JPH03151106A - Method for controlling forward slip ratio in cold rolling - Google Patents

Method for controlling forward slip ratio in cold rolling

Info

Publication number
JPH03151106A
JPH03151106A JP1288661A JP28866189A JPH03151106A JP H03151106 A JPH03151106 A JP H03151106A JP 1288661 A JP1288661 A JP 1288661A JP 28866189 A JP28866189 A JP 28866189A JP H03151106 A JPH03151106 A JP H03151106A
Authority
JP
Japan
Prior art keywords
concentration
forward slip
slip ratio
rolling
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288661A
Other languages
Japanese (ja)
Inventor
Toshiki Hiruta
敏樹 蛭田
Kunio Kitamura
北村 邦雄
Yukio Yarita
鑓田 征雄
Shigeru Kuroda
茂 黒田
Shigeto Mizushima
水島 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1288661A priority Critical patent/JPH03151106A/en
Publication of JPH03151106A publication Critical patent/JPH03151106A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally

Abstract

PURPOSE:To control the forward slip ratio in a proper range and to prevent the accuracy of a strip thickness from deteriorating by obtaining the concentration of lubricant making the target forward slip ratio from a predicting formula of friction coefficient and setting the concentration of the lubricant on the inlet side of cold tandem mills. CONSTITUTION:When the strip is rolled in cold tandem mills, the forward slip ratios are obtained from roll speeds at each roll stand 2, 3 and the sheet speeds on the outlet side of each stand, in a rolling time. Friction coefficient predicting formulas are created respectively from an obtained forward slip ratio when the forward slip ratio is in a positive area or in a negative area. The concentration of the lubricant making the target forward slip ratio is obtained from these friction coefficient predicting formulas and the concentration of lubricant on the inlet side of the cold tandem mills is set. The concentration is controlled by a computing element 10 and a pump pressure controller 11 to control the concentration. Consequently, the forward slip ratio can be controlled is a proper range, rolling can be performed by the same roll and a defective shape of a plate can be prevented from being generated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、冷間圧延における先進率制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an advanced rate control method in cold rolling.

〈従来の技術〉 冷間タンデム圧延において、圧延処理量が増加するにし
たがいロールの粗度が低下し、摩擦係数が小さくなるた
め、先進率は小さくなり、さらには負の先進率となる場
合がある。負の先進率の絶対値が著しく大きい場合には
、板厚精度不良、破断、チャタリング等の圧延異常が発
生する。
<Conventional technology> In cold tandem rolling, as the rolling throughput increases, the roughness of the rolls decreases and the coefficient of friction decreases, resulting in a decrease in the advance rate and even a negative advance rate. be. If the absolute value of the negative advance rate is extremely large, rolling abnormalities such as poor sheet thickness accuracy, breakage, and chattering occur.

これらの圧延異常を防止し、先進率を制御する方法とし
て、従来、負の先進率に対して、最小の先進率の絶対値
よりもわずかに大きいスライド係数を採用し、摩擦係数
予測式を重回帰により作成し、負の先進率を推定し、摩
擦係数予測式に基づき潤滑油の供給量を求め、先進率を
制御する方法があった(特開昭62−72409号公報
参照)。
Conventionally, as a method to prevent these rolling abnormalities and control the advance rate, a slide coefficient that is slightly larger than the absolute value of the minimum advance rate has been adopted for negative advance rates, and the friction coefficient prediction formula has been overlaid. There is a method in which the advance rate is controlled by creating it by regression, estimating the negative advance rate, and determining the lubricating oil supply amount based on the friction coefficient prediction formula (see Japanese Patent Application Laid-open No. 72409/1983).

〈発明が解決しようとする課題〉 しかしながら、上記従来のスライド係数を用いる方法で
は、圧延油の性状変化、ワークロール粗度の変化、板面
粗度の変化に対し、スリップを発生ずる先進率が変化す
る場合があり、スライド係数をスリップが発生する先進
率の絶対値よりもわずかに大きい値に設定しようとも、
スリップが発生ずる先進率の値が不明確で、最適なスラ
イド係数が得られなかった。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional method using the slide coefficient, the rate at which slip occurs is low due to changes in the properties of rolling oil, changes in work roll roughness, and changes in plate surface roughness. Even if you set the slide factor to a value slightly greater than the absolute value of the advanced rate at which slip occurs,
The value of the advance rate at which slipping occurs is unclear, and the optimal sliding coefficient could not be obtained.

スライド係数を大きな値として摩擦係数の同類式を作成
する場合、以下の式(Inland & Word (
1先進率式を〃について解く)に実測の先進率f8とス
ライド係数pとを代入し、摩擦係数μを求給ることにな
る。
When creating a similar equation for the friction coefficient with a large slide coefficient, use the following equation (Inland & Word (
1. Solving the advance rate equation for ) is substituted with the actually measured advance rate f8 and the slide coefficient p, and the friction coefficient μ is determined.

・・−・−・−・−・・ ■ ここで、H二人側#IX厚、 h :出側板厚、 R′ :偏平ロール半径、 σ :入側有効張力、 σ、:出側有効張力、 k−二人側変形抵抗、 kf :出側変形抵抗。・・−・−・−・−・・■ Here, H two person side #IX thickness, h: Exit side plate thickness, R′: flat roll radius, σ :Entry side effective tension, σ,: Output effective tension, k - two-person side deformation resistance, kf: Output side deformation resistance.

しかし、スライド係数を大きく設定すると、0式の分母
が小さくなるため、摩擦係数μは大きくなり、さらには
、摩擦係数が負の値となる場合があり、摩擦係数モデル
の作成が不可能になる場合があった。
However, if the slide coefficient is set to a large value, the denominator of equation 0 becomes small, so the friction coefficient μ increases, and furthermore, the friction coefficient may take a negative value, making it impossible to create a friction coefficient model. There was a case.

さらに、従来のモデルにより潤滑油の供給量を制御する
場合、サイクル後半で負の先進率が予測され、潤滑油の
供給mを少なくする設定となると、ロール冷却不足とな
り、ロール温度が上昇し、ヒートストリークが発生する
問題があった。また、ロールバイト内の供給油量につい
てみると、ロールバイト内に供給される油量は、ロール
速度、ロール径、板速度、圧下率、ロールと板の表面状
態等によりほぼ決定され、その量は、スタン1゛入側で
供給される潤滑油に対して非常に少ない、このため、ス
タンド入側で供給される潤滑油量を制限しても、先進率
を制御できる範囲が限られる間理があった。また、スタ
ンド入側で潤滑油量を制限すると、均一にロールや板に
スプレーすることが困難となり、板幅方向で圧延状態が
変化し、板の形状不良が発生する問題があった。
Furthermore, when controlling the lubricant supply amount using the conventional model, a negative advance rate is predicted in the latter half of the cycle, and if the lubricant supply m is set to decrease, roll cooling will be insufficient and the roll temperature will rise. There was a problem with heat streaks. In addition, looking at the amount of oil supplied into the roll bite, the amount of oil supplied into the roll bite is almost determined by the roll speed, roll diameter, plate speed, rolling reduction, surface condition of the roll and plate, etc. is very small compared to the lubricating oil supplied at the entrance of the stand 1. Therefore, even if the amount of lubricating oil supplied at the entrance of the stand is limited, the range in which the advance rate can be controlled is limited. was there. Furthermore, if the amount of lubricating oil is restricted at the entry side of the stand, it becomes difficult to uniformly spray the lubricating oil onto the rolls and plates, causing a problem in that the rolling condition changes in the width direction of the plate, causing defects in the shape of the plate.

本発明はかかる問題点を解消するためになされたもので
ある。
The present invention has been made to solve these problems.

く課題を解決するための手段〉 本発明は、冷間タンデムミルにおけるストリップの圧延
の際に、圧延時の各スタンドのロール速度と各スタンド
出側の板速度から先進率を求め、得られた先進率から摩
擦係数予測式を、先進率が正の領域と負の領域について
それぞれ作成し、これらの摩擦係数予測式から、目標の
先進率となる潤滑油の濃度を求め、冷間タンデムミル入
側での潤滑油の濃度を設定することを特徴とする冷間圧
延における先進率制御方法である。
Means for Solving the Problems> The present invention, when rolling a strip in a cold tandem mill, calculates the advance rate from the roll speed of each stand during rolling and the plate speed at the exit side of each stand. Formulas for predicting the friction coefficient are created from the advanced ratio for regions where the advanced ratio is positive and negative, respectively. From these friction coefficient prediction formulas, the concentration of lubricating oil that will give the target advanced ratio is determined, and This is an advanced rate control method in cold rolling, which is characterized by setting the concentration of lubricating oil at the side.

〈作 用〉 圧延操業において先進率を求めるには、パルスジェネレ
ータなどによりロール速度vlIを検出し、かつスタン
ド出側の板速度■3は、スタンド出側のテンションロー
ルの回転数をパルスジェネレータにより求めるか、また
は、非接触のレーザードツプラー計により求められる。
<Function> To obtain the advance rate in rolling operation, the roll speed vlI is detected by a pulse generator, etc., and the plate speed on the exit side of the stand (3) is determined by using the pulse generator to determine the rotation speed of the tension roll on the exit side of the stand. Alternatively, it can be determined using a non-contact laser Doppler meter.

先進率Isは、■。The advanced rate Is is ■.

f、=     −1・・−・・・・−・・−■一 により測定可能となる。得られた先進率!、が正の値と
なる場合には、■′式に代入し、・・・−・・・・・−
・■′ 摩擦係数μmを算出する。さらにf、が負の場合にはf
s=lf龜 1として、同様に■′式に代入し、摩擦係
数p゛を算出する。
It becomes possible to measure by f, = -1. Advanced rate obtained! If , is a positive value, substitute it into the expression ■' and get...
・■′ Calculate the friction coefficient μm. Furthermore, if f is negative, then f
Assuming that s=lf=1, similarly substitute it into the equation (■') to calculate the friction coefficient p'.

得られた摩擦係数と圧延条件(圧下率(r)、ロール速
度(V絢)、入側張力(Th)、出側張力(T、)、入
側板厚(H)、出側板厚(h)、入側変形抵抗(kb 
) 、出側変形抵抗(k、)、圧延距11M(L諏)等
)により重回帰により、以下の摩擦係数式を作成する。
Obtained friction coefficient and rolling conditions (reduction ratio (r), roll speed (V), entry tension (Th), exit tension (T,), entry side plate thickness (H), exit side plate thickness (h) , entry side deformation resistance (kb
), exit side deformation resistance (k, ), rolling distance 11M (L), etc.), the following friction coefficient formula is created by multiple regression.

p” mf”  (c、r%Vm 、Tt 、、Th 
s H%kg、kh、Lm・・・)   ・・・−・−
・・・−■p−−f−(c、rSV、、T、、T、、H
lkt−kb、L寓 ・・・)      ・−・・・
−・−・・・■■、0式から、目標の先進率f;となる
次コイルの摩擦係数を求める方法を以下に述べる。
p"mf" (c, r%Vm, Tt,, Th
s H%kg, kh, Lm...) ・・・-・-
...-■p--f-(c, rSV,,T,,T,,H
lkt-kb, L fable ...) ...
The method for determining the friction coefficient of the next coil that gives the target advance rate f from the equation 0 will be described below.

次コイルの初期圧延条件により、■、0式から摩擦係数
μ゛、μmを求めておき、目標先進率f:から■′式に
より(f;が負の場合はl r: l ) 、摩擦係数
μ′を求める。 r:が正の場合には、μ0とμ°を比
較し、f;が負の場合には、μ0とμmを比較する。
Next, according to the initial rolling conditions of the coil, calculate the friction coefficients μ゛ and μm from the equations ① and 0, and calculate the coefficient of friction from the target advance rate f: using the formula ② (if f; is negative, l r: l ), Find μ′. When r: is positive, μ0 and μ° are compared, and when f; is negative, μ0 and μm are compared.

次にμmとμ゛、μmの差、 Δμ゛=μ0−μ4        パ−“−゛°゛0
6μm=μm−μ0        ・・・−−−−一
−−■を求め、Δμ゛、68mを0とするように■、0
式を用いて潤滑油濃度Cを算出する。重回帰で作成した
■、0式は、以下の■、0式で示される。
Next, μm and μ゛, the difference between μm, Δμ゛=μ0−μ4 Par−“−゛°゛0
6μm=μm-μ0 ...----1-- Find ■, 0 so that Δμ゛, 68m is 0
Calculate the lubricating oil concentration C using the formula. The formula ■,0 created by multiple regression is shown as the formula ■,0 below.

u  0= a 、4−  a  、c  ’ ++ 
 −ト a  x  r  +  a  s ■+++
  a  a  r  −一・−■ μm=bo+b+c−1+bzr+biV+++b4r
−−・・−・−■ 但し、n、m、 aR、b+mは定数。
u 0 = a , 4- a , c' ++
-t a x r + a s ■+++
a a r -1・-■ μm=bo+b+c-1+bzr+biV+++b4r
−−・・−・−■ However, n, m, aR, b+m are constants.

ここで、Δμ゛または68mをOとするCを求めると以
下の式となり、 ■ ・・・−・・・−・・ [相] ■、[相]式から濃度が決定できる。
Here, if Δμ゛ or 68m is O, the following formula is obtained, and the concentration can be determined from the following formula: (1) . . . [Phase] (2), [Phase].

圧延油の濃度により先進率が変更可能な理由は、ロール
バイト内の導入される潤滑油量(濃度が高いほど潤滑油
量は増大する)が多くなると、摩擦係数が小さくなるた
めである。第2図は、潤滑油の濃度と先進率の関係を示
す図であり、高濃度の潤滑油で圧延するほど先進率は小
さくなる。なお、第2図の圧延条件は、圧下率30%、
ロール速度1000++m/*nn、ロール直径380
mとし、背進鋼板を圧延したものである。
The reason why the advance rate can be changed by changing the concentration of rolling oil is that as the amount of lubricating oil introduced into the roll bit (the higher the concentration, the larger the amount of lubricating oil), the smaller the coefficient of friction becomes. FIG. 2 is a diagram showing the relationship between the concentration of lubricating oil and the advance rate, and the higher the concentration of lubricating oil is used for rolling, the smaller the advance rate becomes. The rolling conditions in Figure 2 are a reduction rate of 30%,
Roll speed 1000++m/*nn, roll diameter 380
m, and is obtained by rolling a retrograde steel plate.

〈実施例〉 次に、本発明の詳細な説明する。<Example> Next, the present invention will be explained in detail.

第1図は、本発明が適用された圧延機の一例を示した図
である。
FIG. 1 is a diagram showing an example of a rolling mill to which the present invention is applied.

第1図において、1はストリップ、2は冷間タンデムミ
ルの第1スタンド、3は第2スタンドであり、4はペイ
オフリール、5はテンシゴンリールである。
In FIG. 1, 1 is a strip, 2 is a first stand of a cold tandem mill, 3 is a second stand, 4 is a payoff reel, and 5 is a tensigon reel.

6は、第1スタンド2及び第2スタンド3の入側にそれ
ぞれ設けた潤滑油のスプレーノズルである。
Reference numeral 6 denotes lubricating oil spray nozzles provided on the inlet sides of the first stand 2 and the second stand 3, respectively.

そして、スプレーノズル6に供給される潤滑油の濃度は
、目標の先進率となる潤滑油の濃度Cを与えるように、
高濃度の潤滑油を供給するタンク7と低濃度の潤滑油を
供給するタンク8とから、両者を混合するタンク9によ
って目標の濃度が作られる。1度Cは、0式、[相]式
を演算する演算機10と濃度を制御するポンプ圧制御装
置11によって制御される0図中12はポンプである。
The concentration of the lubricating oil supplied to the spray nozzle 6 is set so as to give a lubricating oil concentration C that provides the target advance rate.
A target concentration is created from a tank 7 that supplies lubricating oil with a high concentration and a tank 8 that supplies lubricating oil with a low concentration by a tank 9 that mixes both. 1 degree C is controlled by a computer 10 that calculates the 0 equation and [phase] equation, and a pump pressure control device 11 that controls the concentration. 12 in the figure is a pump.

次に、第2図は本発明の別の実施例を示した全体構成図
である。
Next, FIG. 2 is an overall configuration diagram showing another embodiment of the present invention.

この実施例は、第1図の潤滑油の混合を、スプレーノズ
ル6′で行うものであって、本実施例でも、濃度比Cを
演算する演算iio’と濃度を制御するポンプ圧制御装
置11′によって、目標の濃度Cが達成される。なお他
の符号は、第1図と同じものである。
In this embodiment, the lubricating oil shown in FIG. 1 is mixed using a spray nozzle 6', and in this embodiment as well, a calculation iio' for calculating the concentration ratio C and a pump pressure control device 11 for controlling the concentration are used. ', the target concentration C is achieved. Note that the other symbols are the same as in FIG.

次に、本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

第4図は、本発明の実施例と従来の先進率の制御を行わ
ない場合を比較して示した図である。圧延機仕様は、3
スタンドタンデム圧延機で以下の条件で圧延を行った。
FIG. 4 is a diagram showing a comparison between the embodiment of the present invention and the conventional case where advanced rate control is not performed. The rolling machine specifications are 3
Rolling was performed in a stand tandem rolling mill under the following conditions.

ワークロール直径:  380m 圧  延  材:普通鋼 板        輻: 1000■ 板      厚;母板2.3鴫、製品0.5+m第4
図(a)は、本発明を適応したNα3スタンドの操業を
示し、各コイルの最大速度を一定の1000m/mとし
、かつ先進率を0%程度に一定に保つことができた。第
4図(b)は、従来の圧延法の場合で、先進率が小さ(
なるため、圧延本数の増加に伴い、圧延速度を減少させ
たが、40本目でチャタリングを発生し、これ以降の圧
延が不能となった。
Work roll diameter: 380m Rolling material: Ordinary steel plate Radius: 1000■ Plate thickness: Mother plate 2.3mm, product 0.5+m 4th
Figure (a) shows the operation of the Nα3 stand to which the present invention is applied, in which the maximum speed of each coil was kept constant at 1000 m/m, and the advance rate could be kept constant at about 0%. Figure 4(b) shows the case of the conventional rolling method, where the advance rate is small (
Therefore, the rolling speed was reduced as the number of rolls increased, but chattering occurred at the 40th roll, making further rolling impossible.

〈発明の効果〉 以上説明したように、本発明によれば、先進率を適正な
範囲に制御でき、スリップ、板厚精度不良を防止でき、
同一ロールで圧延できるコイル数を増大することができ
る。
<Effects of the Invention> As explained above, according to the present invention, the advance rate can be controlled within an appropriate range, slippage and poor plate thickness accuracy can be prevented,
The number of coils that can be rolled with the same roll can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示し、第2図は本発明の別の
実施例を示す、第3図は潤滑油の濃度により先進率が変
化することを示す図である。第4図(a)は本発明が適
用された操業結果の例を示す図、第4図(b)は従来法
による操業結果の例を示す図である。 l・・・ストリップ、 2・・・第1スタンド、 3・・・第2スタンド、 4・・・ペイオフリール、 5・・・テンシコンリール、 6.6′・・・スプレーノズル、 7・・・高濃度潤滑油タンク、 8・・・低濃度潤滑油タンク、 9・・・混合タンク、 10.10′・・・濃度演算装置、 ti、 o’・・・ポンプ圧制御装置、12・・・ポン
プ。
FIG. 1 shows an embodiment of the present invention, FIG. 2 shows another embodiment of the invention, and FIG. 3 is a diagram showing that the advance rate changes depending on the concentration of lubricating oil. FIG. 4(a) is a diagram showing an example of an operation result to which the present invention is applied, and FIG. 4(b) is a diagram showing an example of an operation result by the conventional method. l...Strip, 2...First stand, 3...Second stand, 4...Payoff reel, 5...Tensicon reel, 6.6'...Spray nozzle, 7... -High concentration lubricating oil tank, 8...Low concentration lubricating oil tank, 9...Mixing tank, 10.10'...Concentration calculation device, ti, o'...Pump pressure control device, 12... ·pump.

Claims (1)

【特許請求の範囲】[Claims] 冷間タンデムミルにおけるストリップの圧延の際に、圧
延時の各スタンドのロール速度と各スタンド出側の板速
度から先進率を求め、得られた先進率から摩擦係数予測
式を、先進率が正の領域と負の領域についてそれぞれ作
成し、これらの摩擦係数予測式から、目標の先進率とな
る潤滑油の濃度を求め、冷間タンデムミル入側での潤滑
油の濃度を設定することを特徴とする冷間圧延における
先進率制御方法。
When rolling strip in a cold tandem mill, the advance rate is determined from the roll speed of each stand during rolling and the plate speed at the exit side of each stand, and the friction coefficient prediction formula is calculated from the obtained advance rate to determine if the advance rate is correct. The lubricating oil concentration at the entrance side of the cold tandem mill is set by creating the lubricating oil concentration that will give the target advance rate from these friction coefficient prediction formulas. An advanced rate control method in cold rolling.
JP1288661A 1989-11-08 1989-11-08 Method for controlling forward slip ratio in cold rolling Pending JPH03151106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288661A JPH03151106A (en) 1989-11-08 1989-11-08 Method for controlling forward slip ratio in cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288661A JPH03151106A (en) 1989-11-08 1989-11-08 Method for controlling forward slip ratio in cold rolling

Publications (1)

Publication Number Publication Date
JPH03151106A true JPH03151106A (en) 1991-06-27

Family

ID=17733048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288661A Pending JPH03151106A (en) 1989-11-08 1989-11-08 Method for controlling forward slip ratio in cold rolling

Country Status (1)

Country Link
JP (1) JPH03151106A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349139B1 (en) * 1995-12-30 2003-01-06 주식회사 포스코 Method for predicting coefficient of friction in cold rolling
WO2006054781A1 (en) * 2004-11-22 2006-05-26 Nippon Steel Corporation Method for supplying lubricant in cold rolling
WO2015097488A1 (en) * 2013-12-24 2015-07-02 Arcelormittal Investigación Y Desarrollo Sl Hot rolling method
JP6241582B1 (en) * 2016-08-19 2017-12-06 Jfeスチール株式会社 Steel sheet cold rolling method and steel plate manufacturing method
WO2018034061A1 (en) * 2016-08-19 2018-02-22 Jfeスチール株式会社 Method for cold rolling steel sheet, and method for manufacturing steel sheet
WO2020104150A1 (en) * 2018-11-23 2020-05-28 Cockerill Maintenance & Ingenierie S.A. Improved method of running a cold rolling mill

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349139B1 (en) * 1995-12-30 2003-01-06 주식회사 포스코 Method for predicting coefficient of friction in cold rolling
WO2006054781A1 (en) * 2004-11-22 2006-05-26 Nippon Steel Corporation Method for supplying lubricant in cold rolling
KR100867017B1 (en) * 2004-11-22 2008-11-10 신닛뽄세이테쯔 카부시키카이샤 Method for supplying lubricant in cold rolling
US8047035B2 (en) 2004-11-22 2011-11-01 Nippon Steel Corporation Method of supplying lubricating oil in cold-rolling
EP2353741A3 (en) * 2004-11-22 2012-05-09 ArcelorMittal France Method for supplying lubricant in cold rolling
US8356501B2 (en) 2004-11-22 2013-01-22 Nippon Steel Corporation Method of supplying lubricating oil in cold-rolling
US8584499B2 (en) 2004-11-22 2013-11-19 Nippon Steel & Sumitomo Metal Corporation Method of supplying lubricating oil in cold-rolling
RU2670630C9 (en) * 2013-12-24 2018-11-26 Арселормиттал Hot-rolling method
RU2670630C2 (en) * 2013-12-24 2018-10-24 Арселормиттал Hot-rolling method
WO2015097488A1 (en) * 2013-12-24 2015-07-02 Arcelormittal Investigación Y Desarrollo Sl Hot rolling method
US10870138B2 (en) 2013-12-24 2020-12-22 Arcelormittal Hot rolling method
JP6241582B1 (en) * 2016-08-19 2017-12-06 Jfeスチール株式会社 Steel sheet cold rolling method and steel plate manufacturing method
WO2018034061A1 (en) * 2016-08-19 2018-02-22 Jfeスチール株式会社 Method for cold rolling steel sheet, and method for manufacturing steel sheet
TWI624313B (en) * 2016-08-19 2018-05-21 杰富意鋼鐵股份有限公司 Cold rolling method of steel plate and manufacturing method of steel plate
KR20190025008A (en) * 2016-08-19 2019-03-08 제이에프이 스틸 가부시키가이샤 Cold rolling method of steel sheet and manufacturing method of steel sheet
CN109562421A (en) * 2016-08-19 2019-04-02 杰富意钢铁株式会社 The cold rolling process of steel plate and the manufacturing method of steel plate
CN109562421B (en) * 2016-08-19 2020-04-14 杰富意钢铁株式会社 Method for cold rolling steel sheet and method for manufacturing steel sheet
WO2020104150A1 (en) * 2018-11-23 2020-05-28 Cockerill Maintenance & Ingenierie S.A. Improved method of running a cold rolling mill
EP3883702B1 (en) 2018-11-23 2022-10-19 John Cockerill S.A. Improved method of running a cold rolling mill

Similar Documents

Publication Publication Date Title
JP4355279B2 (en) Lubricating oil supply method in cold rolling
CN105916603B (en) Hot-rolling method
JP2009506891A (en) Lubrication and cooling method for rolls and metal strips during rolling of metal strips, especially during cold rolling
JPH03151106A (en) Method for controlling forward slip ratio in cold rolling
JP3235449B2 (en) High speed cold rolling method
JP2000094024A (en) Rolling method with cold tandem mill
JP3548514B2 (en) Prediction method of work roll wear of rolling mill
JP3281682B2 (en) Slip prediction control system in hot rough rolling using laser speedometer
RU2189875C2 (en) Device for automatic control of strip flatness
JPS61199507A (en) Control method of forward slip in metallic sheet rolling
JP2786771B2 (en) Camber control method in metal rolling
JPH03151107A (en) Method for setting rolling schedule in cold rolling
SU1031548A1 (en) Method of controlling heat profile of rolls in sheet rolling mills
US11565293B2 (en) Regulating a rolling process
JPS626713A (en) Temperature control method for rolling stock in outlet side of hot rolling mill
JP2002035819A (en) Thick steel plate rolling mill and thick steel plate rolling method
JPH0699211A (en) Method for controlling camber/wedge in plate rolling
JP2978407B2 (en) Rolling control method
JPS62292209A (en) Rolling control method for cold tandem rolling mill
JP3237587B2 (en) Hot rolling method
JP3832216B2 (en) Sheet width control method in cold tandem rolling
JP6816482B2 (en) Rolling oil supply equipment and rolling oil supply method
JP2024007528A (en) Mill slip prevention method, metal plate rolling method, metal plate manufacturing method, mill slip prevention device and metal plate rolling device
JP3467559B2 (en) Strip width control method in hot continuous rolling
JPH1157828A (en) Cold rolling method