JPH0315236A - Protecting and monitoring system for transmission system - Google Patents

Protecting and monitoring system for transmission system

Info

Publication number
JPH0315236A
JPH0315236A JP1148012A JP14801289A JPH0315236A JP H0315236 A JPH0315236 A JP H0315236A JP 1148012 A JP1148012 A JP 1148012A JP 14801289 A JP14801289 A JP 14801289A JP H0315236 A JPH0315236 A JP H0315236A
Authority
JP
Japan
Prior art keywords
power transmission
signal
receiving device
voltage
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1148012A
Other languages
Japanese (ja)
Other versions
JPH0777500B2 (en
Inventor
Takayuki Iwama
岩間 貴行
Moritada Niitsu
新津 護帝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1148012A priority Critical patent/JPH0777500B2/en
Publication of JPH0315236A publication Critical patent/JPH0315236A/en
Publication of JPH0777500B2 publication Critical patent/JPH0777500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE:To permit the correct decision of the generating point as well as the substance of a trouble by a method wherein a quantity of electricity detector, measuring the conductor voltage, current and the like of a transmission line, converting data obtained by sampling them into digital signals and transmitting the coded signals to a receiving device on the ground through multiplex transmission, is attached between the spans of the transmission line. CONSTITUTION:A quantity of electricity detector ED is attached between a plurality of spans of transmission lines to detect the conductor voltage and current of respective phases of transmission lines. Data, obtained by sampling them with a predetermined period, are converted into digital signals while the signals are coded to transmit them to a receiving device RC on the ground through multiplex transmission. According to this method, not only the voltage and current under a stationary condition but also the same data upon generation of a trouble, which are changed momentarily, may be transmitted surely and correctly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多分岐送電線の事故発生点をも正確に、しかも
事故内容を監視所側で精度良く判定可能な送電系統の保
護および監視システムに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a power transmission system protection and monitoring system that can accurately locate the point of occurrence of an accident on a multi-branch power transmission line and also accurately determine the nature of the accident at a monitoring station. Regarding.

(従来の技術) 送電系統に発生した事故点を測定する装置としては、バ
ルスレーダ方式、サージ受信方式、インピーダンス方式
等各種のフオルト口ケー夕が用いられている。しかし、
何れの方式のフオルト口ケー夕においても、測定距離の
誤差が±IKmと大きく、保守、点検等を行なう場合に
は事故点を見つけ出すまでに時間と労力がかかつている
のが現状である。
(Prior Art) As devices for measuring fault points that occur in power transmission systems, various types of fault detectors, such as a pulse radar system, a surge reception system, and an impedance system, are used. but,
In any type of fault port cable, the error in measurement distance is as large as ±IKm, and the current situation is that it takes time and effort to find the fault point when performing maintenance, inspection, etc.

一方、送電系統を保護する保護リレーとしては、アナロ
グリレーに代り、ディジタルリレーが主力になってきて
いる。このディジタルリレーはアナログリレーに比べて
、距離リレーの原理や零相電流分流比による事故点の標
定が可能であり、また地絡回線の遣択および高抵抗接地
系統の保護性能等を改善することができる利点がある。
On the other hand, digital relays are becoming the mainstay of protection relays for protecting power transmission systems, replacing analog relays. Compared to analog relays, this digital relay enables the fault point to be located using the distance relay principle and the zero-sequence current shunt ratio, and also improves the selection of ground fault lines and the protection performance of high-resistance grounding systems. It has the advantage of being able to

しかし、従来の送電系統保護方式は、変電所等に設置さ
れた変圧器および変流器より線路の電圧情報および電流
情報を得、これらをディジタルリレーに与えているため
、例えば第3図に示すように複雑に多分岐された送電系
統を保護する場合には事故点のみならず、事故回線の選
択等の事故内容を高精度に判定することは困難である。
However, conventional power transmission system protection systems obtain line voltage and current information from transformers and current transformers installed at substations, etc., and provide this information to digital relays. When protecting such a complex multi-branched power transmission system, it is difficult to accurately determine not only the fault point but also the details of the fault, such as the selection of fault lines.

ところで、最近送電系統の線路電圧および電流値、位相
等を径間レベルでlPj定し、これらの情報を電波等に
より地上局に伝送する機能を備えたセンナを用いて送電
線路を監視および制御するシステムが知られている(例
えば特開昭60−43035号公報)。
By the way, recently, power transmission lines have been monitored and controlled using sensors that have the function of determining the line voltage, current value, phase, etc. of the power transmission system at the span level and transmitting this information to ground stations by radio waves, etc. A system is known (for example, Japanese Patent Laid-Open No. 60-43035).

ここで、その概要について第4図および第5図により述
べる。第4図はセンサモジュール40を送電線41の径
間に取付けた状態を示すもので、このセンサモジュール
40は第5図に示すように内部に詳細を後述する電圧測
定部、電流,illlJ定部およびこれら両測定部でn
1定された電圧、電流に対して所定の信号処理を行なっ
て位相差をAtIl1定する位相差測定部等が収納され
た環状のケース40aと、このケース40aの内側外周
面に形威されたコンデンサ40bおよび最外周面の一部
に取付けられた送信アンテナ40cと、ケース40aの
中空部周面にスポーク40dを介して取付けられ、セン
サモジュール全体を送電線42の導体に支持する取付ハ
ブ40eを備えている。また、第5図において、センサ
モジュール40で測定された各情報は送信アンテナ40
cを介して地上局に送信される。この地上局、例えば鉄
塔には受信器42が設置されており、この受信器42に
より受信アンテナ43を介して各情報が受信されると、
その情報は送信リンク44を通して図示しない中央制御
ステーションに伝送されるようになっている。
Here, the outline will be described with reference to FIGS. 4 and 5. FIG. 4 shows a sensor module 40 installed in the span of a power transmission line 41. As shown in FIG. and n in both measuring parts.
1. An annular case 40a houses a phase difference measurement unit that performs predetermined signal processing on a fixed voltage and current to determine a phase difference, and is shaped on the inner outer circumferential surface of this case 40a. A transmission antenna 40c is attached to the capacitor 40b and a part of the outermost circumferential surface, and a mounting hub 40e is attached to the hollow circumferential surface of the case 40a via spokes 40d and supports the entire sensor module on the conductor of the power transmission line 42. We are prepared. In addition, in FIG. 5, each piece of information measured by the sensor module 40 is transmitted to the transmitting antenna 40.
c to the ground station. A receiver 42 is installed at this ground station, for example, a steel tower, and when each piece of information is received by this receiver 42 via a receiving antenna 43,
The information is transmitted via transmission link 44 to a central control station, not shown.

次にセンサモジュール40による各測定原理について第
6図乃至第8図を参照して説明する。線路電圧は第6図
に示すようにセンサ本体(電圧検出用プレート)と大地
との間の浮遊静電容量を通して流れる充電電流を検出し
、これをオペアンプOAに加えて電圧換算することによ
り求められる。
Next, various measurement principles by the sensor module 40 will be explained with reference to FIGS. 6 to 8. As shown in Figure 6, the line voltage is determined by detecting the charging current flowing through the stray capacitance between the sensor body (voltage detection plate) and the ground, adding this to the operational amplifier OA, and converting it into voltage. .

この場合、設置場所による校正(通常±0.5%)が必
要である。また、線路電流は第7図に示すように中空プ
ラスチックチューブに巻かれたソレノイドコイルL(ロ
ゴスキーコイル)に発生する電圧を取出し、これを積分
することで求められる。
In this case, calibration depending on the installation location (usually ±0.5%) is required. Further, the line current can be determined by extracting the voltage generated in a solenoid coil L (Rogowski coil) wound around a hollow plastic tube and integrating it as shown in FIG.

即ち、コイルの出力電圧は電流の微分に比例(V一K−
Ndl/diするので、これを積分する電流信号のフー
リエ解析により正弦、余弦要素から計算により求められ
る。この場合、電圧、電流信号は第8図に示すように電
圧波形を基準に1サイクルの179の間隔をおいて電圧
、電流波形を同時にサンプリングすることで得られるが
、各サイクル毎に1回の測定を行なって9ザイクルにわ
たって間隔を変更する。
In other words, the output voltage of the coil is proportional to the differential of the current (V1K-
Since Ndl/di, it can be calculated from the sine and cosine elements by Fourier analysis of the current signal that integrates this. In this case, the voltage and current signals are obtained by simultaneously sampling the voltage and current waveforms at intervals of 179 cycles based on the voltage waveform, as shown in Figure 8, but once for each cycle. Measurements are taken to vary the spacing over 9 cycles.

ここで、フーリエ成分の解析は次式の計算により行われ
る。
Here, the analysis of the Fourier component is performed by calculating the following equation.

VA−2/9ΣVs −cos (40◆S)VB−2
/9ΣVs −sIn (40◆S)IA−2/9ΣI
5 ・cos (40・S)IB−2/9ΣEs −s
ln  (40・S)このように送電線41の各径間に
それぞれ取付けられた各センサモジュール40で測定さ
れた電圧、電流およびその位相差情報はディジタル化さ
れ、地上側の各受信器へ約2秒間隔で無線伝送され、さ
らに地上側の各受信器ではこれらの情報を受けて中央制
御ステーションに伝送することで、送電システム全体の
監視、制御を行なっている。
VA-2/9ΣVs -cos (40◆S)VB-2
/9ΣVs -sIn (40◆S)IA-2/9ΣI
5 ・cos (40・S) IB-2/9ΣEs -s
ln (40・S) In this way, the voltage, current, and phase difference information measured by each sensor module 40 installed in each span of the power transmission line 41 are digitized and transmitted to each receiver on the ground side. The information is transmitted wirelessly at two-second intervals, and each receiver on the ground side receives this information and transmits it to a central control station, thereby monitoring and controlling the entire power transmission system.

(発明が解決しようとする課題) しかし、上記公報に示されるような送電系統の監視シス
テムは、定常状態時における送電システム全体の監視、
制御を行なう目的で、モジュールセンサにより測定され
た電圧、電流および位相差情報等を地上側の受信器へ送
信しているため、送電系統の事故発生時のように電圧、
電流等が時々刻々変化する情報を地上側の受信器へ伝送
することはできない。つまり、前述したモジュールセン
サでは電圧波形を基準に電圧、電流が1サイクルを9分
割して各サイクル毎に1回同時に測定されて地上局へ伝
送しており、事故発生時には適用することはできない。
(Problem to be Solved by the Invention) However, the power transmission system monitoring system as shown in the above publication does not allow monitoring of the entire power transmission system in a steady state,
For the purpose of control, the voltage, current, phase difference information, etc. measured by the module sensor are transmitted to the receiver on the ground side.
It is not possible to transmit information such as current that changes from moment to moment to a receiver on the ground side. In other words, in the above-mentioned module sensor, the voltage and current are divided into 9 cycles based on the voltage waveform, and simultaneously measured once for each cycle and transmitted to the ground station, which cannot be applied in the event of an accident.

本発明は多分岐送電系統のように複雑に分岐する系統で
あっても事故発生点および事故内容を正確に判定するこ
とができると共に定常状態から非定常状態まで併せて送
電系統を監視することができる送電系統の保護および監
視システムを提供することを目的とする。
The present invention is capable of accurately determining the point of occurrence of an accident and the nature of the accident even in a complex branching system such as a multi-branch power transmission system, and is also capable of monitoring the power transmission system from a steady state to an unsteady state. The purpose is to provide a power transmission system protection and monitoring system that can be used.

(課題を解決するための手段) 本発明は上記のような目的を達成するため、送電系統の
状態を監視し、事故発生時には事故点を判定する送電系
統の保護および監視システムにおいて、送電線の複数の
径間にそれぞれ設けられ電気量の検出により得られる情
報を送信する電気量検出器と、地上側に各電気量検出器
に対応させてそれぞれ設けられ該当する電気量検出器か
ら伝送された情報を受信する受信装置と、これら受信装
置により受信された情報を監視所側へ順次伝送する総合
送信装置と、監視所側に設けられ前記総合送信装置から
伝送される情報を順次受信する総合受信装置と、この総
合受信装置で受信された情報を取込んでディジタル演算
処理により送電系統に11故があるかどうかを判定する
ディジタルリレー部とを備え、前記電気量検出器は線路
導体と大地間の電圧を測定する電圧71FI定部、線路
導体に流れる電流を計測する電流計測部、前記電圧al
J定部および電流測定部でそれぞれ測定された電圧およ
び電流信号を所定のサンプリング周明でサンプリングす
るサンプリング手段、このサンプリング手段によりサン
プリングされた信号を合成してディジタル変換すると共
に符号化する信号処理手段および信号処理手段で符号化
された信号を送信する送信手段から構成し、前記受信装
置は前記電気量検出器の送信手段から送信された信号を
受信するとその信号を複合化し、信号整列して前記総合
送信装置に入力する復調手段から構成したものである。
(Means for Solving the Problems) In order to achieve the above objects, the present invention provides a power transmission system protection and monitoring system that monitors the status of the power transmission system and determines the fault point when an accident occurs. Electrical quantity detectors are installed in each of the multiple spans and transmit information obtained by detecting electrical quantity, and electrical quantity detectors are installed corresponding to each electrical quantity detector on the ground side and transmit information from the corresponding electrical quantity detector. A receiving device that receives information, a comprehensive transmitting device that sequentially transmits the information received by these receiving devices to the monitoring station, and a comprehensive receiving device that is provided at the monitoring station and sequentially receives the information transmitted from the comprehensive transmitting device. device, and a digital relay section that takes in the information received by the general receiving device and determines whether or not there is an 11 fault in the power transmission system through digital arithmetic processing, and the electric quantity detector a voltage 71FI constant section that measures the voltage of the line conductor; a current measurement section that measures the current flowing through the line conductor;
Sampling means for sampling the voltage and current signals measured by the J constant section and the current measuring section, respectively, at a predetermined sampling frequency; a signal processing means for synthesizing, digitally converting, and encoding the signals sampled by the sampling means; The receiving device comprises a transmitting means for transmitting a signal encoded by a signal processing means, and upon receiving the signal transmitted from the transmitting means of the electric quantity detector, the receiving device decomposes the signal, arranges the signals, and transmits the composite signal. It consists of a demodulating means for inputting to the transmitting device.

(作 用) したがって、このような構或の送電系統の保護および監
視システムにあっては、送電線の導体電圧、電流等を測
定し、これらをサンプリングして得られるデータをディ
ジタル変換し、符号化して地上側の受信装置に多重伝送
する電気量検出器を送電線の径間に取付けるようにした
ので、定常状態時は勿論のこと事故発生時の電圧、電流
等のように時々刻々変化するデータを確実に送信するこ
とができる。また、送電線の複数の径間にそれぞれ取付
けられた電気量検出器からの情報を地上側に設置された
各受信装置で受信するとその信号を複合化し、信号整列
して監視所側に順次伝送し、監視所側ではそのデータを
受信するとディジタルリレー部に与えて事故の有無の判
定に必要なディジタル/7A算処理を行なって総合的に
判定するようにしたので、分岐送電系統のような場合で
も事故発生点を送電線の径間単位で判定することができ
、しかも事故内容を高精度に判定することができる。
(Function) Therefore, in a power transmission system protection and monitoring system with such a structure, the conductor voltage, current, etc. of the power transmission line are measured, the data obtained by sampling these is converted into digital data, and the code is converted into a code. Electrical quantity detectors are installed in the spans of power transmission lines for multiplex transmission to receiving equipment on the ground, so voltage and current change from moment to moment, not only during steady state conditions, but also when an accident occurs. Data can be sent reliably. In addition, when the information from the electrical quantity detectors installed in multiple spans of the power transmission line is received by each receiving device installed on the ground side, the signals are composited, aligned, and sequentially transmitted to the monitoring station. However, when the monitoring station receives that data, it feeds it to the digital relay section, which performs the digital/7A arithmetic processing necessary to determine the presence or absence of an accident, and makes a comprehensive determination, so it can be used in cases such as branch power transmission systems. However, it is possible to determine the point of occurrence of an accident for each span of the power transmission line, and the details of the accident can be determined with high precision.

(実施例) 一以下本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は送電線各相の径間にそれぞれ取付けられる電気
量検出器EDの1相分の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of one phase of electrical quantity detectors ED installed between the spans of each phase of the power transmission line.

第1図において、1は線路導体と大地間の電圧を検出す
る電圧検出用プレート、2は線路導体に流れる電流を検
出するロゴスキコイルと同等のソレノイドコイルで、こ
れら電圧検出用プレート1およびソレノイドコイル2に
よる電圧および電流の71′ll1定原理は第6図およ
び第7図により述べたのと同じなので、ここではその説
明を省略する。電圧検出用プレート1およびソレノイド
コイル2により検出された電圧信号および電流信号は増
幅器3a,3bにより増幅され、さらにバウンドバスフ
ィルタ4a,4bを通してサンプリングホールド回路5
a,5bに加えられる。このサンプリングホールド回路
5a,5bは電圧信号および電流信号を所定のサンプリ
ング周期でサンプリング(一般には60HZ 150H
zの場合、電気角30゜)し、その出力信号はマルチブ
レクサ6に加えられる。このマルチブレクサ6ではサン
プリングホールド回路5a,5bの出力信号をスイッチ
ングにより順次切替えて合成し、その合成信号はアナロ
グ/ディジタル(A/D)変換器7を通してディジタル
信号に変換される。このA/D変換器7で変換されたデ
ィジタル信号は符号化回路8に加えられ、ここで符号化
された信号は発振器9より次に述べる地上側の受信装置
に例えばFM変調されて多重送信される。この場合、他
の電気量検出器EDとの混信を防止するため、予め割当
てられた周波数にてFM変調される。
In Figure 1, 1 is a voltage detection plate that detects the voltage between the line conductor and the ground, 2 is a solenoid coil equivalent to a Rogowski coil that detects the current flowing in the line conductor, and these voltage detection plate 1 and solenoid coil 2 are The constant principle of voltage and current according to 71'll1 is the same as that described with reference to FIGS. 6 and 7, so its explanation will be omitted here. The voltage signal and current signal detected by the voltage detection plate 1 and the solenoid coil 2 are amplified by amplifiers 3a and 3b, and further passed through bound bus filters 4a and 4b to a sampling hold circuit 5.
Added to a, 5b. These sampling and holding circuits 5a and 5b sample the voltage signal and current signal at a predetermined sampling period (generally 60Hz 150H
z, the electrical angle is 30°), and its output signal is applied to the multiplexer 6. This multiplexer 6 sequentially switches and synthesizes the output signals of the sampling and hold circuits 5a and 5b by switching, and the synthesized signal is converted into a digital signal through an analog/digital (A/D) converter 7. The digital signal converted by this A/D converter 7 is applied to an encoding circuit 8, and the encoded signal here is subjected to FM modulation and multiplex transmission from an oscillator 9 to a receiving device on the ground side, which will be described below. Ru. In this case, in order to prevent interference with other electrical quantity detectors ED, FM modulation is performed at a pre-assigned frequency.

なお、図中増幅器3c,バウンドパスフィルタ4cおよ
びサンプリングホールド回路5Cは予備として設けられ
たものである。
Note that the amplifier 3c, bound pass filter 4c, and sampling hold circuit 5C in the figure are provided as spares.

このような構成の電気量検出器EDは送電線のある径間
の1相に設けられる場合について述べたが、実際には例
えば第3図に示すような送電系統の送電線各相の複数の
径間にそれぞれ設けられるものである。
Although we have described the case in which the electrical quantity detector ED with such a configuration is installed in one phase of a certain span of a power transmission line, in reality it is installed in a plurality of units in each phase of a power transmission line in a power transmission system as shown in Fig. 3. These are installed in each span.

第2図は複数の径間の地上側にそれぞれ設置された受信
装置RCと各受信装置RCで受信されたデータを総合送
受信装置を介して監視所側のデイジタルリレ一部に伝送
するシステム構成を示すブロック図である。第2図にお
いて、IOR,10S,IOTは送電線各相に取付けら
れた前述のある径間の電気量検出器EDから送信された
電波を受信する3相各相に対応する受信器で、これら各
受信器10R,IOS,IOTで受信された信号は複合
化回路11R,IIS,IITに加えられ、ここで複合
化された信号は信号整列回路12に加えられる。この信
号整列回路12では複合化された信号をR,S,T相の
順に信号整列し、総合送信装置13に入力される。この
総合送信装置13には他の径間の電気量検出器EDに対
応する受信装置RCからも前述同様に信号整列されたデ
ータがそれぞれ入力される。そして、この総合送信装置
13では各受信装置RCからの入力データを順次切替え
て電波により伝送する。一方、監視所側では総合送信装
置13より順次伝送されてくる信号を総合受信装置14
により順次受信し、これをダイレクトメモリアクセス(
DMA)15に転送してディジタルリレー部に受渡され
る。このディジタルリレー部での処理は一般のディジタ
ルリレーの構成と同一である。即ち、デイジタルリレ一
部は第2図の右半部に示すように、ディジタル演算処理
部16、DMA 1 5より転送されるデータが書込ま
れるランダムアクセスメモリ(RAM)17、送電線の
状態を監視するための監視プログラムおよび手動点検時
の点検プログラム等が記憶されているリードオンリーメ
モリ(ROM)18、リレー動作整定値の整定や変更チ
ェック等を行なう整定部19、外部接点等の機器情報を
取込む入力装置(D/I)20、トリ.ソプ出力や自動
監視結果を外部へ出力する出力装置(D/O)21およ
び割込受付ユニット22から構成され、これらはデータ
バス23により接続されている。この場合、割込受付ユ
ニット22は、割込み要求が入力されるとディジタル演
算処理部16に対してプログラムの実行を一時中断させ
、後で再開できるように別のプログラムに移る等、一般
に複数の割込みが同時に受付けられるようになっている
。例えば、リレー演算プログラムの実行終了後、次のリ
レー演算開始割込みの発生までは自動監視プログラムを
繰り返すが、手動点検の割込みが発生すると自動監視プ
ログラムは中断され、点検プログラムが実行される。
Figure 2 shows a system configuration in which receivers RC are installed on the ground side of multiple spans and the data received by each receiver RC is transmitted to a part of the digital relay on the monitoring station side via the integrated transmitter/receiver. It is a block diagram. In Fig. 2, IOR, 10S, and IOT are receivers corresponding to each of the three phases that receive radio waves transmitted from the electrical quantity detector ED in a certain span, which is attached to each phase of the power transmission line. The signals received by each receiver 10R, IOS, and IOT are applied to decoding circuits 11R, IIS, and IIT, and the decomposed signals here are applied to signal alignment circuit 12. The signal alignment circuit 12 aligns the composite signal in the order of R, S, and T phases, and inputs the signal to the integrated transmitter 13. The integrated transmitting device 13 also receives inputted data whose signals have been aligned in the same manner as described above from the receiving devices RC corresponding to the electrical quantity detectors ED in other spans. Then, this general transmitter 13 sequentially switches the input data from each receiver RC and transmits it by radio waves. On the other hand, on the monitoring station side, signals sequentially transmitted from the general transmitter 13 are sent to the general receiver 14.
is sequentially received using direct memory access (
DMA) 15 and delivered to the digital relay section. The processing in this digital relay section is the same as the configuration of a general digital relay. That is, as shown in the right half of FIG. 2, a part of the digital relay monitors the status of the digital arithmetic processing unit 16, the random access memory (RAM) 17 into which data transferred from the DMA 15 is written, and the power transmission line. A read-only memory (ROM) 18 stores monitoring programs for manual inspection and inspection programs for manual inspection, a setting section 19 for setting relay operation settings and checking changes, and storing device information such as external contacts. input device (D/I) 20, tri. It consists of an output device (D/O) 21 that outputs program output and automatic monitoring results to the outside, and an interrupt reception unit 22, which are connected by a data bus 23. In this case, when an interrupt request is input, the interrupt reception unit 22 causes the digital arithmetic processing unit 16 to temporarily suspend program execution, and then moves to another program so that it can be resumed later. can be accepted at the same time. For example, after the execution of the relay calculation program ends, the automatic monitoring program is repeated until the next relay calculation start interrupt occurs, but when a manual inspection interruption occurs, the automatic monitoring program is interrupted and the inspection program is executed.

このように本実施例では、第1図に示す電気量検出器E
Dを送電線の複数の径間にそれぞれ取付けて、送電線各
州の導体電圧、電流を検出すると共にこれらを所定の周
期でサンプリングして得られるデータをディジタル変換
し、符号化して地上側の受信装置RCに多重伝送するよ
うにしたので、定常状態時は勿論のこと事故発生時の電
圧、電流のように時々刻々変化するデータを確実に伝送
することができる。
In this way, in this embodiment, the electric quantity detector E shown in FIG.
D is attached to each of multiple spans of a power transmission line to detect conductor voltage and current in each state of the transmission line, sample these at a predetermined period, and convert the obtained data into digital data, encode it, and receive it on the ground side. Since multiplex transmission is performed to the device RC, it is possible to reliably transmit data that changes from time to time, such as voltage and current, not only in a steady state but also in the event of an accident.

また、送電線の複数の径間にそれぞれ取付けられた電気
量検出器EDからの情報を地上側に設置された各受信装
置RCで受信すると、その信号を複合化し、信号整列し
て監視所側に順次伝送し、監視所側でそのデータを受信
するとディジタルリレー部に与えて事故の有無の判定に
必要なディジタル演算処理を行なって総合的に判定する
ようにしたので、事故発生点を送電線の径間単位で判定
することができ、しかも事故内容を高精度に判定するこ
とができる。特に、従来のディジタルリレーでは困難で
あった多分岐送電系統の事故発生点の正確な決定、高抵
抗接地の多分岐の事故回線の選択を容易に正確に行なう
ことができ−る。
In addition, when the information from the electric quantity detectors ED installed in each of the multiple spans of the power transmission line is received by each receiving device RC installed on the ground side, the signals are composited, the signals are aligned, and the information is sent to the monitoring station. When the data is received at the monitoring station, it is sent to the digital relay section, which performs the digital calculations necessary to determine whether an accident has occurred, and makes a comprehensive determination. It is possible to determine the details of the accident on a span-by-span basis, and the details of the accident can be determined with high accuracy. In particular, it is possible to easily and accurately determine the point of occurrence of a fault in a multi-branch power transmission system, which has been difficult with conventional digital relays, and to select a multi-branch fault line with high resistance grounding.

さらに、複数の径間に取付けられた電気量検出器EDは
定常状態時の電圧、電流情報も測定しているので、その
情報を監視所側のディジタルリレー部で判定することに
より送電系統の状態を総合的に監視することができるこ
とは言うまでもない。
Furthermore, since the electrical quantity detectors ED installed in multiple spans also measure voltage and current information during steady state, the status of the power transmission system can be determined by determining the information at the digital relay section at the monitoring station. Needless to say, it is possible to monitor comprehensively.

なお、上記実施例では地上側の総合送信装置13と監視
所側の総合受信装置14との間を電波により情報伝送す
る場合について述べたが、光ファイバケーブルを使用し
て光信号により伝送するようにしてもよい。
In the above embodiment, a case has been described in which information is transmitted by radio waves between the comprehensive transmitting device 13 on the ground side and the comprehensive receiving device 14 on the monitoring station side. You may also do so.

また、電気量検出器EDで検出された電圧、電流情報を
地上側の受信装rjiRCI:電波により送信するよう
にしたが、これを赤外線による伝送であってもよい。こ
の場合、赤外線による送信方式としては一般に家庭電器
、例えばテレビで使用されている送信キャリア周波数が
455kHzで変調して送信する方式を採用することに
より実施できるものである。
Furthermore, although the voltage and current information detected by the electrical quantity detector ED is transmitted to the ground-side receiver rjiRCI by radio waves, this may also be transmitted by infrared rays. In this case, the infrared transmission method can be implemented by employing a method generally used in home appliances, such as televisions, in which the transmission carrier frequency is modulated at 455 kHz and transmitted.

ここで、無線方式を採用した場合と異なる点は、冬季等
の時期に電気i検出器EDに設けられた赤外線発生部の
表面が氷結したり、着雪したりすると地上側の受信装置
RCに向けて送信される赤外線の発信レベルが低下する
懸念がある。そこで、このような場合に備えて地上側の
受信装置RCに赤外線ビームを発し得る装置を装備して
おき、電気量検出器EDの赤外線発生部の表面が氷結や
着雪により、電気量検出器EDから送信された赤外線を
地上の受信装置RCで受信した際、その受信された赤外
線の強度が弱くなって受信信頼性を低下させた場合には
この部分に地上側の受信装置RCから赤外線ビームを発
射させて付着物を除去するようにすればよい。
The difference here from when a wireless system is adopted is that when the surface of the infrared ray generating part installed in the electric i-detector ED becomes frozen or snowed during winter or other seasons, the receiving device RC on the ground side There is a concern that the level of infrared rays transmitted towards the target will decrease. Therefore, in preparation for such a case, the receiving device RC on the ground side is equipped with a device that can emit an infrared beam. When the infrared rays transmitted from the ED are received by the receiving device RC on the ground, if the intensity of the received infrared rays becomes weak and the reception reliability is reduced, the infrared beam is sent from the receiving device RC on the ground to this part. All you have to do is shoot it to remove the deposits.

(発明の効果) 以上のべたように本発明によれば、送電線の複数の径間
の線路電圧、電流の情報を電気ffi検出器により測定
して時々刻々変化する事故情報を地上側の総合送信装置
から監視所に伝送し、ディジタルリレー部により総合的
に送電系統の状態を判定するようにしたので、多分岐送
電系統のように複雑に分岐する系統であっても事故発生
点および事故内容を正確に判定することができると共に
定常状態から非定常状態まで併せて送電系統を監視する
ことかできる送電系統の保護および監視システムを提供
できる。
(Effects of the Invention) As described above, according to the present invention, information on line voltage and current in multiple spans of a power transmission line is measured by an electric FFI detector, and accident information that changes from time to time is collected on the ground side. The transmission is transmitted from the transmitting device to the monitoring station, and the state of the power transmission system is comprehensively determined by the digital relay section, so even in a system with complex branches such as a multi-branch power transmission system, the point and details of the accident can be determined. It is possible to provide a power transmission system protection and monitoring system that can accurately determine the power transmission system and monitor the power transmission system from a steady state to an unsteady state.

【図面の簡単な説明】 第1図は本発明による送電系統の保護および監視システ
ムの一実施例における電気量検出器の構或を示すブロッ
ク図、第2図は同実施例におけるデータ伝送系およびデ
ィジタルリレー部の構成を示すブロック図、第3図は多
分岐送電線の一列を示す系統図、第4図および第5図は
従来のモジュールセンサを説明するための図で、第4図
は送電線の径間に取付けられた状態図、第5図はモジュ
ールセンサの外観を示す斜視図、第6図乃至第8図は同
モジュールセンサの各4P1定部での原理説明図である
。 ED・・・電気量検出器、RC・・・受信装置、1・・
・電圧プレート、2・・・ソレノイドコイル、3a,3
b・・・増幅器、4a,4b・・・バイパスフィルタ、
5a,5b・・・サンプルホールド回路、6・・・マル
チブレクサ、7・・・A/D変換器、8・・・符号化回
路、9・・・発振器、10R,105,IOT・・・受
信器、11R,IIS,1.1T・・・複合化回路、1
2・・・信号整列回路、13・・・総合送信装置、14
・・・総合受信装置、15・・・ダイレクトメモリアク
セス、16・・・ディジタル演算処理部、17・・・ラ
ンダムアクセスメモリ、18・・・リードオンリーメモ
リ、19・・・整定部、20・・・入力装置、21・・
・出力装置、22・・・割込受付ユニット。
[Brief Description of the Drawings] Fig. 1 is a block diagram showing the configuration of an electrical quantity detector in an embodiment of the power transmission system protection and monitoring system according to the present invention, and Fig. 2 shows the data transmission system and Figure 3 is a block diagram showing the configuration of the digital relay section, Figure 3 is a system diagram showing a row of multi-branch power transmission lines, Figures 4 and 5 are diagrams for explaining conventional module sensors, and Figure 4 is FIG. 5 is a perspective view showing the external appearance of the module sensor, and FIGS. 6 to 8 are diagrams illustrating the principle of each 4P1 fixed part of the module sensor. ED... Electricity detector, RC... Receiving device, 1...
・Voltage plate, 2... Solenoid coil, 3a, 3
b...Amplifier, 4a, 4b...Bypass filter,
5a, 5b... Sample and hold circuit, 6... Multiplexer, 7... A/D converter, 8... Encoding circuit, 9... Oscillator, 10R, 105, IOT... Receiver , 11R, IIS, 1.1T...complex circuit, 1
2... Signal alignment circuit, 13... Comprehensive transmitter, 14
... General receiving device, 15 ... Direct memory access, 16 ... Digital arithmetic processing section, 17 ... Random access memory, 18 ... Read only memory, 19 ... Setting section, 20 ...・Input device, 21...
- Output device, 22... interrupt reception unit.

Claims (1)

【特許請求の範囲】 送電系統の状態を監視し、事故発生時には事故点を判定
する送電系統の保護および監視システムにおいて、送電
線の複数の径間にそれぞれ設けられ電気量の検出により
得られる情報を送信する電気量検出器と、地上側に各電
気量検出器に対応させてそれぞれ設けられ該当する電気
量検出器から伝送された情報を受信する受信装置と、こ
れら受信装置により受信された情報を監視所側へ順次伝
送する総合送信装置と、監視所側に設けられ前記総合送
信装置から伝送される情報を順次受信する総合受信装置
と、この総合受信装置で受信された情報を取込んでディ
ジタル演算処理により送電系統に事故があるかどうかを
判定するディジタルリレー部とを備え、 前記電気量検出器は線路導体と大地間の電圧を測定する
電圧測定部、線路導体に流れる電流を計測する電流計測
部、前記電圧測定部および電流測定部でそれぞれ測定さ
れた電圧および電流信号を所定のサンプリング周期でサ
ンプリングするサンプリング手段、このサンプリング手
段によりサンプリングされた信号を合成してディジタル
変換すると共に符号化する信号処理手段および信号処理
手段で符号化された信号を送信する送信手段から構成し
、 前記受信装置は前記電気量検出器の送信手段から送信さ
れた信号を受信するとその信号を複合化し、信号整列し
て前記総合送信装置に入力する復調手段から構成したこ
とを特徴とする送電系統の保護および監視システム。
[Scope of Claims] In a power transmission system protection and monitoring system that monitors the status of a power transmission system and determines the fault point in the event of an accident, information obtained by detecting electrical quantities provided in each of a plurality of spans of power transmission lines A receiving device is provided on the ground side corresponding to each electrical quantity detector and receives information transmitted from the corresponding electrical quantity detector, and information received by these receiving devices. a comprehensive transmitting device that sequentially transmits the information to the monitoring station side; a comprehensive receiving device provided on the monitoring station side that sequentially receives the information transmitted from the comprehensive transmitting device; and a comprehensive receiving device that takes in the information received by the comprehensive receiving device. A digital relay unit that determines whether there is an accident in the power transmission system through digital calculation processing; a current measuring section, a sampling means for sampling the voltage and current signals respectively measured by the voltage measuring section and the current measuring section at a predetermined sampling period; a signal sampled by the sampling means is synthesized, digitally converted and encoded; and transmitting means for transmitting a signal encoded by the signal processing means, and when the receiving device receives the signal transmitted from the transmitting means of the electric quantity detector, it decodes the signal and converts the signal into a signal. 1. A power transmission system protection and monitoring system comprising demodulation means that are aligned and input to the general transmitter.
JP1148012A 1989-06-09 1989-06-09 Power grid protection and monitoring systems Expired - Lifetime JPH0777500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148012A JPH0777500B2 (en) 1989-06-09 1989-06-09 Power grid protection and monitoring systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148012A JPH0777500B2 (en) 1989-06-09 1989-06-09 Power grid protection and monitoring systems

Publications (2)

Publication Number Publication Date
JPH0315236A true JPH0315236A (en) 1991-01-23
JPH0777500B2 JPH0777500B2 (en) 1995-08-16

Family

ID=15443133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148012A Expired - Lifetime JPH0777500B2 (en) 1989-06-09 1989-06-09 Power grid protection and monitoring systems

Country Status (1)

Country Link
JP (1) JPH0777500B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242158A (en) * 1992-12-21 1994-09-02 Tokyo Electric Power Co Inc:The Transmission line constant measuring device and improving method for its measurement precision
JP2007062727A (en) * 2005-08-31 2007-03-15 Magna Car Top Systems Gmbh Luggage carrier of drawout type for vehicle, in particular passenger car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242158A (en) * 1992-12-21 1994-09-02 Tokyo Electric Power Co Inc:The Transmission line constant measuring device and improving method for its measurement precision
JP2007062727A (en) * 2005-08-31 2007-03-15 Magna Car Top Systems Gmbh Luggage carrier of drawout type for vehicle, in particular passenger car

Also Published As

Publication number Publication date
JPH0777500B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US4546309A (en) Apparatus and method for locating ground faults
EP2466324B1 (en) Combined measuring and detection system
CN106443353B (en) Traveling wave-based GIL discharge fault positioning method and device
EP0390034B1 (en) Portable detector device for detecting partial electrical discharge in live voltage distribution cables and/or equipment
US9086436B2 (en) Method of high voltage detection and accurate phase angle measurement in cordless phasing meters
CA2068952A1 (en) Isolation monitoring and measuring device for an electrical power system with isolated neutral
US3971007A (en) Line isolation monitor
US20100001741A1 (en) Method for Locating Pipe Leaks
EP0936469A2 (en) Loop resistance tester (LRT) for cable shield integrity monitoring
CN104360215A (en) Detection device for multi-point earthing fault of small bus N600
EP0314850A1 (en) Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
JPH0315236A (en) Protecting and monitoring system for transmission system
CN211180070U (en) High-voltage cable on-line partial discharge monitoring system
JPH0945537A (en) Monitoring device for insulating state of high-voltage apparatus
CA2943331A1 (en) Voltage sensing using ungrounded power line sensors
KR100219013B1 (en) Insulation monitoring system
JP2000055961A (en) Wireless phase rotation indicator
KR102079874B1 (en) Apparatus and method for diagnosing partial discharge
US7948225B2 (en) Phase identification systems and methods
KR19980041983A (en) Harmonic probe
CN110806528A (en) High-voltage cable on-line partial discharge monitoring system
JP3657064B2 (en) High voltage insulation constant monitoring device
KR20080015752A (en) Low voltage on-line insulation monitoring system
RU2717697C1 (en) METHOD OF DETERMINING SINGLE-PHASE GROUND FAULT IN NETWORKS OF 6-10 kV WITH INSULATED NEUTRAL LINE