JPH0315262A - Magnetic rotary machine - Google Patents

Magnetic rotary machine

Info

Publication number
JPH0315262A
JPH0315262A JP14756889A JP14756889A JPH0315262A JP H0315262 A JPH0315262 A JP H0315262A JP 14756889 A JP14756889 A JP 14756889A JP 14756889 A JP14756889 A JP 14756889A JP H0315262 A JPH0315262 A JP H0315262A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
magnetic
attached
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14756889A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawabata
川畑 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14756889A priority Critical patent/JPH0315262A/en
Publication of JPH0315262A publication Critical patent/JPH0315262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PURPOSE:To produce rotary force without requiring fuel supply by combining permanent magnets. CONSTITUTION:Housings 10, 11 are coupled through a bolt 12 and a shaft 4 is supported by a bearing 8 arranged in the center of the housing. Then a rotor 5 is pressure applied onto the shaft 4 and a sub permanent magnet 1 is coupled to the end face of rotor. Furthermore, a stator 6 is fixed to the housings 10, 11 and annular main permanent magnets 2, 3 producing field are arranged while facing each other then they are pushed by means of a spring 15. When the sub permanent magnet 1 of the rotor 5 is inserted between the main permanent magnets 2, 3, the rotor 5 rotates according to Fleming's rule.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、産業機械用、III機用、自動車用、船舶用
の内燃機関、電動機、空気など各種流体を動力源とする
モータなどで代表される、回転動力機に関するものであ
る. (ロ)従来の技術 従来の動力機関は、炭素系の燃料を爆発させる内燃機関
、電気をエネルギーとする電気モータなどいわば燃料消
耗型動力機である.燃料補給の必要があるばかりか、内
燃機関等は燃焼時の排気ガスや騒音を伴い、環境問題の
元凶となっている.(ハ)発明が解決しようとする問題
点 本発明は、従来の動力機関の前記のような問題点を取り
除くものであり、燃料の必要がなく、また排気ガスや騒
音も出ない磁力回転機を提供することを目的とする. (二)問題点を解失するための手段 本発明の磁力回転機は、高透磁性材料からなるロータ、
または高透磁性材料からなるステータに、同極を対向す
るように取り付けられた、界磁を発生させる環状の主永
久磁石と、非磁性材料からなるロータまたは、非磁性材
料からなるステータに界磁と直角方向にt流を流した時
に発生する磁束と同欅の磁束を発生するように取り付け
られた、副永久磁石とを具備したことを要旨とする.(
ホ)作用 第1図のように、永久磁石の磁界中にある導体に紙面の
表から裏側へt流を流すと、フレミングの左手の法則よ
り、導体には左側へ運動力が発生する.また、t流によ
って発生する磁界と、磁石によって発生する磁界は全く
同じものであることが、等価板磁石の理論式から証明さ
れている.このことより、永久磁石の磁界中に別の永久
磁石を挿入して、電直によって発生したのと同様の磁力
線を造れば、この磁界内において可動可能な状態の永久
磁石には、運動力が発生する.第2図は、磁石を空気中
に1いた場合の磁力線分布を表したものであり、第3図
は、この様子を電流に置き換えて示した図である. 第4図は、1個の主永久磁石2の界磁が副永久磁石1の
磁束の上側部分(主永久磁石側)とだけ作用丁る位置に
設置した場合の図である。ここで、■1 :副永久磁石
の主永久磁石側の等fIIt fLI.:副永久磁石の
主永久磁石と反対側の等価電流 B.:[.と作用する主永久磁石の磁束密度Bz:rオ
と作用する主永久磁石の磁束密度L :磁石の長さ(こ
こでは単位長とし、L−1と仮定する.) F+  : It xB,xLで発生する電磁力F.:
IよXB,XLで発生する!磁力F  :F.−Fエで
表される、外部へ取り出される運動力.と定義すると第
4図の場合には、Bエ−0のため F.−0、よってF
,のt磁力だけで左側へ動作する.しかし、主永久磁石
からの距離が離れているため距離の2乗に反比例する磁
束密度B.が極めて小さく、従って# F ,も極めて
小さな力しか発生しない. また逆に、副永久磁と主永久磁石を近ずけた場合?は、
第5図(イ)に示した襟に主永久磁石2の反発力により
、副永久磁石lの磁束分布がアンハランスになってしま
い、その結果1,<I■となる.この場合、F−0とな
る条件はF.−F.であり、それ以外の時は、F=F.
−F.の力が働く事になるが、この力も極めて小さな物
である.以上の問題点を解決するためには、第6図に示
した樟に、2個の界磁を発生させる主永久磁石2と3を
同極を対向するように設置し、この磁界中に可動可能な
副永久磁石1を設置すれば良い.この場合には、主永久
は石と副永久磁石の距離を離しても、または近すけでも
、第6図(イ)に示すように副永久磁石lの磁束分布は
、バランスを保てるためI.−18となる.第6図(ロ
)は、この状態を電流に置き換えて示した図である.こ
こで、フレミングの左手の法則より、F1とF!は同一
方向でありF−F.+F.の力が働くこととなり、主永
久磁石と副永久磁石の距離を近ずけると、強力な力が左
方向へ発生する.本発明は、この運動力を回転装置に応
用するものである.(へ)実施例 本発明の好適な実施例について、以下図面に従って説明
する.第7図は、主永久磁石を高透磁性材料からなるス
テータに取り付け、副永久磁石を非磁性材料からなるロ
ータに取り付けた、第1実施例の正面断面図である. 回転機の前面を覆うハウジングl1と、回転機の後面を
覆うハウジング10とは、ボルト12で結合されている
.シャフト4を支持するベヤリング8は、シャフト4に
圧入されたのち後面を覆うハウジング10の中心にある
ベヤリングボックスに挿入され、他方のベヤリング7は
、前面を覆うハウジング11の中心にあるベヤリングボ
ックスに挿入され、ベヤリングカバ−9とボルト13で
、前面ハウジング11に固定されている.シャフト4に
はロータ5が圧入されており、このロータ5の端面には
、第8図に平面図を示した様に着磁された副永久磁石1
が、接着剤等で結合され、ロータ5と一体となって回転
する.ステータ6は、前面ハウジング11のインロ一部
でスライドできる構造になっており、後面ハウジング1
0に取付けられたスプリング15によって前面ハウジン
グl1の方向へ押しつけられていてアジャストボルト1
6で出入りを!II!ff出来る欅になっている.キー
14により回転防止が図られている.またステータ6に
は、界磁を発生させる環状になった主永久磁石2と3が
、第8図に平面図を示した様に着磁され、同極を対向す
るように接着剤等で結合されている. 次に、本実施例の磁力回転機の作動について説明する.
第8図に平面図を示した欅に、ステータ6に取付けられ
た、環状になった主永久磁石2と3の間に、ロータ5に
取付けられた副永久磁石1を挿入すると、第6図の原理
図で説明した通り、フレミングの左手の法則により、ロ
ータ5は反時計方向へ回転する. 尚、ロータ5には、常に同じ方向の磁界が作用するため
、ヒステリシスによる鉄損は少ないが、ステータ6には
、交番磁界が作用するため、ヒステリシスによる鉄損を
軽減する必要がある,しかしこれは従来技術で解決出来
る. 第9図は、第7図の実施例の回転停止時の正面断面図を
示す.アジャストボルト16を回して、主永久磁石2と
3の磁界より、副永久磁石1を離してやると運動力がな
くなるため停止する.尚、本実施例では主永久磁石2と
3及び副永久磁石1で構威したものを示したが、第10
図に正面断面図を示した欅に、主永久磁石2′と2人及
び3と3Aを軸方向に異極となる樺に設置すると、磁気
回路の溝戒がより効果的になる.この場合の主永久磁石
2と3及び2Aと3Aは同極を対向するように設置しな
ければならない. 第11図は、第10図のA−A断面のローク5及び副永
久磁石1の配Iを示す平面図であり、又、第l2図は、
第10図のB−B断面のロータ5及び副永久磁石IAの
配置を示す平面図である.この場合、ロータ5は時計方
向へ回転する.又、第13図に正面断面図を示したよう
に、ロータ5に取付けられた、副永久磁石1を取り囲む
様に、ステータ6に環状をした主永久磁石2、3、3A
,17.17Aを同極を対向するように、取付けてもよ
い。副永久磁石1の配置は、第8図に示したものと同様
の配置にする.この場合、副永久磁石lの磁束の大部分
が有効にfll用出来るため、発生トルクが大きく取れ
るという利点がある.更に、第15図に正面断面図を、
第14図に第l5図のA−A矢視図を示した陛に、主永
久磁石2と3及び副永久磁石lが、それぞれ、シャフト
4に対し直角方向に配置されても良い.この場合、回転
するロータ5に取付けられた副永久磁石1が遠心力で飛
ばされるのを、簡単に防止出来ると言う利点がある.こ
の場合、ロータ5は反時計方向へ回転する. 次に、副永久磁石を非磁性材料からなるステータに取り
付け、主永久磁石を高透磁性材料からなるロータに取り
付けた、第2実施例について説明する.第17図は、第
2実施例の正面断面図を示す.副永久磁石1は、第18
図に平面図を示した様に着磁され、ステータ6に接着剤
等で結合されている.シャフト4には、ロータ5が圧人
されており、このロータ5に1よ、第18図に平面図モ
示した様に普磁された、界磁を発生させる環状の主永久
礎石2と3が同極を対向丁るように、それぞれ接着剤等
で結合され、ロータ5と一体となって回転する.本実施
例{よ、第7図の実施例の王永久磁石と、副永久磁石の
取付け位置を同一にして、回転軸を変えただけであり、
作動についてiよ第7図の実施例と同様、フレミングの
左手の法則により動作する.副永久磁石lを固定してい
るため、ロタ5は反作用により、時計方向へ回転する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is applicable to internal combustion engines, electric motors, motors powered by various fluids such as air, etc. for industrial machines, III machines, automobiles, and ships. This is related to rotary power machines, which are a typical example. (B) Conventional technology Conventional power engines are so-called fuel-consuming power machines, such as internal combustion engines that explode carbon-based fuel and electric motors that use electricity as energy. Not only do they require refueling, but internal combustion engines also produce exhaust gas and noise during combustion, making them a source of environmental problems. (c) Problems to be solved by the invention The present invention eliminates the above-mentioned problems of conventional power engines, and provides a magnetic rotating machine that does not require fuel and does not emit exhaust gas or noise. The purpose is to provide (2) Means for solving the problems The magnetic rotating machine of the present invention has a rotor made of a highly permeable material,
Alternatively, a stator made of a highly permeable material has an annular main permanent magnet that generates a field attached with the same poles facing each other, and a rotor made of a non-magnetic material, or a stator made of a non-magnetic material that generates a field. The main feature is that the magnet is equipped with an auxiliary permanent magnet that is attached so as to generate a magnetic flux that is the same as the magnetic flux that is generated when a t current is passed in a direction perpendicular to the magnetic flux. (
E) Effect As shown in Figure 1, when a t-current flows through a conductor in the magnetic field of a permanent magnet from the front to the back of the page, a kinetic force is generated in the conductor to the left according to Fleming's left-hand rule. Furthermore, it has been proven from the theoretical formula for an equivalent plate magnet that the magnetic field generated by the t-flow and the magnetic field generated by the magnet are exactly the same. From this, if we insert another permanent magnet into the magnetic field of a permanent magnet and create lines of magnetic force similar to those generated by a direct line, the permanent magnet that is movable within this magnetic field will have a kinetic force. Occur. Figure 2 shows the magnetic field line distribution when a magnet is placed in the air, and Figure 3 shows this situation in terms of electric current. FIG. 4 is a diagram showing the case where the magnetic field of one main permanent magnet 2 is installed at a position where it acts only on the upper part of the magnetic flux of the sub permanent magnet 1 (on the main permanent magnet side). Here, ■1: Equal fIIt fLI. of the sub permanent magnet on the main permanent magnet side. : Equivalent current of the sub permanent magnet on the opposite side of the main permanent magnet B. :[. Magnetic flux density of the main permanent magnet acting with r: Magnetic flux density of the main permanent magnet acting with r: Length of magnet (Here, it is assumed to be unit length and L-1.) F+: It xB, xL The electromagnetic force generated F. :
I, it occurs in XB, XL! Magnetic force F: F. −The kinetic force taken out to the outside, represented by F. In the case of FIG. 4, F. −0, so F
, moves to the left only by the t magnetic force of . However, since the distance from the main permanent magnet is large, the magnetic flux density B is inversely proportional to the square of the distance. is extremely small, so #F also generates only an extremely small force. Conversely, what if the secondary permanent magnet and the main permanent magnet are brought closer together? teeth,
Due to the repulsive force of the main permanent magnet 2 on the collar shown in FIG. 5(a), the magnetic flux distribution of the auxiliary permanent magnet l becomes unharmed, resulting in 1,<I■. In this case, the condition for F-0 is F. -F. At other times, F=F.
-F. A force will be exerted, but this force is also extremely small. In order to solve the above problems, two main permanent magnets 2 and 3 that generate a magnetic field are installed in the camphor tree shown in Fig. 6 so that the same poles face each other, and a movable magnet is placed in the camphor tree shown in Fig. 6. All you have to do is install a secondary permanent magnet 1 if possible. In this case, even if the distance between the main permanent magnet and the auxiliary permanent magnet is large or close, the magnetic flux distribution of the auxiliary permanent magnet l can be kept balanced as shown in FIG. -18. Figure 6 (b) is a diagram showing this state in terms of current. Here, from Fleming's left hand rule, F1 and F! are in the same direction and F-F. +F. When the distance between the main permanent magnet and the sub permanent magnet is brought closer, a strong force is generated to the left. The present invention applies this kinetic force to a rotating device. (F) Embodiments Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 7 is a front sectional view of the first embodiment, in which the main permanent magnet is attached to a stator made of a highly permeable material, and the auxiliary permanent magnet is attached to a rotor made of a non-magnetic material. A housing l1 that covers the front surface of the rotating machine and a housing 10 that covers the rear surface of the rotating machine are coupled with bolts 12. The bearing 8 supporting the shaft 4 is press-fitted into the shaft 4 and then inserted into the bearing box located at the center of the housing 10 covering the rear surface, and the other bearing 7 is inserted into the bearing box located at the center of the housing 11 covering the front surface. and is fixed to the front housing 11 with a bearing cover 9 and bolts 13. A rotor 5 is press-fitted into the shaft 4, and a sub-permanent magnet 1 is magnetized on the end face of the rotor 5 as shown in the plan view in FIG.
are connected with adhesive or the like and rotate together with the rotor 5. The stator 6 has a structure in which it can slide on a part of the spigot of the front housing 11.
The adjustment bolt 1 is pressed toward the front housing l1 by a spring 15 attached to the
Enter and exit at 6! II! It is a keyaki that can be ff. The key 14 is used to prevent rotation. In addition, in the stator 6, annular main permanent magnets 2 and 3 that generate a magnetic field are magnetized as shown in the plan view in Fig. 8, and are connected with adhesive or the like so that the same poles face each other. It has been done. Next, the operation of the magnetic rotating machine of this embodiment will be explained.
When the auxiliary permanent magnet 1 attached to the rotor 5 is inserted between the ring-shaped main permanent magnets 2 and 3 attached to the stator 6 in the keyaki whose plan view is shown in FIG. As explained in the principle diagram, the rotor 5 rotates counterclockwise due to Fleming's left hand rule. Note that since a magnetic field in the same direction always acts on the rotor 5, the iron loss due to hysteresis is small, but since an alternating magnetic field acts on the stator 6, it is necessary to reduce iron loss due to hysteresis. can be solved using conventional technology. FIG. 9 shows a front sectional view of the embodiment shown in FIG. 7 when rotation is stopped. When the adjustment bolt 16 is turned to separate the sub permanent magnet 1 from the magnetic field of the main permanent magnets 2 and 3, the motion force is lost and the motor stops. In addition, in this example, a configuration using main permanent magnets 2 and 3 and sub permanent magnet 1 was shown, but the 10th
If the main permanent magnets 2' and 2 and 3 and 3A are installed in birches with different poles in the axial direction, the groove control of the magnetic circuit will be more effective. In this case, main permanent magnets 2 and 3 and 2A and 3A must be installed so that the same poles face each other. FIG. 11 is a plan view showing the arrangement I of the rake 5 and the sub-permanent magnet 1 in the AA cross section of FIG. 10, and FIG.
10 is a plan view showing the arrangement of the rotor 5 and the auxiliary permanent magnets IA taken along the line BB in FIG. 10. FIG. In this case, the rotor 5 rotates clockwise. Further, as shown in the front sectional view in FIG. 13, annular main permanent magnets 2, 3, 3A are attached to the stator 6 so as to surround the sub permanent magnet 1 attached to the rotor 5.
, 17.17A may be installed with the same polarity facing each other. The arrangement of the sub-permanent magnets 1 is similar to that shown in Fig. 8. In this case, most of the magnetic flux of the auxiliary permanent magnet l can be effectively used for full use, so there is an advantage that a large amount of generated torque can be obtained. Furthermore, Fig. 15 shows a front sectional view,
As shown in FIG. 14, which is a view taken along the line A--A in FIG. In this case, there is an advantage that it is possible to easily prevent the auxiliary permanent magnet 1 attached to the rotating rotor 5 from being blown away by centrifugal force. In this case, the rotor 5 rotates counterclockwise. Next, a second embodiment will be described in which the auxiliary permanent magnets are attached to a stator made of a non-magnetic material, and the main permanent magnet is attached to a rotor made of a highly permeable material. FIG. 17 shows a front sectional view of the second embodiment. The sub permanent magnet 1 is the 18th
It is magnetized as shown in the plan view in the figure, and is bonded to the stator 6 with adhesive or the like. A rotor 5 is mounted on the shaft 4, and as shown in the plan view in FIG. are connected with adhesive or the like so that they have the same polarity facing each other, and rotate together with the rotor 5. In this embodiment, the mounting positions of the main permanent magnet and the auxiliary permanent magnet in the embodiment shown in FIG. 7 are the same, and the rotation axis is changed.
As for operation, like the embodiment shown in FIG. 7, it operates according to Fleming's left hand rule. Since the sub permanent magnet l is fixed, the rotor 5 rotates clockwise due to reaction.

又、第19図に正面断面図を示したfl造にしても良い
.これは、第10図の実施例の主永久Li石と副永久磁
石の取付け位置を同一にして、回転軸を変えたものであ
る. 以上述べた、第1実施例及び第2実施例では、主永久磁
石2と3は環状の一体もので示したが、第16図(イ)
及び(口)に平面図を示した様に、3分割でも2分割で
も良い.即ち、主永久磁石は適宜に分割されていても良
い. (ト)発明の効果 (イ)永久礎石を組み合わせる事により回転力を得るた
め、永久磁石の内部エネルギーが消滅するか、あるいは
、軸受部の寿命が来るまで一回転しつずける。
Alternatively, it may be made into a fl structure, a front sectional view of which is shown in FIG. 19. In this example, the main permanent Li stone and the sub permanent magnet are installed in the same position as in the embodiment shown in Fig. 10, but the rotation axis is changed. In the first and second embodiments described above, the main permanent magnets 2 and 3 are shown as integral annular magnets, but as shown in FIG.
As shown in the plan view in and (mouth), it may be divided into three or two parts. That is, the main permanent magnet may be divided as appropriate. (g) Effects of the invention (a) Since rotational force is obtained by combining permanent foundation stones, the permanent magnet will continue to rotate once until the internal energy of the magnet disappears or the life of the bearing section ends.

(口)従来の動力機関の様に、炭素系の燃料を爆発させ
る必要がないため、燃料補給の必要がなく、又、騒音や
排気ガスが出ない. (ハ)電気モータの樺に14!線がなく、逆起電力が発
生しないため、原理的に超高速回転が可能であり、減速
比を適切にすれば、大トルクが取り出せる. (二)構造が簡単であり、小型堅牢で、安価に製作出来
る. 以上述べた様な利点のある、磁力回転機を産業分野で利
用すれば、その効果は図り知れない程大きなものである
(Example) Unlike conventional power engines, there is no need to explode carbon-based fuel, so there is no need for refueling, and there is no noise or exhaust gas. (c) 14 on the electric motor birch! Since there are no wires and no back electromotive force is generated, ultra-high speed rotation is possible in principle, and large torque can be obtained by adjusting the reduction ratio appropriately. (2) It has a simple structure, is small and robust, and can be manufactured at low cost. If magnetic rotating machines, which have the advantages mentioned above, are used in the industrial field, the effects will be immeasurably great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フレミングの左手の法則の説明図.第2図は
、副永久磁石の磁束分布図の平面図.第3図は、第2図
の磁束分布を電流に置き換えた説明図. 第4図(イ)は、界磁を発生させる1個の主永久礎石と
副永久磁石を離して設置した場合の磁束分布図の平面図
. 第4図(口)は、第4図(イ)の副永久磁石の磁束を電
流に置き換えた説明図. 第5図(イ)は、界磁を発生させる1個の主永久磁石と
、副永久磁石を接近させて設置した場合の磁束分布図の
平面図. 第5図(口)は、第5図(イ)の副永久磁石の磁束を電
流に置き換えた説明図. 第6図(イ)は、本発明の動作原理を説明するための磁
束分布図の平面図. 第6図(ロ)は、第6図(イ)の副永久磁石の磁束を電
流に置き換えた説明図. 第7図は、第1実施例の正面断面図. 第8図は、第7図のA−A断面の平面図.第9図は、第
7図の実施例の回転停止時の正面断面図. 第lO図は、第7図の実施例の変形例の原理図の正面断
面図. 第11図は、第10図のA−A断面のロータ部の平面図
. 第12図は、第10図のB−B断面のロータ部の平面図
. 第13図は、第7図の実施例の変形例の原理図の正面断
面図. 第l4図は、第15図のA−A矢視図.第15図は、第
7図の実施例の変形例の原理図の正面断面図. 第16図(イ)及び(口)は、主永久磁石の変形例の平
面図. 第17図は、ロータに主永久磁石を取付け、ステータに
副永久磁石を取付けた、第2実施例の原理図の正面断面
図. 第18図は、第17図のA−A断面の平面図.第19図
は、第17図の実施例の変形例の原理図の正面断面図. l:副永久磁石。  2,3:主永久磁石.4:シャフ
ト.5:ロータ.6:ステータ.7、8:ベヤリング 
9:ベヤリングカバlO:後面ハウジング.1l:前面
ノ\ウジング。 12.13:ボルト.  l4:キー 15:スプリング.   16:アジャストポルト17
:主永久磁石. N:磁石のN極,S:F61石のS極.t一:回転方向
あるいは、運動方向. ←一:主永久磁石の磁力線. ←一:副永久磁石の磁力線. ■二紙面の表から裏側へ流れるtIR
Figure 1 is an illustration of Fleming's left hand rule. Figure 2 is a plan view of the magnetic flux distribution diagram of the auxiliary permanent magnet. Figure 3 is an explanatory diagram in which the magnetic flux distribution in Figure 2 is replaced with current. Figure 4 (a) is a plan view of the magnetic flux distribution diagram when one main permanent cornerstone and a secondary permanent magnet that generate a magnetic field are installed apart from each other. Figure 4 (opening) is an explanatory diagram in which the magnetic flux of the auxiliary permanent magnet in Figure 4 (a) is replaced with a current. Figure 5 (a) is a plan view of the magnetic flux distribution diagram when one main permanent magnet that generates a magnetic field and a sub permanent magnet are installed close to each other. Figure 5 (opening) is an explanatory diagram in which the magnetic flux of the auxiliary permanent magnet in Figure 5 (a) is replaced with a current. FIG. 6(a) is a plan view of a magnetic flux distribution diagram for explaining the operating principle of the present invention. Figure 6 (B) is an explanatory diagram in which the magnetic flux of the sub permanent magnet in Figure 6 (A) is replaced with a current. FIG. 7 is a front sectional view of the first embodiment. FIG. 8 is a plan view of the AA cross section in FIG. 7. FIG. 9 is a front sectional view of the embodiment shown in FIG. 7 when rotation is stopped. Figure 10 is a front sectional view of the principle of a modification of the embodiment shown in Figure 7. FIG. 11 is a plan view of the rotor section taken along the line AA in FIG. 10. FIG. 12 is a plan view of the rotor section taken along the line B-B in FIG. 10. FIG. 13 is a front sectional view of the principle of a modification of the embodiment shown in FIG. Figure 14 is a view taken along the line A-A in Figure 15. FIG. 15 is a front sectional view of the principle of a modification of the embodiment shown in FIG. Figures 16(a) and 16(a) are plan views of modified examples of the main permanent magnet. FIG. 17 is a front sectional view of the principle of the second embodiment, in which the main permanent magnet is attached to the rotor and the auxiliary permanent magnet is attached to the stator. FIG. 18 is a plan view of the AA cross section in FIG. 17. FIG. 19 is a front sectional view of the principle of a modification of the embodiment shown in FIG. 17. l: Sub-permanent magnet. 2, 3: Main permanent magnet. 4: Shaft. 5: Rotor. 6: Stator. 7, 8: Bearing
9: Bearing cover lO: Rear housing. 1l: Front no\Using. 12.13: Bolt. l4: Key 15: Spring. 16: Adjust Porto 17
: Main permanent magnet. N: N pole of magnet, S: S pole of F61 stone. t1: Rotation direction or movement direction. ←1: Lines of magnetic force of the main permanent magnet. ←1: Lines of magnetic force of the sub-permanent magnet. ■tIR flowing from the front to the back of the second page

Claims (3)

【特許請求の範囲】[Claims] (1)高透磁性材料からなるロータまたは、高透磁性材
料からなるステータに、同極を対向するように取り付け
られた、界磁を発生させる環状の主永久磁石と、非磁性
材料からなるロータまたは、非磁性材料からなるステー
タに、界磁と直角方向に電流を流した時に発生する磁束
と同様の磁束を発生するように取り付けられた、副永久
磁石とを具備したことを特徴とする磁力回転機。
(1) A rotor made of a highly permeable material or a stator made of a highly permeable material, with an annular main permanent magnet that generates a field attached so that the same poles face each other, and a rotor made of a non-magnetic material. Alternatively, a magnetic force characterized by comprising a stator made of a non-magnetic material and a sub-permanent magnet attached so as to generate a magnetic flux similar to that generated when a current is passed in a direction perpendicular to the field. Rotating machine.
(2)主永久磁石を高透磁性材料からなるステータに取
り付け、副永久磁石を非磁性材料からなるロータに取り
付けた、特許請求の範囲第1項に記載の磁力回転機。
(2) The magnetic rotating machine according to claim 1, wherein the main permanent magnet is attached to a stator made of a highly permeable material, and the auxiliary permanent magnet is attached to a rotor made of a non-magnetic material.
(3)副永久磁石を非磁性材料からなるステータに取り
付け、主永久磁石を高透磁性材料からなるロータに取り
付けた、特許請求の範囲第1項に記載の磁力回転機。
(3) The magnetic rotating machine according to claim 1, wherein the auxiliary permanent magnet is attached to a stator made of a non-magnetic material, and the main permanent magnet is attached to a rotor made of a highly permeable material.
JP14756889A 1989-06-10 1989-06-10 Magnetic rotary machine Pending JPH0315262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14756889A JPH0315262A (en) 1989-06-10 1989-06-10 Magnetic rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14756889A JPH0315262A (en) 1989-06-10 1989-06-10 Magnetic rotary machine

Publications (1)

Publication Number Publication Date
JPH0315262A true JPH0315262A (en) 1991-01-23

Family

ID=15433297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14756889A Pending JPH0315262A (en) 1989-06-10 1989-06-10 Magnetic rotary machine

Country Status (1)

Country Link
JP (1) JPH0315262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236733A (en) * 1991-03-01 1993-09-10 Hiroyuki Hagiyama Magnetic motor
WO2014077322A1 (en) * 2012-11-15 2014-05-22 Tochihira Hirotoshi Magnet motor and drive mechanism
JP5727079B1 (en) * 2014-09-09 2015-06-03 博敏 栃平 Magnet drive mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236733A (en) * 1991-03-01 1993-09-10 Hiroyuki Hagiyama Magnetic motor
WO2014077322A1 (en) * 2012-11-15 2014-05-22 Tochihira Hirotoshi Magnet motor and drive mechanism
JP2014100027A (en) * 2012-11-15 2014-05-29 Hirotoshi Tochihira Magnet motor and drive mechanism
JP5727079B1 (en) * 2014-09-09 2015-06-03 博敏 栃平 Magnet drive mechanism
WO2016039145A1 (en) * 2014-09-09 2016-03-17 博敏 栃平 Magnet driving mechanism

Similar Documents

Publication Publication Date Title
JP3879412B2 (en) Power generation system
EP1624555A2 (en) Axial-gap dynamo-electric machine
US6724115B2 (en) High electrical and mechanical response structure of motor-generator
JPS61180582U (en)
JP2000209825A (en) Permanent magnet generator
JPS6139839A (en) Torque motor
US5038064A (en) Limited angle rotary actuator
JPH01298948A (en) Eddy current type decelerator
JPH0315262A (en) Magnetic rotary machine
JP3613922B2 (en) Crankshaft direct-coupled generator
US4020370A (en) Electric motor for general purposes
JPH07107718A (en) Permanent magnet generator
JP3518922B2 (en) Abduction type permanent magnet rotating electric machine and electric vehicle using abduction type permanent magnet rotating electric machine
JPH03143258A (en) Magnetic force rotating machine
JP2021010211A (en) Rotary electric machine and rotary electric machine manufacturing method
US4206377A (en) Single phase stepping motor
JP3630377B2 (en) Actuator
EP0461490A1 (en) Torque motor with rotor pole pieces
JPH06141530A (en) Rotating machine using permanent magnet in stator and rotor
JPS61269664A (en) Motor utilizing magnet
KR20220017096A (en) Double permanent magnet motor
JP2002349411A (en) Hydraulic driven generator
KR910007216A (en) Coil Rotational Power Generation Method and Generator
JPH0515592B2 (en)
JPS6318976A (en) Motor