JPH03151504A - Reheating-type bleeder turbine - Google Patents

Reheating-type bleeder turbine

Info

Publication number
JPH03151504A
JPH03151504A JP28875289A JP28875289A JPH03151504A JP H03151504 A JPH03151504 A JP H03151504A JP 28875289 A JP28875289 A JP 28875289A JP 28875289 A JP28875289 A JP 28875289A JP H03151504 A JPH03151504 A JP H03151504A
Authority
JP
Japan
Prior art keywords
pressure
turbine
reheat
reheat steam
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28875289A
Other languages
Japanese (ja)
Inventor
Masataka Fukuda
福田 正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28875289A priority Critical patent/JPH03151504A/en
Publication of JPH03151504A publication Critical patent/JPH03151504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To protect a turbine blade from overload so as to improve safety by detecting the output of a generator connected directly to a bleeder turbine so as to determine the lower limit set value of reheat steam pressure, and controlling a high pressure turbine by-pass valve to be opened at the time of reheat steam pressure becomes lower than the lower limit set value. CONSTITUTION:Main steam pressure is detected by a pressure transmitter 21 so as to be inputted into a computing element 23, as well as turbine first stage exit pressure is detected by a pressure transmitter 24 so as to be inputted into the computing element 23 through a function generator 26 and the like, thus obtaining a deviation signal for making the main steam pressure lower than the ceiling value at the loaded time of a turbine part. The electric generating power of a generator is detected by a power transmitter 27, and the lower limit value of reheat steam pressure is obtained at a function generator 29 so as to be inputted into a computing element 30, where its deviation with reheat steam pressure detected by a pressure transmitter 31 is computed. A higher value signal out of the output of the computing elements 23, 30 is selected at a high value priority circuit 33 so as to generate an action signal to a high pressure turbine by-bass valve 12.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は火力発電プラントに使用される再熱式の蒸気タ
ービン装置、特に発電と共に造水装置等にプロセス蒸気
を送気する抽気タービンに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a reheat steam turbine device used in a thermal power plant, and in particular, to a reheating steam turbine device used in a thermal power plant, in particular, to supply process steam to a water production device, etc. in addition to power generation. related to extraction turbines.

(従来の技術) 従来の再熱式抽気タービンの構成例を第3図により説明
する。
(Prior Art) An example of the configuration of a conventional reheat extraction turbine will be explained with reference to FIG.

ボイラ1を出た主蒸気は主蒸気管2を経て高圧タービン
3に入って仕事をした後低温再熱蒸気管4を経て再熱器
5にて再熱された後高温再熱蒸気管6.中圧タービン7
、クロスオーバ管8.低圧タービン9を経て復水器IO
に排気される。各高圧。
The main steam leaving the boiler 1 passes through the main steam pipe 2, enters the high-pressure turbine 3, performs work, passes through the low-temperature reheat steam pipe 4, is reheated in the reheater 5, and then passes through the high-temperature reheat steam pipe 6. Medium pressure turbine 7
, crossover tube8. Condenser IO via low pressure turbine 9
is exhausted. Each high pressure.

中圧及び低圧タービン3,7.9の仕事は発電機11に
より電気出力として取出される。
The work of the medium and low pressure turbines 3, 7.9 is extracted by the generator 11 as electrical output.

プラント起動時や電力系統しゃ断時など、タービン負荷
が極低負荷の時にはボイラ運転を安定ならしめるために
タービンバイパス弁を使用する。
Turbine bypass valves are used to stabilize boiler operation when the turbine load is extremely low, such as when starting up a plant or shutting down the power system.

即ち、ボイラからの蒸気を主蒸気管2.高圧タービンバ
イパス弁12.低温再熱蒸気管4.ボイラ1゜高温再熱
蒸気管6.低圧タービンバイパス弁13を経て復水器1
0へも流すことによりボイラ運転を安定させる。
That is, steam from the boiler is transferred to the main steam pipe 2. High pressure turbine bypass valve 12. Low temperature reheat steam pipe 4. Boiler 1° high temperature reheat steam pipe 6. Condenser 1 via low pressure turbine bypass valve 13
The boiler operation is stabilized by also flowing to zero.

造水装置等で使用されるプロセス蒸気は、例えば低温再
熱蒸気管4より抽気され、プロセス蒸気調整弁14を経
て造水装置等に送られる。
Process steam used in a freshwater generator or the like is extracted from, for example, a low-temperature reheat steam pipe 4, and is sent to the freshwater generator or the like via a process steam regulating valve 14.

なお1図中符号15.16は蒸気加減弁、符号17は低
温再熱逆止弁をそれぞれ示している。
In Figure 1, numerals 15 and 16 indicate steam control valves, and numeral 17 indicates a low temperature reheat check valve, respectively.

(発明が解決しようとする課題) このような再熱式抽気タービンにおいては従来以下のよ
うな問題点があった。
(Problems to be Solved by the Invention) Conventionally, such a reheat extraction turbine has the following problems.

プロセス蒸気量は造水装置等プロセス側の要求により定
格蒸気量を超えて供給することがある。
The amount of process steam may be supplied in excess of the rated amount of steam due to requests from the process side, such as a fresh water generator.

この際、従来はタービン高負荷時に以下のような問題が
ある。
In this case, conventionally, there are the following problems when the turbine is under high load.

タービン高負荷時にプロセス蒸気を定格量を超えて供給
すると、その増加分だけ中圧タービン7゜低圧タービン
9への流量が減少する。中圧及び低圧タービン7.9へ
の流量が減少すると、中圧タービン入口、即ち再熱蒸気
圧力が低下する。この理由は以下の通りである。即ち、
タービン翼群の蒸気量と圧力の関係は次の式(ストドラ
の式)で表わすことができる。
If process steam is supplied in excess of the rated amount when the turbine is under high load, the flow rate to the intermediate pressure turbine 7 and the low pressure turbine 9 decreases by the amount of increase. As the flow to the intermediate and low pressure turbines 7.9 is reduced, the intermediate pressure turbine inlet, ie reheat steam pressure is reduced. The reason for this is as follows. That is,
The relationship between the steam amount and pressure of the turbine blade group can be expressed by the following equation (Studler's equation).

ただし G′二計画点の蒸気流量 G:流量が減少した後の中圧及び低圧 タービン蒸気流量 p1’、p工:流量G’、G時の中圧及び低圧タービン
入口圧力 P2’lP2:同上時の中圧及び低圧タービン出口圧力
(復水器内圧力なのでほぼ 一定) Vよ’ g 9 z :同上時の中圧及び低圧タービン
入口比容積 Px7jhCまたは蒸気温度)が負荷によってあまり変
らず、P2/P工の比が復水タービンのように小さい場
合、流量と中圧及び低圧タービン入口圧力はほぼ比例し
、 で表わされる。
However, steam flow rate at G'2 planning point G: medium-pressure and low-pressure turbine steam flow rate after the flow rate decreases p1', p: flow rate G', medium-pressure and low-pressure turbine inlet pressure at G P2'lP2: same as above The intermediate pressure and low pressure turbine outlet pressure (approximately constant because it is the condenser internal pressure) Vyo' g 9 z: The intermediate pressure and low pressure turbine inlet specific volume Px7jhC or steam temperature at the same time does not change much depending on the load, and P2/ When the ratio of P is small like in a condensing turbine, the flow rate and the medium pressure and low pressure turbine inlet pressures are almost proportional, and it is expressed as follows.

従って、中圧及び低圧タービン7.9への蒸気量が減少
すると、中圧及び低圧タービン入口圧力はほぼ比例して
減少する。中圧及び低圧タービン入口圧力が低下すると
、高圧タービン出口圧力も低下するが、この圧力低下は
以下のように高圧タービン3の各段落の過負荷をもたら
し、各羽根の設計強度を超える力がかかる危険性がある
。即ち第4図において、タービンの膨張線図を用いて説
明する。膨張線図は横軸にエントロピS (Kcag/
’kg°K)、縦軸にエンタルピh (Kcal!/k
g)をとってタービン内の蒸気の膨張状態を表わすが1
通常はタービン入口圧力をPlとすると、状態■から出
口の状態■に膨張する。タービン内部に損失がなければ
エントロピの増加がなく単位蒸気量当りのタービン出力
はAH1即ち断熱熱落差分となるが、実際には損失があ
るので、エントロピが増加し、出口の状態は■となり、
単位流量当りの出力はIJE、即ち有効熱落差分となる
。ここで、タービン出口圧力がP2からP2′に低下す
ると、出口の状態は■′となり、単位流量当りの出力は
UE’ となり、タービン内の各羽根の出力が増加し、
過負荷となって羽根の設計強度を超える虞れがある。
Therefore, as the amount of steam to the intermediate and low pressure turbines 7.9 decreases, the intermediate and low pressure turbine inlet pressures decrease approximately proportionally. When the intermediate pressure and low pressure turbine inlet pressures decrease, the high pressure turbine outlet pressure also decreases, but this pressure decrease results in overloading of each stage of the high pressure turbine 3 as follows, and a force exceeding the design strength of each blade is applied. There is a risk. That is, in FIG. 4, explanation will be made using an expansion diagram of the turbine. In the expansion diagram, the horizontal axis shows entropy S (Kcag/
'kg°K), the vertical axis is enthalpy h (Kcal!/k
g) represents the expansion state of steam in the turbine, but 1
Normally, when the turbine inlet pressure is Pl, the turbine expands from state (2) to state (2) at the outlet. If there is no loss inside the turbine, there will be no increase in entropy, and the turbine output per unit steam amount will be AH1, that is, the adiabatic heat drop.However, since there is actually loss, entropy increases, and the outlet state becomes ■,
The output per unit flow rate is IJE, that is, the effective heat drop difference. Here, when the turbine outlet pressure decreases from P2 to P2', the state of the outlet becomes ■', the output per unit flow rate becomes UE', and the output of each blade in the turbine increases,
There is a risk of overloading and exceeding the blade's design strength.

本発明はこのようなタービン羽根が過負荷を負う危険性
をなくシ、プロセス蒸気の供給を果たすことのできる再
熱式抽気タービンを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reheat extraction turbine that can supply process steam without the risk of overloading the turbine blades.

〔発明の楕成〕[Ellipsis of invention]

(a題を解決するための手段) 本発明は上記目的を達成するために主蒸気管と低温再熱
蒸気管とを連絡する高圧タービンバイパス弁を有し、再
熱蒸気管又はその下流側のタービン段落からプロセス蒸
気を抽気する再熱式抽気タービンにおいて、抽気タービ
ンに直結された発電機の出力を検出してその発電機出力
における再熱蒸気圧力の下限設定値を定め、再熱蒸気圧
力が下限設定値を下まわった時、上記高圧タービンバイ
パス弁を開くことを特徴とするものである。
(Means for Solving Problem a) In order to achieve the above object, the present invention has a high-pressure turbine bypass valve that connects the main steam pipe and the low-temperature reheat steam pipe, and In a reheat extraction turbine that extracts process steam from a turbine stage, the output of a generator directly connected to the extraction turbine is detected and the lower limit setting value of the reheat steam pressure at that generator output is determined. The present invention is characterized in that the high pressure turbine bypass valve is opened when the value falls below a lower limit set value.

(作用) 本発明は抽気タービンに直結された発電機の出力が検出
され、その出力から再熱蒸気圧力の下限設定値が求めら
れる。このとき、タービン羽根の負荷は定格出力時の負
荷を基準としてそれを超えることがないようにする。第
2図は羽根の負荷が定格出力時の負荷となるようにする
ための再熱蒸気圧力の制限値を示している。実測された
再熱蒸気圧力がこの制限値に基づく設定値と比較され、
実測値がこの設定値よりも低くなると、高圧タービンバ
イパス弁が開き、蒸気が低温再熱蒸気管を通って中圧及
び低圧タービンに流れ、双方のタービン人口圧力の上昇
と共に、高圧タービン出口圧力が上昇する。この圧力の
上昇により高圧タービンの羽根は過負荷を負うことなく
、安全に運転される。
(Operation) In the present invention, the output of the generator directly connected to the extraction turbine is detected, and the lower limit set value of the reheat steam pressure is determined from the output. At this time, the load on the turbine blades is determined not to exceed the load at rated output as a reference. FIG. 2 shows the limit value of the reheat steam pressure so that the load on the blades becomes the load at the rated output. The measured reheat steam pressure is compared with a set point based on this limit value, and
When the measured value is lower than this set point, the high pressure turbine bypass valve opens and the steam flows through the cold reheat steam pipe to the intermediate pressure and low pressure turbines, and as the turbine population pressure of both increases, the high pressure turbine outlet pressure increases. Rise. This pressure increase allows the blades of the high-pressure turbine to operate safely without being overloaded.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

主蒸気圧力が圧カドランスミッタ21により検出され、
変換器22を介して演算器23に入力される。
The main steam pressure is detected by the pressure quadrature transmitter 21,
The signal is input to the arithmetic unit 23 via the converter 22 .

タービン第1段山口圧力は圧カドランスミッタ24によ
り検出され、変換器25で電圧信号に変換される。この
信号は関数発生器26の入力端に与えられ、入力信号に
基づき演算が実行される0発電機11の電気出力が計器
用変圧器および変流器を有する電カドランスミッタ27
を介して取出され、この電力斌が変換器28で電圧信号
に変換されて関数発生器29に入力される。関数発生器
ではこの入力信号に基づいて再熱蒸気圧力の下限制限値
が演算され。
The turbine first stage pressure is detected by a pressure quadrature transmitter 24 and converted into a voltage signal by a converter 25. This signal is applied to the input end of a function generator 26 and a calculation is performed based on the input signal.
This electric power is converted into a voltage signal by a converter 28 and inputted to a function generator 29 . The function generator calculates the lower limit value of the reheat steam pressure based on this input signal.

出力は演算器30に入力される。演算器30には再熱蒸
気圧力を検出している圧カドランスミッタ31からの出
力が変換器32を介して入力されており、双方の入力信
号の間で偏差が求められ、これと別に演算器23で求め
られたタービン部分負荷時に主蒸気圧力を上限値以下に
する偏差信号と共に高値優先回路33の入力端にそれぞ
れ加えられる。高値優先回路33では双方の偏差信号の
うち、高い値の信号が選択され、その出力が比例積分器
34、手動自動選択回路35およびポジショナ36を介
して電油変換器37に入力される。電油変換器37では
電圧信号が油圧信号に変換されて高圧タービンバイパス
弁12に対する動作信号がつくられる。なお、符号38
は手動操作ボタンを示す。
The output is input to the calculator 30. The output from the pressure quadrature transmitter 31 that detects the reheat steam pressure is input to the calculator 30 via the converter 32, and the deviation between both input signals is calculated. They are respectively applied to the input end of the high value priority circuit 33 together with the deviation signal determined by the device 23 that makes the main steam pressure less than the upper limit value at the time of turbine partial load. The high value priority circuit 33 selects the signal with the higher value among both deviation signals, and its output is input to the electro-hydraulic converter 37 via the proportional integrator 34, manual automatic selection circuit 35, and positioner 36. The electro-hydraulic converter 37 converts the voltage signal into a hydraulic signal to generate an operating signal for the high-pressure turbine bypass valve 12 . In addition, the code 38
indicates a manual operation button.

次に、上記構成によるところの作用を説明する。Next, the effect of the above configuration will be explained.

前述の高圧タービン3の羽根の過負荷を防止するために
第2図のような制限値が設定される5本実施例では電カ
ドランスミッタ27により発電機11の電気出力が検出
され、関数発生器29にて第2図の再熱圧力の下限制限
値が演算される。この下限制限値に基づく設定値と、圧
カドランスミッタ31による実測の再熱蒸気圧力とが減
算され、実測値の方が低くなれば、演算器30の出力と
して正の偏差信号が出され、この信号を受ける電油変換
器37から高圧タービンバイパス弁12を開方向に動作
させる信号が出力される。これにより主蒸気管2より高
圧タービンバイパス弁12を経て蒸気が低温再熱蒸気管
5に流入して中圧及び低圧タービン7.9に流れ、中圧
及び低圧タービン入口圧力、高圧タービン出口圧力が上
昇し、下限制限値以上の圧力となる。
In this embodiment, the electric output of the generator 11 is detected by the electric quadrature transmitter 27, and the function is generated. The lower limit value of the reheating pressure shown in FIG. 2 is calculated in the device 29. The set value based on this lower limit value is subtracted from the reheating steam pressure actually measured by the pressure quadrature transmitter 31, and if the actually measured value is lower, a positive deviation signal is output as the output of the calculator 30, The electro-hydraulic converter 37 receiving this signal outputs a signal for operating the high-pressure turbine bypass valve 12 in the opening direction. As a result, steam flows from the main steam pipe 2 through the high-pressure turbine bypass valve 12 into the low-temperature reheat steam pipe 5 and flows into the intermediate-pressure and low-pressure turbines 7.9, and the intermediate-pressure and low-pressure turbine inlet pressures and the high-pressure turbine outlet pressures are adjusted. The pressure rises and the pressure exceeds the lower limit value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は発電機の出力を検出してそ
の発電機出力における再熱蒸気圧力の下限設定値を定め
、再熱蒸気圧力が下限設定値を下まわった時、高圧ター
ビンバイパス弁を開くようにしているので、タービン羽
根が過負荷を負わずに、プロセス蒸気の供給を果たすこ
とができ。
As explained above, the present invention detects the output of the generator, determines the lower limit set value of the reheat steam pressure at the generator output, and when the reheat steam pressure falls below the lower limit set value, the high pressure turbine bypass valve The turbine blades are opened to allow process steam to be delivered without overloading the turbine blades.

再熱式抽気タービンの安全性が向上するという優れた効
果を奏する。
This has the excellent effect of improving the safety of reheat extraction turbines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による再熱式抽気タービンの再熱蒸気圧
力を制限する回路を示す機能ブロック図、第2図は再熱
蒸気圧力の下限設定値の一例を示す線図、第3図は従来
の再熱式抽気タービンを示す系統図、第4図は典型的な
タービンの膨張線図である。 3・・・高圧タービン  4・・・低温再熱蒸気管7・
・・中圧タービン  9・・・低圧タービン12・・・
高圧タービンバイパス弁
Fig. 1 is a functional block diagram showing a circuit for limiting the reheat steam pressure of the reheat extraction turbine according to the present invention, Fig. 2 is a diagram showing an example of the lower limit setting value of the reheat steam pressure, and Fig. 3 is a diagram showing an example of the lower limit set value of the reheat steam pressure. FIG. 4, a system diagram showing a conventional reheat extraction turbine, is an expansion diagram of a typical turbine. 3... High pressure turbine 4... Low temperature reheat steam pipe 7.
...Intermediate pressure turbine 9...Low pressure turbine 12...
high pressure turbine bypass valve

Claims (1)

【特許請求の範囲】[Claims] 主蒸気管と低温再熱蒸気管とを連絡する経路に設けた高
圧タービンバイパス弁を有し、再熱蒸気管又はその下流
側のタービン段落からプロセス蒸気を抽気する再熱式抽
気タービンにおいて、上記抽気タービンに直結された発
電機の出力を検出してその発電機出力における再熱蒸気
圧力の下限設定値を定め、再熱蒸気圧力が下限設定値を
下まわった時、上記高圧タービンバイパス弁を開くこと
を特徴とする再熱式抽気タービン。
In a reheat extraction turbine that has a high-pressure turbine bypass valve provided in a path connecting a main steam pipe and a low-temperature reheat steam pipe, and extracts process steam from the reheat steam pipe or a turbine stage downstream thereof, the above-mentioned The output of the generator directly connected to the extraction turbine is detected to determine the lower limit set value of the reheat steam pressure at the output of the generator, and when the reheat steam pressure falls below the lower limit set value, the high pressure turbine bypass valve is activated. A reheat extraction turbine characterized by an opening.
JP28875289A 1989-11-08 1989-11-08 Reheating-type bleeder turbine Pending JPH03151504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28875289A JPH03151504A (en) 1989-11-08 1989-11-08 Reheating-type bleeder turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28875289A JPH03151504A (en) 1989-11-08 1989-11-08 Reheating-type bleeder turbine

Publications (1)

Publication Number Publication Date
JPH03151504A true JPH03151504A (en) 1991-06-27

Family

ID=17734246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28875289A Pending JPH03151504A (en) 1989-11-08 1989-11-08 Reheating-type bleeder turbine

Country Status (1)

Country Link
JP (1) JPH03151504A (en)

Similar Documents

Publication Publication Date Title
US4576008A (en) Turbine protection system for bypass operation
JP2000161014A (en) Combined power generator facility
US5850739A (en) Steam turbine power plant and method of operating same
JPS6158644B2 (en)
JP2001349207A (en) Combined cycle power generation plant
JPH03151504A (en) Reheating-type bleeder turbine
JPH03134203A (en) Reheating extraction turbine
JP3029440B2 (en) Steam turbine for power generation
JP2572404B2 (en) Control method and control device for mixed pressure turbine
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0814012A (en) Control device for composite plant
JPH0467001B2 (en)
JP2633601B2 (en) Steam turbine plant operation control device
JPS59110812A (en) Turbine bypass controller
JPH08178205A (en) Controller of boiler
JPH049503A (en) Drain water level controller of feed water heater
JPH02271004A (en) Low pressure turbine bypass valve controller
JPH0224883Y2 (en)
JPH06129208A (en) Composite cycle plant
JPS5934406A (en) Controller of steam pressure in steam turbine
JPS61279703A (en) Controller of steam turbine
JPH0250004A (en) Control system of pressure inside deaerator
JPS5954707A (en) Control method and device for steam turbine having turbine bypath system
JP2523493B2 (en) Turbin bypass system
JPH0133767Y2 (en)