WO2014077322A1 - Magnet motor and drive mechanism - Google Patents

Magnet motor and drive mechanism Download PDF

Info

Publication number
WO2014077322A1
WO2014077322A1 PCT/JP2013/080800 JP2013080800W WO2014077322A1 WO 2014077322 A1 WO2014077322 A1 WO 2014077322A1 JP 2013080800 W JP2013080800 W JP 2013080800W WO 2014077322 A1 WO2014077322 A1 WO 2014077322A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnets
pole
pole permanent
rotor
magnet
Prior art date
Application number
PCT/JP2013/080800
Other languages
French (fr)
Japanese (ja)
Inventor
博敏 栃平
Original Assignee
Tochihira Hirotoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochihira Hirotoshi filed Critical Tochihira Hirotoshi
Publication of WO2014077322A1 publication Critical patent/WO2014077322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact

Definitions

  • the present invention relates to a magnet motor and a drive mechanism that generate rotational power by displacing a switching element and using the attractive force and repulsive force of the permanent magnet of the rotor and the permanent magnet of the switching element.
  • FIG. 10 (a) shows the configuration of the magnet air motor of Patent Document 1
  • FIG. 10 (b) is an enlarged cross-sectional view of the AA portion.
  • a central shaft 2 is attached to the central position of a cylindrical base 1 of a magnet motor, and a rotating base 3 and the like are rotatably attached to the central shaft 2 by bearings 9a and 9b.
  • a fixed housing 4 having the same center as the central axis 2 is fixed to the base 1.
  • An N-pole magnet fixing holder 4 a that is a stator with an N-pole magnet embedded therein and an S-pole magnet fixing holder 4 b with an S pole magnet embedded therein are installed in the fixed housing 4.
  • the permanent magnets of N-pole magnets (6a, 7a, 8a) and S-pole magnets (6b, 7b, 8b) are fitted in the circumferential direction in parallel with each other.
  • the permanent magnets of the N pole magnet and the S pole magnet fitted on the outer peripheral surface of each magnet rotor have the rotor swinging at an angle of 20 ° around the swing shaft (6c, 7c, 8c).
  • One of the permanent magnets of the N pole magnet and the S pole magnet faces the N pole magnet fixing holder 4a attached to the inner peripheral surface of the fixed housing 4 and the permanent magnet of the S pole magnet fixing holder 4b.
  • the attractive force of the N pole magnet fixed holder 4a, the S pole magnet fixed holder 4b, and the permanent magnets of the N pole magnet and the S pole magnet fitted on the opposing peripheral surfaces of the three magnet rotors 6, 7, 8 / Rotational force can be generated in the rotating base 3 by the combined vector of repulsive force.
  • the magnet rotors 6, 7, 8 are arranged inside the magnet fixing housing 4 at intervals of 120 degrees with respect to the central axis 2.
  • the valve starting points to which the compressed air that is expanded and contracted by the three air cylinders 5a, 5b, 5c attached to the respective magnet rotors 6, 7, 8 are supplied to the N pole magnet fixing holder 4a and the S of the fixed housing 4.
  • FIG. 11 shows a structure of a magnet air motor in which the fixed housing and the rotor shown in FIG. 10 are made into a multistage structure such as two stages, three stages, etc., and rods 20a and 20b connected to the tip of the piston of the air cylinder. It has a structure in which multistage rotors are connected and rocked simultaneously.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnet motor and a drive mechanism that can easily position a facing magnet and obtain a sufficient rotational force.
  • the present invention has the following configuration in order to solve the above-described problems.
  • a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the cylindrical inner peripheral surface;
  • a plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
  • a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged.
  • the switch In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis.
  • Driving means for displacing in a parallel direction, In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor
  • the drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis.
  • a magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  • a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical outer peripheral surface;
  • a plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
  • a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent.
  • Magnets are installed parallel to the inner circumference direction, In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis.
  • Driving means for displacing in a parallel direction, In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor
  • the drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis.
  • a magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  • a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
  • a plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
  • a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets.
  • a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets
  • a plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction
  • Driving means for displacing in a parallel direction, In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor
  • the drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis.
  • a magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  • the plurality of N-pole or S-pole permanent magnets installed in the switching element are installed in the rotor in a state in which both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously.
  • the switch is placed on the drive means in a direction parallel to the central axis.
  • the magnet motor according to any one of (1) to (3), wherein a driving force for displacement is applied.
  • the plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer peripheral surface of the cylinder or the inner peripheral surface of the cylinder are alternately provided in a plurality of stages in the direction of the central axis.
  • the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis.
  • the magnet motor according to any one of (1) to (3).
  • a moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction; A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to a direction perpendicular to the straight line.
  • An installed switching plate In order to switch the poles of the plurality of permanent magnets of the moving plate that the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switch plate face each other, the switching plate is set to the linear direction.
  • Driving means for displacing in a vertical direction
  • the plurality of N-pole or S-pole permanent magnets installed on the switching plate face each other simultaneously with both the S-pole and N-pole permanent magnets of the moving plate.
  • the driving means displaces the switching plate in a direction perpendicular to the linear direction, thereby causing the moving plate to move to the moving plate.
  • a drive mechanism characterized by applying a propulsive force in a linear direction.
  • the plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
  • the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction.
  • the magnet motor and the drive mechanism of the present invention it is easy to position the magnet to be opposed and a sufficient rotational force can be obtained.
  • FIG. 1st figure for demonstrating the force which acts on the rotor of Example 1.
  • FIG. 2nd figure for demonstrating the force which acts on the rotor of Example 1.
  • FIG. 1st figure for demonstrating the force which acts on the movement board of Example 4.
  • FIG. 2nd figure for demonstrating the force which acts on the movement board of Example 4.
  • FIG. 1st figure which shows the structure of the conventional magnet air motor. 2nd figure which shows the structure of the conventional magnet air motor.
  • FIG. 1A is a cross-sectional structural view showing the configuration of the magnet motor of this embodiment
  • FIG. 1B is a cross-sectional view of FIG.
  • FIG. 1C is a perspective view showing the structure of the rotor
  • FIG. 1D is a perspective view showing the structure of the switching element.
  • the rotor 20 includes a cylindrical body 20a having a magnet embedded therein and a rotating shaft 20b.
  • the rotor 20 is rotatably supported on the casing 60 by two bearings 40.
  • Three switching elements 30a, 30b, and 30c are supported and held inside the cylindrical body 20a of the rotor 20 by a holding member 50.
  • the switching element 30 is moved along the holding member 50 in the left-right direction of FIG. Can be displaced by a predetermined distance.
  • the holding member 50 is fixed to the casing 60, and the holding member 50 and the switching element 30 do not rotate.
  • a magnet is embedded in the rotor 20 as shown in FIG. That is, half of the N-pole and S-pole magnets are installed along the circumferential direction of the cylindrical body 20a, and so-called magnet rings are installed inside the cylindrical body 20a for nine circles.
  • the switching element 30 has a fan shape, and N-pole and S-pole magnets are embedded in the outer peripheral surface thereof as shown in FIG. That is, a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the outer peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor 20.
  • FIG. 1 (d) 8 rows of magnets are installed in total including N and S poles.
  • the interval between the N pole and S pole rows is the same as the interval between the magnet rows inside the rotor cylinder.
  • all three switching elements 30a, 30b, 30c are the same.
  • the three switching elements 30a, 30b, and 30c are referred to as a rotor A, a rotor B, and a rotor C as shown in FIG. These three switching elements are installed at equal angular intervals every 120 °.
  • the S pole magnet of the switching element A faces the N pole magnet of the rotor
  • the N pole magnet of the switching element B faces the S pole magnet of the rotor. Yes.
  • the N pole magnet of the switching element C faces both the N pole magnet and the S pole magnet of the rotor.
  • Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG.
  • the upper switching element in FIG. 1 (a) is pushed into the left side of the figure, and the lower switching element in FIG. 1 (b) is drawn to the right side in the figure.
  • the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element to the left and right.
  • a major feature of the magnet motor of this embodiment is that the switching element is displaced in the axial direction of the rotating shaft in order to switch the facing state of the N-pole and S-pole magnets.
  • the distance of the magnet of a rotor and the magnet of a switch can be made closer than before.
  • the magnet for obtaining a rotational force can be installed densely.
  • the switching of the facing state of the magnet is performed by so-called swinging, it is difficult to position the magnets, and the distance between the magnets cannot be made sufficiently small. Also, the opposing magnets could not be densely arranged.
  • Switchcher drive mechanism As described above, the switching element 30 needs to be sequentially displaced left and right. A drive mechanism for this purpose will be described. A schematic configuration of the drive mechanism is shown in FIG. In addition, this drive mechanism is an example and is not limited to this mechanism.
  • This drive mechanism basically comprises three electric motors 70, three drive gears 80, and one planetary gear 90.
  • the electric motor 70 drives a drive gear 80 and is connected to a bevel gear 81 and a crank mechanism 82.
  • the crank 82 is connected to a bar at the end of the switching element 30. Examples of the bevel gear 81 and the crank mechanism 82 are shown in FIGS. 2B and 2C, respectively.
  • the arrow in the figure of Fig.2 (a) has shown the rotation direction and the displacement direction.
  • three electric motors 70 are used, but one or two electric motors 70 may be used.
  • the gear 80 and the planetary gear 90 are necessary to synchronize the displacement output from the crank mechanism 82. That is, the displacement output from the crank mechanism 82 is transmitted to the three switching elements 30, but the magnet motor does not rotate if the displacement is dissimilarly.
  • the magnet motor can rotate for the first time. For this purpose, it is necessary to assemble the entire drive mechanism after positioning the three gears 80 at predetermined positions of the planetary gear 90. In this case, the positions of the three switching elements 30 in the rotational direction must be set to predetermined positions.
  • the switching element 30 is displaced in the left-right direction in FIG. 1A at a predetermined timing to rotate the magnet motor. be able to. That is, the switch 30 is displaced in the direction of the rotating shaft 20b of the magnet motor.
  • FIGS. 3-1 and 3-2 show a state in which the N pole magnet is exposed on the surface of the switch 30.
  • the switch 30 In FIG. 5 the south pole magnet is exposed on the surface. That is, in FIGS. 3-1 (8) and 3-2 (9), the magnetic pole on the surface side of the switching element 30 is switched from the N pole to the S pole. It is assumed that the rotor 20 is rotating counterclockwise. Further, the magnetic poles of the magnets on the inner peripheral surface of the rotor 20 are S poles on the downstream side in the rotation direction (left side in FIG. 3A) and N poles on the upstream side (right side in FIG. 3A).
  • the N pole on the surface of the switching element 30 and the S pole on the inner peripheral surface of the rotor 20 are opposed to each other.
  • the boundary between the S pole and the N pole of the rotor 20 (a place without a magnet) is located on the upstream side in the rotation direction.
  • the vector shown in the figure represents the force acting on the magnet on the inner peripheral surface of the rotor 20 (in this case, the S-pole magnet).
  • the vector directed to the center of rotation does not affect the rotation of the rotor 20 at all.
  • the thick vector of the four magnets on both the left and right sides in FIG. 3-1 (1) affects the rotation.
  • the two vectors on the left side act as a brake for rotation, and the two vectors on the right side act as a thrust for rotation. However, since the total values of the two vectors are equal, the rotation is not affected.
  • Fig. 3-1 (2) shows a state where the rotation proceeds counterclockwise by one magnet from Fig. 3-1 (1). In the subsequent drawings, it is assumed that the rotation proceeds similarly by one magnet.
  • FIG. 3A (2) there are more vector components of the brake, and the brake starts to act on the rotor 20 as a whole.
  • the brake is further increased.
  • the N pole magnet of the rotor 20 also acts as a brake, and in FIG. 3A (5), the brake reaches the maximum value. After that, the brake does not change until Fig. 3-1 (8).
  • the center of the boundary between the S pole magnet and the N pole magnet of the rotor 20 coincides with the center of the switch 30.
  • FIG. 3-2 (9), since the magnet facing the magnet of the rotor 20 is the S pole, a large thrust in the rotating direction acts. This large thrust continues until Fig. 3-2 (12). This thrust gradually decreases and the thrust and the brake are balanced in FIG. 3-2 (16).
  • FIGS. 4 (a) to 4 (h) show a state in which the rotor 20 rotates sequentially with the movement of the three switching elements 30a, 30b, and 30c
  • FIGS. 4 (a) and 4 (b) show the states.
  • 4 (c) and 4 (d) show a state in which the rotor has rotated 60 ° counterclockwise
  • FIGS. 4 (e) and 4 (f) show a state in which the rotor has also rotated 120 °
  • FIG. 4A The state shown in FIG. 4A (rotation at 0 °) will be described.
  • the rotor 20 has an N-pole magnet positioned in the right half of the drawing and an S-pole magnet positioned symmetrically with respect to the center line in the left half.
  • the center line said here means the center line containing the thick line in Fig.4 (a).
  • the switching element A is positioned so as to straddle the N-pole and S-pole magnets of the rotor, and the switching elements B and C are positioned 120 ° apart from the switching element A and symmetrically.
  • the switching element A has an N pole
  • the switching element B has an N pole
  • the switching element C has an S pole magnet
  • an N pole magnet of the rotor and an S pole. It is opposed to the magnet.
  • the state of FIG. 4A is the state of FIG. 3-1 (8) described above, and it is very easy to move the switch A in the direction perpendicular to the paper surface, that is, in the left-right direction in FIG. It can be carried out. On the other hand, only the force in the center direction of the rotating shaft acts on the portion of the rotor 20 facing the switching elements B and C, and does not affect the rotation of the rotor.
  • FIG. 4B shows a state after the switch A is switched, which is the same as the state shown in FIG. 3-2 (9) described above. That is, in FIG. 4A, the N pole magnet of the switching element A is opposed to the magnet of the rotor 20, and the switching is performed so that the S pole magnet of the switching element A is opposed to the magnet of the rotor 20. It is the state after. At the moment of this switching, a force to rotate counterclockwise acts on the rotor 20. There is no change in the state of the switching elements B and C. Due to the counterclockwise force, the rotor changes from the state shown in FIG. 4B to the state shown in FIG.
  • FIG. 4C shows a state in which the rotor 20 is rotated 60 ° counterclockwise. In this state, a braking force is applied to the rotor magnet facing the switching element C. This is the same state as the magnet of the rotor facing the switching element A in FIG. In addition, the rotational force is no longer applied to the magnet at the location facing the switching element A of the rotor 20, and only the force in the direction of the central axis 20b of the rotor is applied. In addition, about the force which acts on the magnet of the location facing the switching element B of a rotor, it is the same as the force which acts on the magnet of the location facing the switching element B of the state of Fig.4 (a), (b). . In FIG.
  • FIG. 4 (e) shows a state in which the rotor is further rotated by 60 °, that is, 120 ° from the state of FIG. 4 (a) by the rotational force shown in FIG. 4 (d).
  • the brake is acting on the magnet of the rotor facing the switching element B.
  • only the force in the direction of the rotation center acts on the location of the rotor facing the switching elements A and C.
  • the switch B is switched. That is, the N pole magnet of the switching element B is switched to face the rotor magnet so that the S pole magnet faces the rotor magnet.
  • FIG. 4F shows a state after the switching element B is switched. Thereafter, the same switching is executed, the switching elements are sequentially switched, and the rotor is rotated.
  • the switching elements A, B, and C only move to the left and right, and the rotating element is the rotor.
  • the rotor is fixed and the switching elements A, B, and C are moved.
  • the magnet motor of this embodiment as a method of switching the facing state of the rotor magnet and the switch magnet, a method of moving the switch in a direction parallel to the direction of the rotation axis is adopted. Yes.
  • the distance between the rotor magnet and the switching magnet can be made as small as possible, and the opposing magnets can be arranged densely.
  • FIG. 5 (a) is a cross-sectional structural view showing the configuration of the magnet motor of this embodiment
  • FIG. 5 (b) is a cross-sectional view of FIG. 5 (a).
  • FIG. 5C is a perspective view showing the structure of the rotor 22
  • FIG. 5D is a perspective view showing the structure of the switching element 32.
  • the rotor 22 is composed of a cylindrical body 22a having a magnet embedded outside and a rotating shaft 22b.
  • the rotor 22 is rotatably supported on the casing 60 by two bearings 40.
  • Three switchers 32a, 32b, and 32c are supported and held by a casing outside the cylindrical body 22a of the rotor 22, and the switcher 32 has a predetermined distance in the left-right direction in FIG. 5A along the casing. Can only be displaced, but does not rotate.
  • a magnet is embedded in the rotor 22 as shown in FIG. That is, half of the N-pole and S-pole magnets are installed along the circumferential direction of the cylindrical body, and so-called magnet rings are installed outside the cylindrical body for nine circles.
  • the switching element has a fan shape, and N-pole and S-pole magnets are embedded in the inner peripheral surface thereof as shown in FIG. That is, a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the inner peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor. ing.
  • FIG. 1 A magnet is embedded in the rotor 22 as shown in FIG. That is, half of the N-pole and S-pole magnets are installed along the circumferential direction of the cylindrical body, and so-called magnet rings are installed outside the cylindrical body for nine circles.
  • the switching element has a fan shape, and N-pole and S-pole magnets are embedded in the inner peripheral surface thereof as shown in FIG. That
  • the three switching elements are a rotor A, a rotor B, and a rotor C as shown in FIG. These three switching elements are installed at equal angular intervals every 120 °. This installation state is the same as in the first embodiment.
  • the S pole magnet of the switching element A faces both the N pole magnet and the S pole magnet of the rotor
  • the S pole magnet of the switching element B is the S pole of the rotor.
  • the N-pole magnet of the switching element C faces the N-pole magnet of the rotor.
  • Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG.
  • the upper switch in FIG. 5A is pushed into the left side of the figure, and the lower switch in FIG. 5A shows a state pulled to the right side in the figure.
  • the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element to the left and right.
  • FIGS. 6 (a) to 6 (h) show a state in which the rotor sequentially rotates with the movement of the three switching elements
  • FIGS. 6 (a) and 6 (b) show that the rotor is 0 °
  • 6 (c) and 6 (d) show a state in which the rotor is rotated 60 ° counterclockwise
  • FIGS. 6 (e) and 6 (f) show a state in which the rotor is also rotated 120 °
  • FIGS. 6 (g) and 6 (h). ) Similarly shows a state rotated by 180 °.
  • FIG. 6A The state of FIG. 6A will be described. In this state, it is assumed that the N-pole magnet is positioned in the right half of the drawing and the S-pole magnet is positioned symmetrically with respect to the central axis in the left half of the rotor. Further, the switch A is positioned so as to straddle the N-pole and S-pole magnets of the rotor, and the switches B and C are positioned 120 ° apart from the switch A and symmetrically.
  • the switching element A is the S pole
  • the switching element B is the S pole
  • the switching element C is the N pole magnet
  • the rotor N pole magnet the rotor N pole magnet
  • FIG. 6B shows a state after the switch A is switched. That is, in FIG. 6A, the S-pole magnet is opposed to the rotor magnet, but is switched to the N-pole magnet opposed to the rotor magnet. This switching is executed by moving the switch A to the left side in FIG. At the moment of this switching, a force that tries to rotate counterclockwise acts on the rotor. There is no change in the state of the switching elements B and C. Due to the counterclockwise force, the rotor changes from the state of FIG. 6B to the state of FIG.
  • FIG. 6C shows a state in which the rotor is rotated 60 ° counterclockwise. In this state, the brake acts on the rotor C. This is the same state as the switch A in FIG. In addition, the rotational force no longer acts on the portion of the rotor facing the switching element A, and only the force directed toward the central axis of the rotor acts. In addition, about the force which acts on the location facing the switching element B of a rotor, it is the same as the state of Fig.6 (a), (b). In FIG. 6C, the N pole magnet of the switching element C faces the rotor magnet, but the switching element C is shown in FIG. 5A so that the S pole magnet faces the rotor magnet. ) Move to the right side.
  • the state after the movement is the state of FIG.
  • a rotational force is applied to the rotor to rotate it counterclockwise.
  • the states of the switching elements A and B do not change.
  • FIG. 6 (e) shows a state in which the rotor is further rotated by 60 °, that is, 120 ° from the state of FIG. 6 (a) by the rotational force shown in FIG. 6 (d).
  • the brake is applied to the rotor at the position of the switching element C.
  • only the force in the direction of the rotation center acts on the location of the rotor facing the switching elements A and B.
  • the switch C is switched. That is, the N pole magnet of the switching element C is switched to face the rotor magnet so that the S pole magnet faces the rotor magnet. This is realized by moving the switch C to the left side of FIG.
  • FIG. 6 (f) shows a state after the switch C is switched.
  • the switching elements are sequentially switched, and the rotor is rotated.
  • the switching elements A, B, and C only move to the left and right, and the rotating element is the rotor.
  • the rotor is fixed and the switching elements A, B, and C are moved. You may employ
  • the magnet motor of the present embodiment is a magnet motor having a configuration in which the magnet motor of the first embodiment and the magnet motor of the second embodiment are integrated.
  • the magnets are installed on both the inner peripheral surface and the outer peripheral surface of the rotor 24. That is, the rotor 24 receives a rotational force on both the inner peripheral surface and the outer peripheral surface, and as a result, a remarkably large rotational torque can be generated as compared with the magnet motors of the first and second embodiments.
  • the switching element 34 is installed inside and outside the rotor 24, and the inner switching element 34 and the outer switching element 34 are connected as shown in the figure and are displaced at the same timing.
  • the drive mechanism for displacing the switching element 34 is the same as the drive mechanism used in the first embodiment. Since the arrangement of the three switching elements 34a, 34b, 34c in the rotational direction, the magnet installation method, the timing for displacing the switching elements, and the like are the same as in the first and second embodiments, the description thereof is omitted.
  • the magnet motor of the present embodiment is substantially the same size as the magnet motors of Embodiments 1 and 2, but can generate a larger rotational torque.
  • the present embodiment relates to a drive mechanism that moves the moving plate by switching the moving plate on which the magnet is installed with the switching plate on which the magnet is also installed.
  • this drive mechanism drives the moving plate 100 in which the S-pole and N-pole magnets are embedded in the longitudinal direction.
  • the individual magnets are separate and independent.
  • This moving plate 100 corresponds to the rotor 20 of the first embodiment.
  • FIGS. 8C and 8D show the states of the opposing magnets only with the magnets of the moving plate 100 and the switching plate 110.
  • FIG. 8C the N-pole magnet of the switching plate 110 faces the magnet of the moving plate 100
  • FIG. 8D the S-pole magnet of the switching plate 110 faces the magnet of the moving plate 100. Indicates that When the switching plate 110 is displaced in the direction of the arrow in FIG. 8C, the state shown in FIG.
  • FIGS. 9-1 and 9-2 are diagrams for illustrating the operating principle of the drive mechanism of the present embodiment. Basically, it is the same as the contents of FIGS. 3-1 and 3-2 described in the first embodiment, and the state in which FIGS. It can be considered as shown in FIG.
  • the state of the switching plate 110 in (1) to (8) of FIG. 9-1 is the state of FIG. 8C, and the state of the switching plate 110 in (9) to (16) of FIG. This is the state of FIG.
  • one row of magnets of the moving plate 100 is described and two rows of magnets of the switching plate 110 are described.
  • both may be a plurality of rows. In this way, a greater driving force can be obtained.
  • a moving mechanism can be configured to replace the belt conveyor installed in the factory.
  • a plurality of switching plates 110 may be installed on the moving track at predetermined intervals, and the moving plate 100 may be moved sequentially, or the plurality of moving plates 100 may be moved sequentially. Further, the moving plate 100 may be fixed and the switching plate 110 may be moved.

Abstract

 The purpose of the present invention is to provide a drive mechanism and a magnet motor with which positioning of opposing magnets is easy and with which sufficient rotational force can be obtained. Provided is a magnet motor comprising a drive means equipped with a rotor to which are attached a plurality of groups of S pole permanent magnets and a plurality of groups of N pole permanent magnets in symmetrical positions on the inner peripheral surface of a cylinder, and a plurality of switch elements on the inner side of the rotor, and wherein, on the outer peripheral surface of the switch elements, a plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the central axis direction and a plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in parallel in the outer peripheral direction, the drive device displacing the switch elements in the direction parallel to the central axis. Therein, the plurality of S pole or N pole permanent magnets of the switch elements are in a state so as to simultaneously oppose both the S pole and N pole permanent magnets of the rotor, and in the timing in which the resultant force acting on the plurality of N pole or S pole permanent magnets arranged on the rotor becomes only the force in the rotational direction centred on the central axis, the drive means displaces the switch elements in the direction parallel to the central axis, and applies rotational force to the rotor.

Description

マグネットモータ及び駆動機構Magnet motor and drive mechanism
 本発明は、切換子を変位させることにより、回転子の永久磁石と切換子の永久磁石の吸引力と反発力を利用して回転動力を発生させるマグネットモータ及び駆動機構に関する。 The present invention relates to a magnet motor and a drive mechanism that generate rotational power by displacing a switching element and using the attractive force and repulsive force of the permanent magnet of the rotor and the permanent magnet of the switching element.
 本出願人がすでに提案した、特許文献1記載のマグネットエアーモータについて図10、図11を参照しながら以下に説明する。 The magnet air motor described in Patent Document 1 already proposed by the present applicant will be described below with reference to FIGS.
 図10(a)は特許文献1のマグネットエアーモータの構成を示し、図10(b)はA-A部分の拡大断面図である。 FIG. 10 (a) shows the configuration of the magnet air motor of Patent Document 1, and FIG. 10 (b) is an enlarged cross-sectional view of the AA portion.
 図中において、マグネットモータの円筒のベース1の中心位置に中心軸2を取付け、その中心軸2に回転ベース3等がベアリング9a,9bで回転自在に取付けられている。なお、中心軸2と同一中心を有する固定ハウジング4がベース1に固定されている。N極マグネットが埋め込まれた固定子であるN極マグネット固定ホルダ4a、及びS極マグネットが埋め込まれたS極マグネット固定ホルダ4bが固定ハウジング4に設置されている。回転ベース3上には120°おきに配置された回転子である3個のマグネット回転子6,7,8が設置され、夫々のマグネット回転子6,7,8の外周面上には、上下に平行に周方向にN極マグネット(6a,7a,8a)とS極マグネット(6b,7b,8b)の永久磁石が嵌設されている。 In the figure, a central shaft 2 is attached to the central position of a cylindrical base 1 of a magnet motor, and a rotating base 3 and the like are rotatably attached to the central shaft 2 by bearings 9a and 9b. A fixed housing 4 having the same center as the central axis 2 is fixed to the base 1. An N-pole magnet fixing holder 4 a that is a stator with an N-pole magnet embedded therein and an S-pole magnet fixing holder 4 b with an S pole magnet embedded therein are installed in the fixed housing 4. Three magnet rotors 6, 7, and 8, which are rotors arranged at intervals of 120 °, are installed on the rotary base 3, and the upper and lower surfaces of the magnet rotors 6, 7, and 8 are vertically The permanent magnets of N-pole magnets (6a, 7a, 8a) and S-pole magnets (6b, 7b, 8b) are fitted in the circumferential direction in parallel with each other.
 夫々のマグネット回転子の外周面に嵌設されたN極マグネットとS極マグネットの永久磁石は、揺動軸(6c,7c,8c)を中心に20°の角度で回転子が揺動してN極マグネットとS極マグネットの永久磁石のいずれか一方が、固定ハウジング4の内周面に取付けられているN極マグネット固定ホルダ4aと、S極マグネット固定ホルダ4bの永久磁石と対峙する。このN極マグネット固定ホルダ4a、S極マグネット固定ホルダ4bと、3個のマグネット回転子6,7,8の対向周面上に嵌設されたN極マグネット、S極マグネットの永久磁石の吸引力/反発力の合成ベクトルにより回転ベース3に回転力を発生させることができる。 The permanent magnets of the N pole magnet and the S pole magnet fitted on the outer peripheral surface of each magnet rotor have the rotor swinging at an angle of 20 ° around the swing shaft (6c, 7c, 8c). One of the permanent magnets of the N pole magnet and the S pole magnet faces the N pole magnet fixing holder 4a attached to the inner peripheral surface of the fixed housing 4 and the permanent magnet of the S pole magnet fixing holder 4b. The attractive force of the N pole magnet fixed holder 4a, the S pole magnet fixed holder 4b, and the permanent magnets of the N pole magnet and the S pole magnet fitted on the opposing peripheral surfaces of the three magnet rotors 6, 7, 8 / Rotational force can be generated in the rotating base 3 by the combined vector of repulsive force.
 図10(a)に示すようにマグネット回転子6,7,8は、マグネット固定ハウジング4の内側に、中心軸2に対し夫々120度の間隔で配置された構成となっている。夫々のマグネット回転子6,7,8に取付けられた3個のエアーシリンダ5a,5b,5cが伸縮する圧縮エアーが供給されるバルブ起動点は、固定ハウジング4のN極マグネット固定ホルダ4aとS極マグネット固定ホルダ4bの夫々中央部から回転方向の端部の間の所定の2箇所(340°,160°)である。このバルブ起動点を各マグネット回転子が通過する際、マグネット回転子と一体となっている制御バルブ12のローラレバーが、凹凸を有する環状のガイド14に押圧され制御バルブ12より圧縮エアーがエアーシリンダ5に供給される。 As shown in FIG. 10A, the magnet rotors 6, 7, 8 are arranged inside the magnet fixing housing 4 at intervals of 120 degrees with respect to the central axis 2. The valve starting points to which the compressed air that is expanded and contracted by the three air cylinders 5a, 5b, 5c attached to the respective magnet rotors 6, 7, 8 are supplied to the N pole magnet fixing holder 4a and the S of the fixed housing 4. There are two predetermined locations (340 °, 160 °) between the center portion of each of the pole magnet fixing holders 4b and the end portions in the rotation direction. When each magnet rotor passes through this valve starting point, the roller lever of the control valve 12 integrated with the magnet rotor is pressed by the annular guide 14 having projections and depressions, and compressed air is supplied from the control valve 12 to the air cylinder. 5 is supplied.
 一方、図11は図10で示した固定ハウジングと回転子を、2段、3段等の多段構造にしたマグネットエアーモータの構成で、エアーシリンダのピストンの先端に接続されたロッド20a,20bに多段の回転子を接続して同時に搖動させる構造を有している。 On the other hand, FIG. 11 shows a structure of a magnet air motor in which the fixed housing and the rotor shown in FIG. 10 are made into a multistage structure such as two stages, three stages, etc., and rods 20a and 20b connected to the tip of the piston of the air cylinder. It has a structure in which multistage rotors are connected and rocked simultaneously.
特開2011-83121号公報JP2011-83121A
 しかし、上述の特許文献1のマグネットエアーモータについては、以下のような課題があった。 However, the above-described magnet air motor of Patent Document 1 has the following problems.
 (1)マグネット回転子の磁石と固定ハウジングの磁石を正確に対峙させることが非常に難しかった。マグネット回転子は軸を中心に回転するため、所定の位置に正確に止めるには困難を伴うからである。磁石が所定の位置に止まらなければ十分な回転力を得ることができない。 (1) It was very difficult to accurately face the magnet of the magnet rotor and the magnet of the fixed housing. This is because the magnet rotor rotates around the shaft, and it is difficult to accurately stop the magnet rotor at a predetermined position. If the magnet does not stop at a predetermined position, sufficient rotational force cannot be obtained.
 (2)回転力はマグネット回転子と固定ハウジングの磁石の相互の吸引力、反発力で発生するが、マグネット回転子の固定ハウジングに対峙していない磁石は全く回転力に寄与していなかった。この対峙していない磁石は、固定ハウジングの磁石からは離れた位置にあり、回転力を発生させることはできない。 (2) Although the rotational force is generated by the mutual attractive force and repulsive force of the magnet rotor and the magnet of the fixed housing, the magnet not facing the fixed housing of the magnet rotor did not contribute to the rotational force at all. This non-facing magnet is located away from the magnet of the fixed housing and cannot generate a rotational force.
 本発明は、上記課題を解決するためになされたものであり、対峙させる磁石の位置決めが容易で、かつ十分な回転力が得られるマグネットモータ及び駆動機構を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnet motor and a drive mechanism that can easily position a facing magnet and obtain a sufficient rotational force.
 本発明は、上述の課題を解決するため、以下の構成を備えるものである。 The present invention has the following configuration in order to solve the above-described problems.
 (1)円筒内周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
 前記回転子の内側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
 前記切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
 前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
 前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
(1) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the cylindrical inner peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged. Is installed in parallel to the outer circumferential direction,
In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
 (2)円筒外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
 前記回転子の外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
 前記切換子の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
 前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
 前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
(2) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical outer peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent. Magnets are installed parallel to the inner circumference direction,
In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
 (3)円筒内外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
 前記回転子の内側及び外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
 前記切換子の前記回転子の内側の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
 前記切換子の前記回転子の外側の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
 前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
 前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
(3) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets. Are installed in parallel to the outer peripheral direction,
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets A plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction,
In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
 (4)前記回転子を固定し、前記複数の切換子を回転させることを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネットモータ。 (4) The magnet motor according to any one of (1) to (3), wherein the rotor is fixed and the plurality of switching elements are rotated.
 (5)前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになるタイミングの前から、前記駆動手段に前記切換子を前記中心軸と平行な方向に変位させるための駆動力が付与されることを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネットモータ。 (5) The plurality of N-pole or S-pole permanent magnets installed in the switching element are installed in the rotor in a state in which both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the timing at which the resultant force acting on the plurality of N-pole or S-pole permanent magnets becomes only the force in the rotational direction about the central axis, the switch is placed on the drive means in a direction parallel to the central axis. The magnet motor according to any one of (1) to (3), wherein a driving force for displacement is applied.
 (6)前記円筒外周面または前記円筒内周面に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記中心軸の方向に交互に複数段配置され、
 前記切換子の外周面または内周面に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記中心軸の方向に交互に複数段配置されていることを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネットモータ。
(6) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer peripheral surface of the cylinder or the inner peripheral surface of the cylinder are alternately provided in a plurality of stages in the direction of the central axis. Arranged,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis. The magnet motor according to any one of (1) to (3).
 (7)前記駆動手段が、クランク機構を有することを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネットモータ。 (7) The magnet motor according to any one of (1) to (3), wherein the driving means includes a crank mechanism.
 (8)前記駆動手段が、クランク機構、遊星歯車及び傘歯車を有することを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネットモータ。 (8) The magnet motor according to any one of (1) to (3), wherein the driving means includes a crank mechanism, a planetary gear, and a bevel gear.
 (9)複数の一群のN極の永久磁石と複数の一群のS極の永久磁石が同一の直線方向に設置された移動板と、
 複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が前記直線に垂直な方向に平行に設置された切換板とを具備し、
 前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記移動板の複数の永久磁石の極を切替えるために、前記切換板を前記直線方向と垂直な方向に変位させる駆動手段と、を有し、
 前記切換板に設置された前記複数のN極またはS極の永久磁石が前記移動板のS極とN極の永久磁石の両方に同時に対峙する状態において、前記移動板に設置された前記複数のN極またはS極の永久磁石に働く合力が前記直線方向の力のみになったタイミングで、前記駆動手段が前記切換板を前記直線方向と垂直な方向に変位させることにより、前記移動板に前記直線方向の推進力を付与することを特徴とする駆動機構。
(9) a moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction;
A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to a direction perpendicular to the straight line. An installed switching plate,
In order to switch the poles of the plurality of permanent magnets of the moving plate that the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switch plate face each other, the switching plate is set to the linear direction. Driving means for displacing in a vertical direction,
The plurality of N-pole or S-pole permanent magnets installed on the switching plate face each other simultaneously with both the S-pole and N-pole permanent magnets of the moving plate. At the timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the linear direction, the driving means displaces the switching plate in a direction perpendicular to the linear direction, thereby causing the moving plate to move to the moving plate. A drive mechanism characterized by applying a propulsive force in a linear direction.
 (10)前記移動板に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置され、
 前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置されていることを特徴とする前記(9)に記載の駆動機構。
(10) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction. ) Drive mechanism.
 (11)前記移動板を固定し、前記切換板を移動させることを特徴とする前記(9)記載の駆動機構。 (11) The drive mechanism according to (9), wherein the moving plate is fixed and the switching plate is moved.
 本発明のマグネットモータ及び駆動機構によれば、対峙させる磁石の位置決めが容易で、かつ十分な回転力が得られる。 According to the magnet motor and the drive mechanism of the present invention, it is easy to position the magnet to be opposed and a sufficient rotational force can be obtained.
実施例1のマグネットモータの構成を示す図The figure which shows the structure of the magnet motor of Example 1. 実施例1の切換子の駆動機構を説明するための図The figure for demonstrating the drive mechanism of the switch of Example 1. 実施例1の回転子に作用する力を説明するための第1の図1st figure for demonstrating the force which acts on the rotor of Example 1. FIG. 実施例1の回転子に作用する力を説明するための第2の図2nd figure for demonstrating the force which acts on the rotor of Example 1. FIG. 実施例1のマグネットモータの回転状態の変化を説明するための図The figure for demonstrating the change of the rotation state of the magnet motor of Example 1. FIG. 実施例2のマグネットモータの構成を示す図The figure which shows the structure of the magnet motor of Example 2. 実施例2のマグネットモータの回転状態の変化を説明するための図The figure for demonstrating the change of the rotation state of the magnet motor of Example 2. FIG. 実施例3のマグネットモータの構成を示す図The figure which shows the structure of the magnet motor of Example 3. 実施例4の駆動機構の構成を示す図The figure which shows the structure of the drive mechanism of Example 4. FIG. 実施例4の移動板に作用する力を説明するための第1の図1st figure for demonstrating the force which acts on the movement board of Example 4. FIG. 実施例4の移動板に作用する力を説明するための第2の図2nd figure for demonstrating the force which acts on the movement board of Example 4. FIG. 従来のマグネットエアーモータの構成を示す第1の図1st figure which shows the structure of the conventional magnet air motor. 従来のマグネットエアーモータの構成を示す第2の図2nd figure which shows the structure of the conventional magnet air motor.
 以下に、本発明を実施するための形態を、図面により詳しく説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 [マグネットモータの構成]
 図1(a)は、本実施例のマグネットモータの構成を示す断面構造図であり、図1(b)は、図1(a)の断面図である。また、図1(c)は回転子の構造を示す斜視図、図1(d)は切換子の構造を示す斜視図である。
[Configuration of magnet motor]
FIG. 1A is a cross-sectional structural view showing the configuration of the magnet motor of this embodiment, and FIG. 1B is a cross-sectional view of FIG. FIG. 1C is a perspective view showing the structure of the rotor, and FIG. 1D is a perspective view showing the structure of the switching element.
 図1(a)に示すように、回転子20は内側に磁石が埋め込まれた円筒体20aと回転軸20bから構成されている。この回転子20はケーシング60に2つのベアリング40により回転自在に支持されている。回転子20の円筒体20aの内部には3つの切換子30a,30b,30cが保持部材50により支持・保持されており、切換子30は保持部材50に沿って図1(a)の左右方向に所定の距離だけ変位することができる。保持部材50はケーシング60に固定されており、この保持部材50と切換子30は回転しない。 As shown in FIG. 1 (a), the rotor 20 includes a cylindrical body 20a having a magnet embedded therein and a rotating shaft 20b. The rotor 20 is rotatably supported on the casing 60 by two bearings 40. Three switching elements 30a, 30b, and 30c are supported and held inside the cylindrical body 20a of the rotor 20 by a holding member 50. The switching element 30 is moved along the holding member 50 in the left-right direction of FIG. Can be displaced by a predetermined distance. The holding member 50 is fixed to the casing 60, and the holding member 50 and the switching element 30 do not rotate.
 次に、回転子20と3つの切換子30a,30b,30cに埋め込まれた磁石について説明する。回転子20には図1(c)に示すように磁石が埋め込まれている。すなわち、円筒体20aの周方向に沿ってN極とS極の磁石が半分ずつ設置されており、このような言わば磁石のリングが9円周分円筒体20aの内側に設置されている。一方、切換子30は扇型の形状を有しており、その外周面にはN極とS極の磁石が図1(d)のように埋め込まれている。すなわち、外周面の同一の円周上にはN極のみの磁石、あるいはS極のみの磁石が設置され、これらN極の磁石とS極の磁石が回転子20の軸方向に交互に設置されている。図1(d)ではN極、S極合わせて8列の磁石が設置されている。なお、このN極とS極の列の間隔は、回転子の円筒体内側の磁石列の間隔と同一であるものとする。なお、本実施例のマグネットモータでは、3つの切換子30a,30b,30cはすべて同一のものである。 Next, magnets embedded in the rotor 20 and the three switching elements 30a, 30b, and 30c will be described. A magnet is embedded in the rotor 20 as shown in FIG. That is, half of the N-pole and S-pole magnets are installed along the circumferential direction of the cylindrical body 20a, and so-called magnet rings are installed inside the cylindrical body 20a for nine circles. On the other hand, the switching element 30 has a fan shape, and N-pole and S-pole magnets are embedded in the outer peripheral surface thereof as shown in FIG. That is, a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the outer peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor 20. ing. In FIG. 1 (d), 8 rows of magnets are installed in total including N and S poles. The interval between the N pole and S pole rows is the same as the interval between the magnet rows inside the rotor cylinder. In the magnet motor of the present embodiment, all three switching elements 30a, 30b, 30c are the same.
 次に、回転子20の磁石と切換子30の磁石の配置について説明する。3つの切換子30a,30b,30cを図1(b)のように回転子A、回転子B及び回転子Cとする。これら3つの切換子は120°毎に等角度間隔で設置されている。図1(b)に示すように、切換子AのS極の磁石は回転子のN極の磁石と対峙し、切換子BのN極の磁石は回転子のS極の磁石と対峙している。また、切換子CのN極の磁石は、回転子のN極の磁石とS極の磁石の両方に対峙している。このような磁石の対峙状態の切換は、図1(a)に示すように切換子の右側端部に設けられた棒材を左右に変位させることによって行うことができる。図1(a)の上側の切換子は図の左側に押し込んだ状態であり、図1(b)の下側の切換子は図の右側に引いた状態を示している。このように、切換子の右端を左右に変位させることによりN極の磁石とS極の磁石の対峙状態を変化させることができる。 Next, the arrangement of the magnets of the rotor 20 and the switching element 30 will be described. The three switching elements 30a, 30b, and 30c are referred to as a rotor A, a rotor B, and a rotor C as shown in FIG. These three switching elements are installed at equal angular intervals every 120 °. As shown in FIG. 1 (b), the S pole magnet of the switching element A faces the N pole magnet of the rotor, and the N pole magnet of the switching element B faces the S pole magnet of the rotor. Yes. Further, the N pole magnet of the switching element C faces both the N pole magnet and the S pole magnet of the rotor. Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG. The upper switching element in FIG. 1 (a) is pushed into the left side of the figure, and the lower switching element in FIG. 1 (b) is drawn to the right side in the figure. In this manner, the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element to the left and right.
 本実施例のマグネットモータの大きな特徴は、N極とS極の磁石の対峙状態を切り換えるのに、切換子を回転軸の軸方向に変位させていることである。このような構成とすることで、回転子の磁石と切換子の磁石の距離を従来よりも近接させることができる。その結果、磁石に起因する回転力をより大きくすることが可能となる。更に、従来のマグネットモータと比較して、回転力を得るための磁石を密に設置することができる。従来のマグネットモータでは磁石の対峙状態の切換をいわゆる首振りで行っていたため、磁石同志の位置決めが難しく、また磁石間の距離を十分に小さくすることができなかった。また、対峙する磁石を密に配置することもできなかった。 A major feature of the magnet motor of this embodiment is that the switching element is displaced in the axial direction of the rotating shaft in order to switch the facing state of the N-pole and S-pole magnets. By setting it as such a structure, the distance of the magnet of a rotor and the magnet of a switch can be made closer than before. As a result, it is possible to further increase the rotational force caused by the magnet. Furthermore, compared with the conventional magnet motor, the magnet for obtaining a rotational force can be installed densely. In the conventional magnet motor, since the switching of the facing state of the magnet is performed by so-called swinging, it is difficult to position the magnets, and the distance between the magnets cannot be made sufficiently small. Also, the opposing magnets could not be densely arranged.
 [切換子の駆動機構]
 切換子30は、上述したように左右に順次変位させる必要がある。そのための駆動機構について述べる。駆動機構の概略構成を図2(a)に示す。なお、この駆動機構は一例でありこの機構に限定されるものではない。
[Switcher drive mechanism]
As described above, the switching element 30 needs to be sequentially displaced left and right. A drive mechanism for this purpose will be described. A schematic configuration of the drive mechanism is shown in FIG. In addition, this drive mechanism is an example and is not limited to this mechanism.
 この駆動機構は、3個の電動モータ70,3個の駆動歯車80,1個の遊星歯車90から基本的に構成されている。電動モータ70は駆動歯車80を駆動し、傘歯車81,クランク機構82に連結されている。クランク82は切換子30の端部の棒材に接続されている。傘歯車81とクランク機構82の例を、図2(b),(c)にそれぞれ示す。なお、図2(a)の図中の矢印は回転方向、変位方向を示している。本実施例では、3個の電動モータ70を使用したが、1個または2個の電動モータ70を使用してもよい。 This drive mechanism basically comprises three electric motors 70, three drive gears 80, and one planetary gear 90. The electric motor 70 drives a drive gear 80 and is connected to a bevel gear 81 and a crank mechanism 82. The crank 82 is connected to a bar at the end of the switching element 30. Examples of the bevel gear 81 and the crank mechanism 82 are shown in FIGS. 2B and 2C, respectively. In addition, the arrow in the figure of Fig.2 (a) has shown the rotation direction and the displacement direction. In the present embodiment, three electric motors 70 are used, but one or two electric motors 70 may be used.
 歯車80と遊星歯車90は、クランク機構82から出力される変位の同期をとるために必要である。すなわち、クランク機構82から出力される変位は、3個の切換子30に伝達されるが、それぞればらばらに変位したのではマグネットモータは回転しない。3個の切換子30が相互に所定のタイミングで変位することで、マグネットモータははじめて回転することができる。そのためには、3個の歯車80を遊星歯車90の所定の位置に位置決めした後に、駆動機構全体を組み立てる必要がある。なお、この場合3個の切換子30の回転方向の位置についても、所定の位置になるようにしなければならない。 The gear 80 and the planetary gear 90 are necessary to synchronize the displacement output from the crank mechanism 82. That is, the displacement output from the crank mechanism 82 is transmitted to the three switching elements 30, but the magnet motor does not rotate if the displacement is dissimilarly. When the three switching elements 30 are displaced from each other at a predetermined timing, the magnet motor can rotate for the first time. For this purpose, it is necessary to assemble the entire drive mechanism after positioning the three gears 80 at predetermined positions of the planetary gear 90. In this case, the positions of the three switching elements 30 in the rotational direction must be set to predetermined positions.
 この駆動機構のクランク81の出力を切換子30の棒材に連結した後、電動モータ70を起動すると切換子30が図1(a)の左右方向に所定のタイミングで変位しマグネットモータを回転させることができる。すなわち、切換子30はマグネットモータの回転軸20bの方向に変位する。 After the output of the crank 81 of the drive mechanism is connected to the bar of the switching element 30, when the electric motor 70 is started, the switching element 30 is displaced in the left-right direction in FIG. 1A at a predetermined timing to rotate the magnet motor. be able to. That is, the switch 30 is displaced in the direction of the rotating shaft 20b of the magnet motor.
 [回転子に作用する力]
 回転子に作用する力について、図3-1,図3-2を用いて説明する。図3-1の(1)~(8)では、切換子30においてN極の磁石が表面に露出している状態であり、図3-2の(9)~(16)では、切換子30においてS極の磁石が表面に露出している。すなわち図3-1(8),図3-2(9)において、切換子30の表面側の磁極がN極からS極に切り換わる。回転子20は、反時計回りに回転しているものとする。また、回転子20の内周面上の磁石の磁極は、回転方向の下流側(図3-1の左側)ではS極、上流側(図3-1の右側)ではN極である。
[Force acting on the rotor]
The force acting on the rotor will be described with reference to FIGS. 3-1 and 3-2. 3-1 (1) to (8) show a state in which the N pole magnet is exposed on the surface of the switch 30. In (9) to (16) of FIG. 3-2, the switch 30 In FIG. 5, the south pole magnet is exposed on the surface. That is, in FIGS. 3-1 (8) and 3-2 (9), the magnetic pole on the surface side of the switching element 30 is switched from the N pole to the S pole. It is assumed that the rotor 20 is rotating counterclockwise. Further, the magnetic poles of the magnets on the inner peripheral surface of the rotor 20 are S poles on the downstream side in the rotation direction (left side in FIG. 3A) and N poles on the upstream side (right side in FIG. 3A).
 図3-1(1)の状態では、切換子30の表面のN極と回転子20の内周面のS極が対峙している。回転子20のS極とN極との境界(磁石のない箇所)は、回転方向の上流側に位置している。図に示したベクトルは、回転子20の内周面の磁石(この場合は、S極の磁石)に働く力を表している。これら複数のベクトルのうち回転中心に向くベクトルは回転子20の回転には全く影響しない。一方、図3-1(1)の左右両端側の合計4個の磁石の太く示したベクトルは回転に影響する。左側の2個のベクトルは回転のブレーキとして作用し、右側の2個のベクトルは回転の推力として作用するが、それぞれの合計値は等しいので結局回転には影響しないことになる。 In the state shown in FIG. 3-1 (1), the N pole on the surface of the switching element 30 and the S pole on the inner peripheral surface of the rotor 20 are opposed to each other. The boundary between the S pole and the N pole of the rotor 20 (a place without a magnet) is located on the upstream side in the rotation direction. The vector shown in the figure represents the force acting on the magnet on the inner peripheral surface of the rotor 20 (in this case, the S-pole magnet). Of these vectors, the vector directed to the center of rotation does not affect the rotation of the rotor 20 at all. On the other hand, the thick vector of the four magnets on both the left and right sides in FIG. 3-1 (1) affects the rotation. The two vectors on the left side act as a brake for rotation, and the two vectors on the right side act as a thrust for rotation. However, since the total values of the two vectors are equal, the rotation is not affected.
 図3-1(2)は、図3-1(1)から磁石1個分だけ回転が反時計方向に進行した状態を示している。以降の図においても、同様に磁石1個分ずつ回転が進行していくものとする。図3-1(2)では、ブレーキのベクトル成分の方が多く、全体として回転子20にブレーキが作用し始めることになる。図3-1(3)では、更にブレーキが増える。そして、図3-1(4)では、回転子20のN極の磁石もブレーキとして作用し、図3-1(5)ではブレーキが最大値に到達する。その後、図3-1(8)まで、ブレーキは変化しない。図3-1(8)の状態では、回転子20のS極の磁石とN極の磁石の境界の中心が切換子30の中心に一致している。この状態では、回転子20の中心に向かうS極の力と中心から離れる方向のN極の力が完全に釣り合った状態になっている。その結果、切換子30を回転軸方向に容易に変位させることが可能となる。切換えた結果が図3-2(9)であり、切換子30のS極の磁石が回転子の内周面の磁石と対峙することになる。 Fig. 3-1 (2) shows a state where the rotation proceeds counterclockwise by one magnet from Fig. 3-1 (1). In the subsequent drawings, it is assumed that the rotation proceeds similarly by one magnet. In FIG. 3A (2), there are more vector components of the brake, and the brake starts to act on the rotor 20 as a whole. In FIG. 3-1 (3), the brake is further increased. In FIG. 3A (4), the N pole magnet of the rotor 20 also acts as a brake, and in FIG. 3A (5), the brake reaches the maximum value. After that, the brake does not change until Fig. 3-1 (8). In the state of FIG. 3A (8), the center of the boundary between the S pole magnet and the N pole magnet of the rotor 20 coincides with the center of the switch 30. In this state, the S pole force toward the center of the rotor 20 and the N pole force away from the center are completely balanced. As a result, the switch 30 can be easily displaced in the direction of the rotation axis. The result of switching is shown in FIG. 3-2 (9), and the S-pole magnet of the switch 30 faces the magnet on the inner peripheral surface of the rotor.
 図3-2(9)では、回転子20の磁石と対峙する磁石がS極となったため、大きな回転方向の推力が作用する。この大きな推力は図3-2(12)まで継続することになる。そして、この推力は徐々に減少し図3-2(16)において推力とブレーキが釣り合った状態となる。 In FIG. 3-2 (9), since the magnet facing the magnet of the rotor 20 is the S pole, a large thrust in the rotating direction acts. This large thrust continues until Fig. 3-2 (12). This thrust gradually decreases and the thrust and the brake are balanced in FIG. 3-2 (16).
 [マグネットモータの回転制御]
 本実施例のマグネットモータの回転制御につき、図4を参照しつつ以下に説明する。
[Rotation control of magnet motor]
The rotation control of the magnet motor of this embodiment will be described below with reference to FIG.
 図4(a)~図4(h)は、回転子20が3つの切換子30a,30b,30cの動きに伴って順次回転する状態を示しており、図4(a),(b)は回転子が0°の状態、図4(c),(d)は回転子が反時計回りに60°回転した状態、図4(e),(f)は同じく120°回転した状態、図4(g),(h)は同じく180°回転した状態をそれぞれ示している。 4 (a) to 4 (h) show a state in which the rotor 20 rotates sequentially with the movement of the three switching elements 30a, 30b, and 30c, and FIGS. 4 (a) and 4 (b) show the states. 4 (c) and 4 (d) show a state in which the rotor has rotated 60 ° counterclockwise, FIGS. 4 (e) and 4 (f) show a state in which the rotor has also rotated 120 °, FIG. Similarly, (g) and (h) respectively show a state rotated by 180 °.
 図4(a)の状態(回転0°の状態)を説明する。この状態では、回転子20はN極の磁石が図面の右側半分に位置し、S極の磁石が左側半分に中心線に対して対称に位置しているものとする。なお、ここで言う中心線とは図4(a)において太線を含んだ中心線をいう。また、切換子Aは回転子のN極とS極の磁石をまたぐように位置しており、切換子B,Cは切換子Aから120°離れて左右対称に位置している。そして、切換子A,B,Cに設置された磁石のうち、切換子AはN極,切換子BはN極,切換子CはS極の磁石が回転子のN極の磁石、S極の磁石と対峙している。 The state shown in FIG. 4A (rotation at 0 °) will be described. In this state, it is assumed that the rotor 20 has an N-pole magnet positioned in the right half of the drawing and an S-pole magnet positioned symmetrically with respect to the center line in the left half. In addition, the center line said here means the center line containing the thick line in Fig.4 (a). The switching element A is positioned so as to straddle the N-pole and S-pole magnets of the rotor, and the switching elements B and C are positioned 120 ° apart from the switching element A and symmetrically. Of the magnets installed in the switching elements A, B, and C, the switching element A has an N pole, the switching element B has an N pole, the switching element C has an S pole magnet, an N pole magnet of the rotor, and an S pole. It is opposed to the magnet.
 図4(a)の状態は、上述した図3-1(8)の状態であり、切換子Aを紙面に垂直な方向、すなわち図1(a)の左右方向に移動させることが極めて容易に行うことができる。一方、回転子20の切換子B,Cと対向する箇所には、回転軸の中心方向の力のみが作用し回転子の回転には何らの影響を及ぼさない。 The state of FIG. 4A is the state of FIG. 3-1 (8) described above, and it is very easy to move the switch A in the direction perpendicular to the paper surface, that is, in the left-right direction in FIG. It can be carried out. On the other hand, only the force in the center direction of the rotating shaft acts on the portion of the rotor 20 facing the switching elements B and C, and does not affect the rotation of the rotor.
 図4(b)は、切換子Aを切り換えた後の状態であり、上述した図3-2(9)の状態と同一である。すなわち、図4(a)では切換子AのN極の磁石が回転子20の磁石と対峙していたのを、切換子AのS極の磁石が回転子20の磁石と対峙するように切り換えた後の状態である。この切換の瞬間に、回転子20には反時計方向に回そうとする力が作用する。なお、切換子B,Cの状態には変化はない。反時計方向の力により、回転子は図4(b)の状態から図4(c)の状態に変化する。 FIG. 4B shows a state after the switch A is switched, which is the same as the state shown in FIG. 3-2 (9) described above. That is, in FIG. 4A, the N pole magnet of the switching element A is opposed to the magnet of the rotor 20, and the switching is performed so that the S pole magnet of the switching element A is opposed to the magnet of the rotor 20. It is the state after. At the moment of this switching, a force to rotate counterclockwise acts on the rotor 20. There is no change in the state of the switching elements B and C. Due to the counterclockwise force, the rotor changes from the state shown in FIG. 4B to the state shown in FIG.
 図4(c)は、回転子20が反時計方向に60°回転した状態を示す。この状態では、切換子Cに対向する回転子の磁石にブレーキ力が作用することになる。これは、図4(a)の切換子Aに対向する回転子の磁石と同様の状態である。また、回転子20の切換子Aに対向する箇所の磁石には、もはや回転力は作用せず回転子の中心軸20b方向の力のみが作用する。なお、回転子の切換子Bに対向する箇所の磁石に作用する力については、図4(a),(b)の状態の切換子Bに対向する箇所の磁石に作用する力と同じである。図4(c)において、切換子CのS極の磁石が回転子の磁石と対峙しているが、N極の磁石が回転子の磁石と対峙するように、切換子Cを移動させる。移動させた後の状態が図4(d)の状態である。切換子Cが図4(d)の状態になった瞬間に、回転子には反時計回りに回転させようとする回転力が作用する。なお、この場合切換子A,Bの状態は変化しない。 FIG. 4C shows a state in which the rotor 20 is rotated 60 ° counterclockwise. In this state, a braking force is applied to the rotor magnet facing the switching element C. This is the same state as the magnet of the rotor facing the switching element A in FIG. In addition, the rotational force is no longer applied to the magnet at the location facing the switching element A of the rotor 20, and only the force in the direction of the central axis 20b of the rotor is applied. In addition, about the force which acts on the magnet of the location facing the switching element B of a rotor, it is the same as the force which acts on the magnet of the location facing the switching element B of the state of Fig.4 (a), (b). . In FIG. 4C, the S pole magnet of the switching element C faces the rotor magnet, but the switching element C is moved so that the N pole magnet faces the rotor magnet. The state after the movement is the state of FIG. At the moment when the switch C is in the state shown in FIG. 4D, a rotational force is applied to the rotor to rotate it counterclockwise. In this case, the states of the switching elements A and B do not change.
 図4(e)は、図4(d)に示した回転力により回転子が更に60°、すなわち図4(a)の状態から120°回転した状態を示している。この状態では、切換子Bに対向する回転子の磁石にはブレーキが作用している状態となっている。また、切換子A,Cに対向する回転子の箇所には、回転中心方向の力のみが作用している。そして、この状態で切換子Bを切り換える。すなわち、切換子BのN極の磁石が回転子の磁石と対峙しているのを、S極の磁石が回転子の磁石と対峙するように切り換える。図4(f)は切換子Bが切り換わった後の状態を示す。以後は、同様の切り換えを実行し切換子を順次切り換え回転子を回転させる。なお、上述の実施例では、切換子A,B,Cは左右に移動するのみで、回転するのは回転子であったが、反対に回転子を固定し、切換子A,B,Cを回転させる構成を採用してもよい。以下の実施例においても、同様である。 FIG. 4 (e) shows a state in which the rotor is further rotated by 60 °, that is, 120 ° from the state of FIG. 4 (a) by the rotational force shown in FIG. 4 (d). In this state, the brake is acting on the magnet of the rotor facing the switching element B. In addition, only the force in the direction of the rotation center acts on the location of the rotor facing the switching elements A and C. In this state, the switch B is switched. That is, the N pole magnet of the switching element B is switched to face the rotor magnet so that the S pole magnet faces the rotor magnet. FIG. 4F shows a state after the switching element B is switched. Thereafter, the same switching is executed, the switching elements are sequentially switched, and the rotor is rotated. In the above-described embodiment, the switching elements A, B, and C only move to the left and right, and the rotating element is the rotor. On the contrary, the rotor is fixed and the switching elements A, B, and C are moved. You may employ | adopt the structure rotated. The same applies to the following embodiments.
 以上説明したように、本実施例のマグネットモータでは、回転子の磁石と切換子の磁石の対峙状態を切り換える方法として、切換子を回転軸の方向と平行な方向に移動させる方法を採用している。この方法を採用することで、回転子の磁石と切換子の磁石の間隔をできる限り小さくできるとともに、対峙する磁石を密に配置することが可能となる。その結果、従来に比較してより大きな回転トルクをうることが可能となる。すなわち、本実施例のマグネットモータを発電用のモータに利用した場合、より大きな電力を取り出すことが可能となる。また、自動車の補助モータとしても活用することができる。 As described above, in the magnet motor of this embodiment, as a method of switching the facing state of the rotor magnet and the switch magnet, a method of moving the switch in a direction parallel to the direction of the rotation axis is adopted. Yes. By adopting this method, the distance between the rotor magnet and the switching magnet can be made as small as possible, and the opposing magnets can be arranged densely. As a result, it is possible to obtain a larger rotational torque than in the prior art. That is, when the magnet motor of the present embodiment is used as a motor for power generation, it is possible to extract larger electric power. It can also be used as an auxiliary motor for automobiles.
 図5(a)は、本実施例のマグネットモータの構成を示す断面構造図であり、図5(b)は、図5(a)の断面図である。また、図5(c)は回転子22の構造を示す斜視図、図5(d)は切換子32の構造を示す斜視図である。 FIG. 5 (a) is a cross-sectional structural view showing the configuration of the magnet motor of this embodiment, and FIG. 5 (b) is a cross-sectional view of FIG. 5 (a). FIG. 5C is a perspective view showing the structure of the rotor 22, and FIG. 5D is a perspective view showing the structure of the switching element 32.
 図5(a)に示すように、回転子22は外側に磁石が埋め込まれた円筒体22aと回転軸22bから構成されている。この回転子22はケーシング60に2つのベアリング40により回転自在に支持されている。回転子22の円筒体22aの外部には3つの切換子32a,32b,32cがケーシングにより支持・保持されており、切換子32はケーシングに沿って図5(a)の左右方向に所定の距離だけ変位することができるが、回転はしない。 As shown in FIG. 5 (a), the rotor 22 is composed of a cylindrical body 22a having a magnet embedded outside and a rotating shaft 22b. The rotor 22 is rotatably supported on the casing 60 by two bearings 40. Three switchers 32a, 32b, and 32c are supported and held by a casing outside the cylindrical body 22a of the rotor 22, and the switcher 32 has a predetermined distance in the left-right direction in FIG. 5A along the casing. Can only be displaced, but does not rotate.
 次に、回転子22と3つの切換子32に埋め込まれた磁石について説明する。回転子22には図5(c)に示すように磁石が埋め込まれている。すなわち、円筒体の周方向に沿ってN極とS極の磁石が半分ずつ設置されており、このような言わば磁石のリングが9円周分円筒体の外側に設置されている。一方、切換子は扇型の形状を有しており、その内周面にはN極とS極の磁石が図5(d)のように埋め込まれている。すなわち、内周面の同一の円周上にはN極のみの磁石、あるいはS極のみの磁石が設置され、これらN極の磁石とS極の磁石が回転子の軸方向に交互に設置されている。図5(d)ではN極、S極合わせて8列の磁石が設置されている。なお、このN極とS極の列の間隔は、回転子の円筒体外側の磁石列の間隔と同一であるものとする。なお、本実施例のマグネットモータでは、3つの切換子はすべて同一のものである。 Next, magnets embedded in the rotor 22 and the three switching elements 32 will be described. A magnet is embedded in the rotor 22 as shown in FIG. That is, half of the N-pole and S-pole magnets are installed along the circumferential direction of the cylindrical body, and so-called magnet rings are installed outside the cylindrical body for nine circles. On the other hand, the switching element has a fan shape, and N-pole and S-pole magnets are embedded in the inner peripheral surface thereof as shown in FIG. That is, a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the inner peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor. ing. In FIG. 5 (d), eight rows of magnets are installed in total including N and S poles. Note that the interval between the N pole and S pole rows is the same as the interval between the magnet rows outside the cylindrical body of the rotor. In the magnet motor of this embodiment, all the three switching elements are the same.
 次に、回転子の磁石と切換子の磁石の切換制御について説明する。3つの切換子を図5(b)のように回転子A、回転子B及び回転子Cとする。これら3つの切換子は120°毎に等角度間隔で設置されている。この設置状態は、実施例1と同様である。図5(b)に示すように、切換子AのS極の磁石は回転子のN極の磁石とS極の磁石の両方に対峙し、切換子BのS極の磁石は回転子のS極の磁石と対峙している。また、切換子CのN極の磁石は、回転子のN極の磁石に対峙している。このような磁石の対峙状態の切換は、図5(a)に示すように切換子の右側端部に設けられた棒材を左右に変位させることによって行うことができる。図5(a)の上側の切換子は図の左側に押し込んだ状態であり、図5(a)の下側の切換子は図の右側に引いた状態を示している。このように、切換子の右端を左右に変位させることによりN極の磁石とS極の磁石の対峙状態を変化させることができる。 Next, switching control between the rotor magnet and the switching magnet will be described. The three switching elements are a rotor A, a rotor B, and a rotor C as shown in FIG. These three switching elements are installed at equal angular intervals every 120 °. This installation state is the same as in the first embodiment. As shown in FIG. 5 (b), the S pole magnet of the switching element A faces both the N pole magnet and the S pole magnet of the rotor, and the S pole magnet of the switching element B is the S pole of the rotor. Opposite the pole magnet. Further, the N-pole magnet of the switching element C faces the N-pole magnet of the rotor. Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG. The upper switch in FIG. 5A is pushed into the left side of the figure, and the lower switch in FIG. 5A shows a state pulled to the right side in the figure. In this manner, the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element to the left and right.
 [マグネットモータの回転制御]
 本実施例のマグネットモータの回転制御につき、図6を参照しつつ以下に説明する。
[Rotation control of magnet motor]
The rotation control of the magnet motor of the present embodiment will be described below with reference to FIG.
 図6(a)~図6(h)は、回転子が3つの切換子の動きに伴って順次回転する状態を示しており、図6(a),(b)は回転子が0°の状態、図6(c),(d)は回転子が反時計回りに60°回転した状態、図6(e),(f)は同じく120°回転した状態、図6(g),(h)は同じく180°回転した状態をそれぞれ示している。 FIGS. 6 (a) to 6 (h) show a state in which the rotor sequentially rotates with the movement of the three switching elements, and FIGS. 6 (a) and 6 (b) show that the rotor is 0 °. 6 (c) and 6 (d) show a state in which the rotor is rotated 60 ° counterclockwise, FIGS. 6 (e) and 6 (f) show a state in which the rotor is also rotated 120 °, and FIGS. 6 (g) and 6 (h). ) Similarly shows a state rotated by 180 °.
 図6(a)の状態を説明する。この状態では、回転子はN極の磁石が図面の右側半分に位置し、S極の磁石が左側半分に中心軸に対して対称に位置しているものとする。また、切換子Aは、回転子のN極とS極の磁石をまたぐように位置しており、切換子B,Cは切換子Aから120°離れて左右対称に位置している。そして、切換子A,B,Cに設置された磁石のうち、切換子AはS極,切換子BはS極,切換子CはN極の磁石が回転子のN極の磁石、S極の磁石と対峙している。すなわち、図5(a)に示したように、切換子A,Bは右側に移動した状態、切換子Cは左側に移動した状態になっている。 The state of FIG. 6A will be described. In this state, it is assumed that the N-pole magnet is positioned in the right half of the drawing and the S-pole magnet is positioned symmetrically with respect to the central axis in the left half of the rotor. Further, the switch A is positioned so as to straddle the N-pole and S-pole magnets of the rotor, and the switches B and C are positioned 120 ° apart from the switch A and symmetrically. Of the magnets installed in the switching elements A, B and C, the switching element A is the S pole, the switching element B is the S pole, the switching element C is the N pole magnet, the rotor N pole magnet, and the S pole. It is opposed to the magnet. That is, as shown in FIG. 5A, the switching elements A and B are moved to the right side, and the switching element C is moved to the left side.
 図6(a)の状態において、回転子に作用する力について述べる。回転子の切換子Aに対向している箇所には回転軸の中心に向かう力(吸引力)と回転軸の中心から離れる力(反発力)が作用しており、これらの力の合力は回転する方向と反対方向(時計回りの方向)の力、すなわちブレーキとして作用している。ただし、回転軸の中心に向かう力は存在しない。吸引力と反発力の軸方向成分が相殺されるからである。この状態では、切換子Aを紙面に垂直な方向、すなわち図5(a)の左右方向に移動させることが極めて容易に行うことができる。一方、回転子の切換子B,Cと対向する箇所には、回転軸の中心方向の力のみが作用し回転子の回転には何らの影響を及ぼさない。 The force acting on the rotor in the state shown in FIG. A force facing the center of the rotating shaft (suction force) and a force moving away from the center of the rotating shaft (repulsive force) act on the portion of the rotor facing the switching element A. The resultant force of these forces is the rotation. It acts as a force in the opposite direction (clockwise direction), that is, a brake. However, there is no force toward the center of the rotation axis. This is because the axial components of the attractive force and the repulsive force are canceled out. In this state, it is very easy to move the switching element A in the direction perpendicular to the paper surface, that is, in the left-right direction in FIG. On the other hand, only the force in the center direction of the rotating shaft acts on the portion of the rotor facing the switching elements B and C and does not affect the rotation of the rotor.
 図6(b)は、切換子Aを切り換えた後の状態を示す。すなわち、図6(a)ではS極の磁石が回転子の磁石と対峙していたのを、N極の磁石が回転子の磁石と対峙するように切り換えた後の状態である。この切換は、図5(a)において切換子Aを左側に移動させることで実行される。この切換の瞬間に、回転子には反時計方向に回そうとする力が作用する。なお、切換子B,Cの状態には変化はない。反時計方向の力により、回転子は図6(b)の状態から図6(c)の状態に変化する。 FIG. 6B shows a state after the switch A is switched. That is, in FIG. 6A, the S-pole magnet is opposed to the rotor magnet, but is switched to the N-pole magnet opposed to the rotor magnet. This switching is executed by moving the switch A to the left side in FIG. At the moment of this switching, a force that tries to rotate counterclockwise acts on the rotor. There is no change in the state of the switching elements B and C. Due to the counterclockwise force, the rotor changes from the state of FIG. 6B to the state of FIG.
 図6(c)は、回転子が反時計方向に60°回転した状態を示す。この状態では、回転子Cにブレーキが作用することになる。これは、図6(a)の切換子Aと同様の状態である。また、回転子の切換子Aに対向する箇所には、もはや回転力は作用せず回転子の中心軸に向かう力のみが作用する。なお、回転子の切換子Bに対向する箇所に作用する力については、図6(a),(b)の状態と同じである。図6(c)において、切換子CのN極の磁石が回転子の磁石と対峙しているが、S極の磁石が回転子の磁石と対峙するように、切換子Cを図5(a)の右側に移動させる。移動させた後の状態が図6(d)の状態である。切換子Cが図6(d)の状態になった瞬間に、回転子には反時計回りに回転させようとする回転力が作用する。なお、この場合切換子A,Bの状態は変化しない。 FIG. 6C shows a state in which the rotor is rotated 60 ° counterclockwise. In this state, the brake acts on the rotor C. This is the same state as the switch A in FIG. In addition, the rotational force no longer acts on the portion of the rotor facing the switching element A, and only the force directed toward the central axis of the rotor acts. In addition, about the force which acts on the location facing the switching element B of a rotor, it is the same as the state of Fig.6 (a), (b). In FIG. 6C, the N pole magnet of the switching element C faces the rotor magnet, but the switching element C is shown in FIG. 5A so that the S pole magnet faces the rotor magnet. ) Move to the right side. The state after the movement is the state of FIG. At the moment when the switch C is in the state shown in FIG. 6D, a rotational force is applied to the rotor to rotate it counterclockwise. In this case, the states of the switching elements A and B do not change.
 図6(e)は、図6(d)に示した回転力により回転子が更に60°、すなわち図6(a)の状態から120°回転した状態を示している。この状態では、回転子には切換子Cの位置でブレーキが作用している。また、切換子A,Bに対向する回転子の箇所には、回転中心方向の力のみが作用している。そして、この状態で切換子Cを切り換える。すなわち、切換子CのN極の磁石が回転子の磁石と対峙しているのを、S極の磁石が回転子の磁石と対峙するように切り換える。これは、切換子Cを図5(a)の左側に移動させることで実現される。図6(f)は切換子Cが切り換わった後の状態を示す。以後は、同様の切り換えを実行し切換子を順次切り換え回転子を回転させる。なお、上述の実施例では、切換子A,B,Cは左右に移動するのみで、回転するのは回転子であったが、反対に回転子を固定し、切換子A,B,Cを回転させる構成を採用してもよい。 FIG. 6 (e) shows a state in which the rotor is further rotated by 60 °, that is, 120 ° from the state of FIG. 6 (a) by the rotational force shown in FIG. 6 (d). In this state, the brake is applied to the rotor at the position of the switching element C. In addition, only the force in the direction of the rotation center acts on the location of the rotor facing the switching elements A and B. In this state, the switch C is switched. That is, the N pole magnet of the switching element C is switched to face the rotor magnet so that the S pole magnet faces the rotor magnet. This is realized by moving the switch C to the left side of FIG. FIG. 6 (f) shows a state after the switch C is switched. Thereafter, the same switching is executed, the switching elements are sequentially switched, and the rotor is rotated. In the above-described embodiment, the switching elements A, B, and C only move to the left and right, and the rotating element is the rotor. On the contrary, the rotor is fixed and the switching elements A, B, and C are moved. You may employ | adopt the structure rotated.
 本実施例を、図7を参照しつつ以下に説明する。本実施例のマグネットモータは、実施例1のマグネットモータと実施例2のマグネットモータを統合した構成を有するマグネットモータである。 This example will be described below with reference to FIG. The magnet motor of the present embodiment is a magnet motor having a configuration in which the magnet motor of the first embodiment and the magnet motor of the second embodiment are integrated.
 本実施例の回転子24では、磁石は回転子24の内周面と外周面の両方に設置されている。すなわち、回転子24は内周面と外周面の両面で回転力を受けることになり、その結果実施例1,2のマグネットモータに比較して格段に大きな回転トルクを発生させることができる。 In the rotor 24 of the present embodiment, the magnets are installed on both the inner peripheral surface and the outer peripheral surface of the rotor 24. That is, the rotor 24 receives a rotational force on both the inner peripheral surface and the outer peripheral surface, and as a result, a remarkably large rotational torque can be generated as compared with the magnet motors of the first and second embodiments.
 また、切換子34は回転子24の内外にそれぞれ設置されており、内側の切換子34と外側の切換子34は図に示したように連結されており、同じタイミングで変位するものとする。切換子34を変位させるための駆動機構は、実施例1で使用した駆動機構と同一のものを使用する。3つの切換子34a,34b,34cの回転方向の配置や磁石の設置方法、切換子の変位させるタイミング等は、実施例1,2と同一であるので説明を省略する。 Further, the switching element 34 is installed inside and outside the rotor 24, and the inner switching element 34 and the outer switching element 34 are connected as shown in the figure and are displaced at the same timing. The drive mechanism for displacing the switching element 34 is the same as the drive mechanism used in the first embodiment. Since the arrangement of the three switching elements 34a, 34b, 34c in the rotational direction, the magnet installation method, the timing for displacing the switching elements, and the like are the same as in the first and second embodiments, the description thereof is omitted.
 本実施例のマグネットモータは、実施例1,2のマグネットモータと略同じ大きさでありながら、より大きな回転トルクを発生させることができる。 The magnet motor of the present embodiment is substantially the same size as the magnet motors of Embodiments 1 and 2, but can generate a larger rotational torque.
 本実施例は、実施例1乃至3のマグネットモータとは異なり、磁石が設置された移動板を同じく磁石が設置された切換板で切り換えることにより、移動板を移動させる駆動機構に関するものである。 Unlike the magnet motors of the first to third embodiments, the present embodiment relates to a drive mechanism that moves the moving plate by switching the moving plate on which the magnet is installed with the switching plate on which the magnet is also installed.
 本実施例の駆動機構の構成について、図8により説明する。この駆動機構は、図8(a)のようにS極とN極の磁石が埋め込まれた移動板100をその長手方向に駆動するものである。個々の磁石は別個独立のものであり一体のものではない。S極の磁石とN極の磁石の間は所定の間隔を有している。なお、図ではS極磁石の左側端部側のS極の磁石、及びN極磁石の右側端部側のN極の磁石は省略されている。この移動板100は実施例1の回転子20に相当する。 The configuration of the drive mechanism of the present embodiment will be described with reference to FIG. As shown in FIG. 8A, this drive mechanism drives the moving plate 100 in which the S-pole and N-pole magnets are embedded in the longitudinal direction. The individual magnets are separate and independent. There is a predetermined distance between the S pole magnet and the N pole magnet. In the drawing, the S pole magnet on the left end side of the S pole magnet and the N pole magnet on the right end side of the N pole magnet are omitted. This moving plate 100 corresponds to the rotor 20 of the first embodiment.
 一方、切換板110には、S極とN極の磁石が二列に平行に埋め込まれている。この切換板110は、その磁石面が移動板100の磁石面と対向するように移動板100と平行に間隔をあけて設置される。この切換板110は、実施例1の切換子30に相当する。図8(c),(d)は対向する磁石の状態を、移動板100と切換板110の磁石のみで示したものである。図8(c)では、切換板110のN極の磁石が移動板100の磁石と対向しており、図8(d)では、切換板110のS極の磁石が移動板100の磁石と対向していることを示す。図8(c)において切換板110が矢印方向に変位すると、図8(d)の状態となる。 On the other hand, S-pole and N-pole magnets are embedded in the switching plate 110 in parallel in two rows. The switching plate 110 is installed in parallel with the moving plate 100 so that the magnet surface thereof faces the magnet surface of the moving plate 100. The switch plate 110 corresponds to the switch 30 of the first embodiment. FIGS. 8C and 8D show the states of the opposing magnets only with the magnets of the moving plate 100 and the switching plate 110. FIG. In FIG. 8C, the N-pole magnet of the switching plate 110 faces the magnet of the moving plate 100, and in FIG. 8D, the S-pole magnet of the switching plate 110 faces the magnet of the moving plate 100. Indicates that When the switching plate 110 is displaced in the direction of the arrow in FIG. 8C, the state shown in FIG.
 図9-1,図9-2は、本実施例の駆動機構の動作原理を示すための図である。基本的には、実施例1で述べた図3-1,図3-2の内容と同一であり、図3-1,図3-2をまっすぐ直線状に伸ばした状態が図9-1,図9-2になると考えればよい。なお、図9-1の(1)~(8)における切換板110の状態が図8(c)の状態であり、図9-2の(9)~(16)における切換板110の状態が図8(d)の状態である。 FIGS. 9-1 and 9-2 are diagrams for illustrating the operating principle of the drive mechanism of the present embodiment. Basically, it is the same as the contents of FIGS. 3-1 and 3-2 described in the first embodiment, and the state in which FIGS. It can be considered as shown in FIG. The state of the switching plate 110 in (1) to (8) of FIG. 9-1 is the state of FIG. 8C, and the state of the switching plate 110 in (9) to (16) of FIG. This is the state of FIG.
 図9-1,図9-2において、移動板100は図において右から左に移動しているものとし、切換板110の位置は変動しないものとする。ただし、切換板110は紙面に垂直方向に変位する。図9-1(6)~(8)において、進行方向と反対方向の力が最大になっている。そして、図9-1(8)において切換板110を切り換えてN極の磁石が移動板100に対向していたのを、S極の磁石が対向するようにする。切換後の状態が、図9-2(9)である。この状態で大きな移動方向の推進力が発生することになる。実施例1でも説明した通り、図9-1(8)の状態では、進行方向と垂直な方向の力はほとんど発生しておらず、切換板110を容易に変位させることができる。力の発生方向、力の大きさ等については、実施例1と同様であるので説明を省略する。 9-1 and 9-2, the moving plate 100 is moved from right to left in the drawing, and the position of the switching plate 110 is not changed. However, the switching plate 110 is displaced in the direction perpendicular to the paper surface. In FIGS. 9-1 (6) to (8), the force in the direction opposite to the traveling direction is maximized. Then, in FIG. 9-1 (8), the switching plate 110 is switched so that the N-pole magnet faces the moving plate 100 so that the S-pole magnet faces. The state after switching is shown in FIG. 9-2 (9). In this state, a large driving force is generated. As described in the first embodiment, in the state of FIG. 9-1 (8), almost no force is generated in the direction perpendicular to the traveling direction, and the switching plate 110 can be easily displaced. Since the direction of force generation, the magnitude of the force, and the like are the same as those in the first embodiment, description thereof is omitted.
 なお、図8では移動板100の磁石の列を1列、切換板110の磁石の列を2列として説明したが、実施例1と同様にどちらも複数列としてもよい。こうすることで、より大きな推進力を得ることができる。 In FIG. 8, one row of magnets of the moving plate 100 is described and two rows of magnets of the switching plate 110 are described. However, as in the first embodiment, both may be a plurality of rows. In this way, a greater driving force can be obtained.
 上記した駆動機構を使用すれば、工場内に設置されているベルトコンベヤーに代わる移動機構を構成できる。移動軌道上に切換板110を所定間隔で複数設置し、移動板100を順次移動させてもよいし、複数の移動板100を順次移動させてもよい。また、移動板100を固定し、切換板110を移動させてもよい。 If the drive mechanism described above is used, a moving mechanism can be configured to replace the belt conveyor installed in the factory. A plurality of switching plates 110 may be installed on the moving track at predetermined intervals, and the moving plate 100 may be moved sequentially, or the plurality of moving plates 100 may be moved sequentially. Further, the moving plate 100 may be fixed and the switching plate 110 may be moved.
20 回転子
30 切換子
40 ベアリング
50 保持部材
60 ケーシング
20 Rotator 30 Switch 40 Bearing 50 Holding Member 60 Casing

Claims (11)

  1.  円筒内周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
     前記回転子の内側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
     前記切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
     前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
     前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
    A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical inner peripheral surface;
    A plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
    A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged. Is installed in parallel to the outer circumferential direction,
    In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
    In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  2.  円筒外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
     前記回転子の外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
     前記切換子の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
     前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
     前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
    A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are mounted at symmetrical positions on a cylindrical outer peripheral surface;
    A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
    A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent. Magnets are installed parallel to the inner circumference direction,
    In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
    In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  3.  円筒内外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
     前記回転子の内側及び外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
     前記切換子の前記回転子の内側の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
     前記切換子の前記回転子の外側の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
     前記切換子に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記回転子の複数の永久磁石の極を切替えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
     前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになったタイミングで、前記駆動手段が前記切換子を前記中心軸と平行な方向に変位させることにより、前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネットモータ。
    A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
    A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
    A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets. Are installed in parallel to the outer peripheral direction,
    A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets A plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction,
    In order to switch the poles of the plurality of permanent magnets of the rotor opposed to the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed in the switch, the switch is connected to the central axis. Driving means for displacing in a parallel direction,
    In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor The drive means displaces the switching element in a direction parallel to the central axis at a timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. A magnet motor characterized in that a rotational force about the central axis is applied to the rotor.
  4.  前記回転子を固定し、前記複数の切換子を回転させることを特徴とする請求項1乃至3のいずれか1項に記載のマグネットモータ。 The magnet motor according to any one of claims 1 to 3, wherein the rotor is fixed and the plurality of switching elements are rotated.
  5.  前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記回転子に設置された前記複数のN極またはS極の永久磁石に働く合力が前記中心軸を中心にした回転方向の力のみになるタイミングの前から、前記駆動手段に前記切換子を前記中心軸と平行な方向に変位させるための駆動力が付与されることを特徴とする請求項1乃至3のいずれか1項に記載のマグネットモータ。 In a state where the plurality of N-pole or S-pole permanent magnets installed in the switch face each other simultaneously with both the S-pole and N-pole permanent magnets of the rotor, the plurality of the plurality of N-pole or S-pole permanent magnets installed in the rotor In order to displace the switch in a direction parallel to the central axis before the timing at which the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the rotational direction about the central axis. 4. The magnet motor according to claim 1, wherein the driving force is applied.
  6.  前記円筒外周面または前記円筒内周面に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記中心軸の方向に交互に複数段配置され、
     前記切換子の外周面または内周面に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記中心軸の方向に交互に複数段配置されていることを特徴とする請求項1乃至3のいずれか1項に記載のマグネットモータ。
    The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer circumferential surface of the cylinder or the inner circumferential surface of the cylinder are alternately arranged in a plurality of stages in the direction of the central axis,
    The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis. The magnet motor according to any one of claims 1 to 3.
  7.  前記駆動手段が、クランク機構を有することを特徴とする請求項1乃至3のいずれか1項に記載のマグネットモータ。 The magnet motor according to any one of claims 1 to 3, wherein the driving means has a crank mechanism.
  8.  前記駆動手段が、クランク機構、遊星歯車及び傘歯車を有することを特徴とする請求項1乃至3のいずれか1項に記載のマグネットモータ。 The magnet motor according to any one of claims 1 to 3, wherein the driving means includes a crank mechanism, a planetary gear, and a bevel gear.
  9.  複数の一群のN極の永久磁石と複数の一群のS極の永久磁石が同一の直線方向に設置された移動板と、
     複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が前記直線に垂直な方向に平行に設置された切換板とを具備し、
     前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が対峙する前記移動板の複数の永久磁石の極を切替えるために、前記切換板を前記直線方向と垂直な方向に変位させる駆動手段と、を有し、
     前記切換板に設置された前記複数のN極またはS極の永久磁石が前記移動板のS極とN極の永久磁石の両方に同時に対峙する状態において、前記移動板に設置された前記複数のN極またはS極の永久磁石に働く合力が前記直線方向の力のみになったタイミングで、前記駆動手段が前記切換板を前記直線方向と垂直な方向に変位させることにより、前記移動板に前記直線方向の推進力を付与することを特徴とする駆動機構。
    A moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction;
    A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to a direction perpendicular to the straight line. An installed switching plate,
    In order to switch the poles of the plurality of permanent magnets of the moving plate that the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switch plate face each other, the switching plate is set to the linear direction. Driving means for displacing in a vertical direction,
    The plurality of N-pole or S-pole permanent magnets installed on the switching plate face each other simultaneously with both the S-pole and N-pole permanent magnets of the moving plate. At the timing when the resultant force acting on the N-pole or S-pole permanent magnet becomes only the force in the linear direction, the driving means displaces the switching plate in a direction perpendicular to the linear direction, thereby causing the moving plate to move to the moving plate. A drive mechanism characterized by applying a propulsive force in a linear direction.
  10.  前記移動板に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置され、
     前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置されていることを特徴とする請求項9に記載の駆動機構。
    The plurality of groups of N pole permanent magnets and the plurality of groups of S pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
    The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction. The drive mechanism described in 1.
  11.  前記移動板を固定し、前記切換板を移動させることを特徴とする請求項9記載の駆動機構。 10. The drive mechanism according to claim 9, wherein the moving plate is fixed and the switching plate is moved.
PCT/JP2013/080800 2012-11-15 2013-11-14 Magnet motor and drive mechanism WO2014077322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012251457A JP5608721B2 (en) 2012-11-15 2012-11-15 Magnet motor and drive mechanism
JP2012-251457 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014077322A1 true WO2014077322A1 (en) 2014-05-22

Family

ID=50731231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080800 WO2014077322A1 (en) 2012-11-15 2013-11-14 Magnet motor and drive mechanism

Country Status (2)

Country Link
JP (1) JP5608721B2 (en)
WO (1) WO2014077322A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727079B1 (en) * 2014-09-09 2015-06-03 博敏 栃平 Magnet drive mechanism
WO2018093095A1 (en) * 2016-11-16 2018-05-24 강성탁 Power generation apparatus using inertial rotational energy and inertial rotational energy amplification-type large capacity power generation system comprising same
KR101965314B1 (en) * 2016-11-16 2019-04-03 주식회사 호렙산 Electricity generating apparatus using inertial rotation energy
WO2019123772A1 (en) * 2017-12-18 2019-06-27 ソニー株式会社 Actuator
GB201903741D0 (en) * 2019-03-19 2019-05-01 Res & Innovation Uk A multipole magnet
KR102302463B1 (en) * 2019-04-26 2021-09-15 한국전자기술연구원 Magnetic coupling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218360A (en) * 1985-03-23 1986-09-27 Shin Yoneda Permanent magnet prime mover
JPH0315262A (en) * 1989-06-10 1991-01-23 Hitoshi Kawabata Magnetic rotary machine
JP2011043157A (en) * 2009-08-20 2011-03-03 Hideki Wakabayashi Magnetic force applied piston power unit
JP2011083121A (en) * 2009-10-07 2011-04-21 Hirotoshi Tochihira Air drive motor
JP2012219811A (en) * 2011-04-02 2012-11-12 Hiroyuki Hagiyama Magnetic force and spring motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218360A (en) * 1985-03-23 1986-09-27 Shin Yoneda Permanent magnet prime mover
JPH0315262A (en) * 1989-06-10 1991-01-23 Hitoshi Kawabata Magnetic rotary machine
JP2011043157A (en) * 2009-08-20 2011-03-03 Hideki Wakabayashi Magnetic force applied piston power unit
JP2011083121A (en) * 2009-10-07 2011-04-21 Hirotoshi Tochihira Air drive motor
JP2012219811A (en) * 2011-04-02 2012-11-12 Hiroyuki Hagiyama Magnetic force and spring motor

Also Published As

Publication number Publication date
JP5608721B2 (en) 2014-10-15
JP2014100027A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2014077322A1 (en) Magnet motor and drive mechanism
US8400037B2 (en) Device for providing rotational torque and method of use
JP2002262534A5 (en)
US10483831B2 (en) Permanent magnet applying motor
US20100237729A1 (en) Motion conversion device
JP3977860B2 (en) Rotating device
JP5727079B1 (en) Magnet drive mechanism
JP2008054374A (en) Magnetic drive mechanism
JP2008092629A5 (en)
ES2612787A1 (en) System of magnets to produce the spinning of an axis (Machine-translation by Google Translate, not legally binding)
JP2009038945A (en) Magnetic drive mechanism
JPH11136927A (en) Rotary device
KR102301747B1 (en) Rotary Motion Device Using Magnetic Force
JP2001258217A (en) Motor
CN106849613A (en) Permanent magnetic power machine
JP2011097815A (en) Magnetic driving engine
JP2014230476A (en) Magnetic motor
JP2006174674A (en) Rotary drive device
JP6614493B2 (en) Actuator
KR20180113895A (en) Rotational apparatus using the Magnet
KR101335013B1 (en) Power generator
JP2015006122A (en) Permanent magnet rotation device
JPH05236733A (en) Magnetic motor
SK522005A3 (en) Device for eduction of turning moment by permanent magnets
JP2007124900A (en) Rotation driving system and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854577

Country of ref document: EP

Kind code of ref document: A1