部に水の
排出管22がある。この排出管は、有利には、帯域内の
藻類の密度が低くなるように、障害物の後方に位置する
。水の供給は連続的でも逐次的でもよい。水の供給は、
藻類の戒長に必要な微量元素およびカリウムの量をもた
らし、且つ自然の蒸発を補うのに充分なものでなければ
ならない。Furthermore, like a conventional tank, there is a seawater inlet, not shown, as well as a water outlet pipe 22, preferably at the other end. This drain pipe is advantageously located behind the obstruction so that the density of algae in the zone is low. Water supply may be continuous or sequential. The water supply is
It must be sufficient to provide the necessary amounts of trace elements and potassium for algae growth and to compensate for natural evaporation.
このタンクの形状によって、媒質中に流れを作り出すた
めに、長方形タンクではよくあるような水の再循環を防
ぐことができる。This tank shape prevents water recirculation, which is common in rectangular tanks, to create flow in the medium.
本発明のもう一つの対象は、マクロ藻類の製造方法であ
って、海水が供給され、炭素、窒素およびリン源が補給
される本発明のタンク中において、藻類を培養すること
を具備した方法である。通常の栄養素である窒素および
リンは、規則的な間隔で、好ましくは海水の回路を遮断
して注入される。Another subject of the invention is a method for the production of macroalgae, comprising culturing the algae in a tank according to the invention supplied with seawater and supplemented with carbon, nitrogen and phosphorus sources. be. The normal nutrients nitrogen and phosphorus are injected at regular intervals, preferably with the seawater circuit interrupted.
このことにより、化合物の藻類による吸収が改善され、
且つ流出物中に多量に失われることが妨げられる。This improves the absorption of the compound by the algae and
and large losses in the effluent are prevented.
同様に、培養媒質中に炭酸ガス、炭酸塩またはG機カル
ボン酸の形態で炭素が導入される。培養vX質のpl+
は、長い光合成時間の間、一般には8〜9、好ましくは
8.5〜8.8であるpiをこの範囲に維持するために
、無期酸を媒質中に導入してもよい。Similarly, carbon is introduced into the culture medium in the form of carbon dioxide, carbonates or carboxylic acids. Cultured vX pl+
In order to maintain pi in this range, generally between 8 and 9, preferably between 8.5 and 8.8, during long photosynthesis times, an indefinite acid may be introduced into the medium.
本発明のもう一つの側面によれば、海水によってもたら
された胞子の発芽の結果生じた、培養にとって異質な藻
類の割合が厄介なものになった場合に、培養の間、タン
ク内にアルカリ性次亜塩素酸塩を含む酸化水溶波を導入
する。NaOCjの量は、タンクの特徴および存在する
藻類の量に依存する。According to another aspect of the invention, alkalinity is added in the tank during cultivation if the proportion of algae foreign to the culture resulting from the germination of spores introduced by seawater becomes troublesome. Introduce an oxidized water solution containing hypochlorite. The amount of NaOCj depends on the characteristics of the tank and the amount of algae present.
当業者は、これを容易に決定することができるであろう
。A person skilled in the art will be able to easily determine this.
迅速な処理を行うことができる。この処理の間、還元剤
、例えばチオ硫酸塩またはアルカリ性硫化水素の添加に
よって、または酸化剤を自然に除去されるままにすると
いう、より単純な処理によって、数分後に酸化剤は破壊
される。後者の場合には、その初期濃度がより低くなけ
ればならず、明らかに15〜25%は低くなければなら
ない。Able to process quickly. During this process, the oxidizing agent is destroyed after a few minutes by the addition of a reducing agent, such as thiosulfate or alkaline hydrogen sulfide, or by a simpler process of allowing the oxidizing agent to be removed naturally. In the latter case, the initial concentration must be lower, clearly 15-25% lower.
長袖が短袖の7,2倍であり、深さ40c+eであって
、第1図に示されたように配置された長さがImの障害
物二つと、長さが2mの障害物二つとを有する約980
m 2の楕円形タンクにおいて、4週間の培養を行うこ
とにより、乾燥重量が253g/m2のChondru
s crlspus種の紅色植物を採取した。これから
カラギーナンを抽出した。The long sleeves are 7.2 times the length of the short sleeves, the depth is 40c+e, and there are two obstacles with a length of Im and two obstacles with a length of 2m arranged as shown in Figure 1. about 980 with
Chondru with a dry weight of 253 g/m2 by culturing for 4 weeks in an oval tank of m2.
A red plant of the species S crlspus was collected. Carrageenan was extracted from this.
比較のために、強い空気の吹き込みによって撹拌された
直径3mの丸い小タンクにおいて、同時に同じ強化海洋
媒質を用いて培養を行ったところ、234g/ m 2
の藻類が採取されただけであった。しかも、空気による
撹拌を考慮すれば、より大きな運転コストがかかってい
ることは明らかである。For comparison, we simultaneously cultured the same enriched marine medium in a small round tank with a diameter of 3 m stirred by strong air blowing, and the result was 234 g/m2.
Only a few algae were collected. Furthermore, if air agitation is taken into account, it is clear that the operating cost is higher.
第1図は、本発明の一実施例になる藻類培養タンクを示
す図である。
11・・・外壁、12・・・中心核、14.14−・・
・羽根車、16.16−・・・羽根、18.20・・・
障害物、22・・・排出管FIG. 1 is a diagram showing an algae culture tank according to an embodiment of the present invention. 11...Outer wall, 12...Central core, 14.14-...
・Impeller, 16.16-...Blade, 18.20...
Obstacle, 22...Exhaust pipe
Claims (9)
0において、 外壁11と中心核12との間に画定された多少なりとも
平たい楕円形の環形態を有していることと、 少なくとも一つの放射状羽根車14を具備していること
と、 少なくとも二つのグループの障害物18、20であって
、その内の一つが中心核12の軸上に位置しており、も
う一方は羽根車14の下流に位置し、流れとは90〜1
60度の角度をなし、その幅が大きくともせいぜい液体
流の幅の半分に等しい障害物を具備していることとを特
徴とする培養タンク。(1) Culture tank 1 for macroalgae supplied with water
0, having a more or less flat elliptical ring form defined between the outer wall 11 and the central core 12; and comprising at least one radial impeller 14; Two groups of obstacles 18, 20, one of which is located on the axis of the central core 12 and the other downstream of the impeller 14, the flow is 90 to 1
Culture tank, characterized in that it is provided with an obstruction that forms an angle of 60 degrees and whose width is at most equal to half the width of the liquid stream.
を特徴とする請求項1に記載の培養タンク。(2) The culture tank according to claim 1, wherein the central core 12 is simplified and has a flat surface.
直または傾斜した小壁であることを特徴とする請求項1
または2に記載の培養タンク。(3) Claim 1, wherein the obstruction is a small vertical or inclined wall that is just below the upper level of the liquid.
Or the culture tank described in 2.
補給される請求項1〜3の何れか1項に記載の培養タン
クにおいて、藻類を培養することからなるChondr
us crispusの製造方法。(4) Chondr comprising culturing algae in the culture tank according to any one of claims 1 to 3, which is supplied with seawater and supplemented with carbon, nitrogen, and phosphorus sources.
Method for producing us crispus.
であることを特徴とする請求項4に記載の方法。(5) The method according to claim 4, wherein the carbon source is carbon dioxide, carbonate, or carboxylic acid.
する請求項4または5に記載の方法。(6) The method according to claim 4 or 5, characterized in that the pH of the medium is maintained at 8-9.
加して、媒質のpHを8.5〜8.8に維持することを
特徴とする請求項6に記載の方法。7. Process according to claim 6, characterized in that during the long-term photosynthesis, the pH of the medium is maintained between 8.5 and 8.8, optionally by adding an inorganic acid.
塩素酸塩を添加することがふくまれる請求項4〜7の何
れか1項に記載の方法。(8) The method according to any one of claims 4 to 7, further comprising adding alkaline hypochlorite to remove foreign algae.
素の添加によって破壊されることを特徴とする請求項8
に記載の方法。(9) Excess hypochlorite is destroyed by adding thiosulfate or hydrogen sulfide.
The method described in.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8906383 | 1989-05-16 | ||
FR8906383A FR2646989B1 (en) | 1989-05-16 | 1989-05-16 | ALGAE CULTURE BASIN AND METHOD OF IMPLEMENTING SAME |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0315324A true JPH0315324A (en) | 1991-01-23 |
Family
ID=9381684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2126536A Pending JPH0315324A (en) | 1989-05-16 | 1990-05-16 | Tank for cultivating algae and method for using it |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPH0315324A (en) |
CA (1) | CA2016844A1 (en) |
ES (1) | ES2033169B1 (en) |
FR (1) | FR2646989B1 (en) |
PT (1) | PT94028B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011152071A (en) * | 2010-01-27 | 2011-08-11 | Japan Research Institute Ltd | Microorganism culture apparatus |
WO2015004816A1 (en) * | 2013-07-12 | 2015-01-15 | Trans Algae株式会社 | Microalgal culturing tank |
JP2018126087A (en) * | 2017-02-08 | 2018-08-16 | 株式会社熊谷組 | Fine algae culture pond and method for building the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2378722B1 (en) * | 2010-09-27 | 2012-11-23 | Universidade De Vigo | AERATION POND FOR MICROALGAS CULTURE. |
WO2022216422A1 (en) * | 2021-04-08 | 2022-10-13 | Premium Oceanic Inc. | Systems and methods for deepwater photobioreactor |
US20220325215A1 (en) | 2021-04-08 | 2022-10-13 | Premium Oceanic Inc. | Systems and methods for deepwater photobioreactor |
US11505772B1 (en) | 2022-01-06 | 2022-11-22 | Premium Oceanic Inc. | Systems and methods for conversion of a biomass into biofuel using a geothermal heat source |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR94705E (en) * | 1966-06-01 | 1969-10-24 | Inst Francais Du Petrole | Improved method for cultivating algae and implementing device. |
JPS5455781A (en) * | 1977-10-11 | 1979-05-04 | Dainippon Ink & Chem Inc | Apparatus for culturing algae |
US4253271A (en) * | 1978-12-28 | 1981-03-03 | Battelle Memorial Institute | Mass algal culture system |
-
1989
- 1989-05-16 FR FR8906383A patent/FR2646989B1/en not_active Expired - Fee Related
-
1990
- 1990-05-14 PT PT94028A patent/PT94028B/en not_active IP Right Cessation
- 1990-05-15 CA CA002016844A patent/CA2016844A1/en not_active Abandoned
- 1990-05-16 JP JP2126536A patent/JPH0315324A/en active Pending
- 1990-05-16 ES ES9001353A patent/ES2033169B1/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011152071A (en) * | 2010-01-27 | 2011-08-11 | Japan Research Institute Ltd | Microorganism culture apparatus |
WO2015004816A1 (en) * | 2013-07-12 | 2015-01-15 | Trans Algae株式会社 | Microalgal culturing tank |
JP2018126087A (en) * | 2017-02-08 | 2018-08-16 | 株式会社熊谷組 | Fine algae culture pond and method for building the same |
Also Published As
Publication number | Publication date |
---|---|
FR2646989A1 (en) | 1990-11-23 |
ES2033169B1 (en) | 1994-02-16 |
FR2646989B1 (en) | 1992-04-10 |
CA2016844A1 (en) | 1990-11-16 |
PT94028A (en) | 1991-02-08 |
ES2033169A1 (en) | 1993-03-01 |
PT94028B (en) | 1996-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006324198B2 (en) | A carbon supply device for cultivating miro algae in large and its application method and use | |
US6017020A (en) | System and method for diffusing gas bubbles into a body of water | |
KR101647107B1 (en) | Apparatus of controlling the bubble size and contents of bubble, and that method | |
US10856478B2 (en) | Apparatuses, methods, and systems for cultivating a microcrop involving a floating coupling device | |
CN102712888B (en) | Reaction casing for photosynthetic reactor and associated photosynthetic reactor | |
CN106745867A (en) | A kind of aerator | |
CN101503264A (en) | Method for ectopically and ecologically repairing eutrophication water | |
JPH0315324A (en) | Tank for cultivating algae and method for using it | |
JP4038772B2 (en) | Method and apparatus for culturing photosynthetic microorganisms | |
US6258280B1 (en) | Process for reducing the algae growth in water | |
AU736564B2 (en) | Culture of micro-organisms | |
CN201376922Y (en) | Photovoltaic water purification device | |
JPH0391428A (en) | Pisciculture pond for culturing attaching algae | |
WO2016098711A1 (en) | Purification system, purification method using same, algal-proliferation controlling method, water-flow generation device, and purification device | |
CN208657695U (en) | A kind of ultrasonic wave aerosol rotation generator and aerosol small stream machine | |
CN206150082U (en) | Waterside tongue that cold seawater breeded fish waste water breeds processing system | |
KR102380273B1 (en) | Oxygen Dissolving Device for Oxygen Supply of Aquaculture Farm. | |
CN109355191A (en) | A kind of increase microdisk electrode water CO2The method of solubility | |
CN221608063U (en) | Gas lift type microalgae spread cultivation photo-bioreactor | |
CN218372260U (en) | Disturbance system of microalgae liquid | |
CN213623722U (en) | Water inlet, drainage and pollution discharge system of embedded land-based circular pool | |
CN110777054B (en) | Controllable turbulent flow type microalgae cultivation device capable of effectively improving carbon fixation efficiency | |
Burtle | Oxygen depletion in ponds | |
CN206512001U (en) | A kind of aerator | |
JP2003333947A (en) | Method for culturing marine algae |