JPH03150737A - Optical recording method and optical recording medium - Google Patents

Optical recording method and optical recording medium

Info

Publication number
JPH03150737A
JPH03150737A JP2142632A JP14263290A JPH03150737A JP H03150737 A JPH03150737 A JP H03150737A JP 2142632 A JP2142632 A JP 2142632A JP 14263290 A JP14263290 A JP 14263290A JP H03150737 A JPH03150737 A JP H03150737A
Authority
JP
Japan
Prior art keywords
thin film
phase
information
optical recording
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2142632A
Other languages
Japanese (ja)
Other versions
JPH0576101B2 (en
Inventor
Takeshi Yoshida
武司 吉田
Kazuhiko Tabei
和彦 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2142632A priority Critical patent/JPH03150737A/en
Publication of JPH03150737A publication Critical patent/JPH03150737A/en
Publication of JPH0576101B2 publication Critical patent/JPH0576101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To allow the easy execution of not only the writing and reading out of information but the erasing and rewriting thereof as well as utilizing martensite transformation. CONSTITUTION:The point to be recorded with information of the thin film which is formed as a base phase over the entire part is irradiated with a laser beam so that the cooling after heating is rapidly executed to transform only this point from the base phase to the martensite phase in the case of recording of the information. A change in light reflectively arises in a pat of the thin film in this way and, therefore, the recording of the information is executed. On the other hand, the point to be erased of the thin film is irradiated with the laser beam to locally heat the thin film to the As point or above in order to execute partial erasing. The martensite phase is converted to the base phase in this way. On the other hand, the entire part of the thin film is heated together with the substrate to the As point or above in the case of simultaneous erasure. All the regions which are locally converted to the martensite phase are transformed to the base phase and the entire part of the record is simultaneously erased.

Description

【発明の詳細な説明】 「産業上の利用分野J この発明は、レーザ光+12Jこより情報の記入・消去
を行なう光記録法およびそれに使用する光記録媒体に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application J This invention relates to an optical recording method for writing and erasing information using a +12J laser beam and an optical recording medium used therefor.

「従来の技術」 光記録は、高記録密度、高速アクセス、非接触記録再生
などの特長があり、急速に実用化されつつある。
"Prior Art" Optical recording has features such as high recording density, high speed access, and non-contact recording and reproduction, and is rapidly being put into practical use.

しかしながら、現在のビデオディスク、オーディオディ
スク等の光記録媒体にあっては、情報の書き込みおよび
読み出しは可能ではあるが、消去あるいは書き替えが行
えず、いわゆるROM (読み出し専用メモリ)にとど
まっており、情報の消去、書き替えの点が未解決のまま
残されている。
However, with current optical recording media such as video discs and audio discs, although it is possible to write and read information, they cannot be erased or rewritten, and are limited to so-called ROM (read-only memory). The issue of erasing and rewriting information remains unresolved.

ところで、従来より、金属の結晶措造の変態に伴って、
その表面の光反射特性が変化することが知られている。
By the way, along with the transformation of metal crystal structures,
It is known that the light reflection properties of the surface change.

本発明者らは、この現象を光記録法に応用すべく研究を
行なった結果、以下のようなfr規な知見を得るに至っ
た。
The present inventors conducted research to apply this phenomenon to optical recording methods, and as a result, they came to obtain the following extraordinary knowledge.

■ 相変態を生じる金属の中で6、マルテンサイト変態
を起こす合金は相変態に伴う光反射率の変化が大きく、
その変化率は合金様に応じた特定波長において最大とな
る。
■ Among metals that undergo phase transformation6, alloys that undergo martensitic transformation have a large change in light reflectance due to phase transformation.
The rate of change is maximum at a specific wavelength depending on the type of alloy.

■ 前記合金の薄膜をスパッタリングまたは蒸着法によ
り基板上に形成した場合、レーザ光線の照射により薄膜
を局部的に相変態させることが可能で、しかも照射条件
を変化させて加熱後の冷却速度を調節すると、下記a、
bの2通りの相変態が選択できる。
■ When a thin film of the above alloy is formed on a substrate by sputtering or vapor deposition, it is possible to locally phase transform the thin film by irradiating it with a laser beam, and by changing the irradiation conditions, the cooling rate after heating can be adjusted. Then, the following a,
Two types of phase transformations (b) can be selected.

a、薄膜がマルテンサイト相である場合、レーザ光線を
相対的に低出力で薄膜に照射し、局部的に逆変態σn始
温度以上に加熱する七、加熱後の冷却速度が小となり、
マルテンサイト相が母相に転換される。
a. When the thin film is in a martensitic phase, the thin film is irradiated with a laser beam at a relatively low output and locally heated to a temperature higher than the reverse transformation σn onset temperature.7. The cooling rate after heating is small,
The martensitic phase is converted to the matrix phase.

b、薄膜が母相である場合、レーザ光線をaに比して高
出力かつ短時間で薄膜に照射し、局部的に加熱すると、
加熱後の薄膜の冷却速度がaに比して大となり、母相が
マルテンサイト相に転換される。
b. When the thin film is the parent phase, when the thin film is irradiated with a laser beam at a higher power and shorter time than in a, and locally heated,
The cooling rate of the thin film after heating becomes higher than a, and the parent phase is converted to a martensitic phase.

この発明は上記知見に基づいてなされたもので、情報の
書き込み、読み出しは勿論の事、消去および書き替えを
簡単に行なうことのできる光記録法を提供することを課
題としている。
This invention has been made based on the above findings, and an object of the present invention is to provide an optical recording method that allows not only writing and reading information but also erasing and rewriting information with ease.

「課題を解決する手段」 以下、この発明の詳細な説明する。"Means to solve problems" The present invention will be described in detail below.

この発明に係わる光記録法は、マルテンサイト変態を示
す合金の薄膜を基板上に形成し、薄膜を母相に統一した
光記録媒体を用い、前記薄膜の情報を記入すべき箇所に
レーザ光線を照射し、前記箇所を加熱後に母相からマル
テンサイト相へ転換可能な速度で急冷させることにより
母相をマルテンサイト相に転換し、光反射率を変化させ
て情報の記入を行なうことを主たる特徴としている。
The optical recording method according to the present invention involves forming a thin film of an alloy exhibiting martensitic transformation on a substrate, using an optical recording medium in which the thin film is unified as a matrix phase, and applying a laser beam to a location on the thin film where information is to be written. The main feature is that the parent phase is converted to the martensite phase by irradiating the area, heating the area, and then rapidly cooling it at a rate that allows the conversion from the parent phase to the martensite phase, thereby changing the light reflectance and writing information. It is said that

マルテンサイト変態を示す合金としては多種多様なもの
が知られているが、この発明において使用されうるマル
テンサイト変態合金としては、マルテンサイト変態開始
温度(Ms点)と逆変態開始温度CAs点)との差がで
きるだけ大きく、かつMs点とAs点との間ζこ常温域
(θ℃〜40℃)が存在することが必要であり、望まし
くはMs点が一10℃以下で、As点が100℃以上の
らのが好ましい。
A wide variety of alloys are known that exhibit martensitic transformation, but the martensitic transformation alloy that can be used in this invention has a martensitic transformation starting temperature (Ms point), a reverse transformation starting temperature CAs point) It is necessary that the difference in ℃ or higher is preferable.

図面はこのようなマルテンサイト変態を示すCu−^(
1−Ni合金のヒステリシス曲線を示すもので、光反射
率を相変態の指標としである。
The drawing shows Cu-^(
This figure shows a hysteresis curve of a 1-Ni alloy, using light reflectance as an index of phase transformation.

上記のような条件を満す合金としては、(イ)Ni−T
i系および Ni −Ti −X系 (X;Co、Cu、Fe、U、
Cr、Th1n)(ロ)  N1−A(!系および N1−A(1−X系 (X;Co、Ga、Zn、Ti)
(八)Cu−2n系および Cu−Zn−X系 (X;Ga、Ge、^4. In、
Sb、Si、Sn、N1)(ニ)Cu−Arl系および Cu−^Q−X系 (X;Fe、Ni、Co、Mn)(
ネ)^u−Cd系および ^u−Cd−X系 (X;Cu、 In、fig、Mn
、2n)(へ)Au−2n系および Au−2n−X系 (X;Ga、 In、Cu、Mg、
Cd、Ag)())  Ag−Cd系および Ag −Zn −Cd系 (チ)  In−T&系および In−Cd系 (す)Mn−Cu系 (ヌ)Fe−Mn系、Fe−Ni系、Fe−Pt系およ
びFe−Ni−Cr系 などの合金から選ばれる。
As an alloy that satisfies the above conditions, (a) Ni-T
i system and Ni-Ti-X system (X; Co, Cu, Fe, U,
Cr, Th1n) (b) N1-A(! system and N1-A(1-X system (X; Co, Ga, Zn, Ti)
(8) Cu-2n system and Cu-Zn-X system (X; Ga, Ge, ^4. In,
Sb, Si, Sn, N1) (d) Cu-Arl system and Cu-^Q-X system (X; Fe, Ni, Co, Mn) (
N) ^u-Cd system and ^u-Cd-X system (X; Cu, In, fig, Mn
, 2n) (to) Au-2n system and Au-2n-X system (X; Ga, In, Cu, Mg,
Cd, Ag) ()) Ag-Cd system and Ag-Zn-Cd system (H) In-T& system and In-Cd system (S) Mn-Cu system (J) Fe-Mn system, Fe-Ni system, It is selected from alloys such as Fe-Pt and Fe-Ni-Cr.

そして、このような合金は、ガラス、金属、セラミック
スなどからなる基板上に膜厚0.03〜2μ度程度の薄
膜として形成される。
Such an alloy is formed as a thin film with a thickness of about 0.03 to 2 μm on a substrate made of glass, metal, ceramics, or the like.

0.03μ度未満では均一な薄膜が得られにくいうえ、
基板の影響を受けて相変聾しにくくなる。
If it is less than 0.03μ degree, it is difficult to obtain a uniform thin film, and
Due to the influence of the board, phase change deafness becomes less likely.

また2μmより厚いと逆変態開始温度まで薄膜温度を上
昇するために必要な熱量が大となり、レーザ光線照射後
の冷却速度が小さくなって、母相をマルテンサイト相に
変態させることが困難になる。
In addition, if the thickness is more than 2 μm, the amount of heat required to raise the film temperature to the reverse transformation starting temperature will be large, and the cooling rate after laser beam irradiation will be slow, making it difficult to transform the parent phase into the martensitic phase. .

なお、薄膜化の手段としてはスパッタリング法または蒸
着法が好適である。薄膜となってもこの種の合金は上記
マルテンサイト変態特性を維持する。
Note that a sputtering method or a vapor deposition method is suitable as a means for thinning the film. Even when formed into a thin film, this type of alloy maintains the above-mentioned martensitic transformation characteristics.

な°お、上記基板上の合金薄膜上に光透過性の保護層を
設けてもよく、また基板と薄膜との間に熱反射色を設け
てもよい。
Note that a light-transmissive protective layer may be provided on the alloy thin film on the substrate, and a heat reflective color may be provided between the substrate and the thin film.

基板上に形成された合金の薄膜は、スパッタリングある
いは蒸着の際、基板上で超急冷されるため、最初は一般
にマルテンサイト相となっている。
A thin film of an alloy formed on a substrate is generally initially in a martensitic phase because it is ultra-rapidly cooled on the substrate during sputtering or vapor deposition.

したがって通常は、薄膜を母相に転換する処理が必要で
ある。そのためには、薄膜全体を基板ごとMs+点以上
に加熱し、薄膜をマルテンサイト相から母相に転換する
。この母相は図面のグラフに示すように、マルテンサイ
ト相よりも低い光反射率を有する。
Therefore, a process to convert the thin film into a matrix is usually required. For this purpose, the entire thin film together with the substrate is heated above the Ms+ point to convert the thin film from a martensitic phase to a parent phase. As shown in the graph of the drawing, this matrix phase has a lower light reflectance than the martensitic phase.

次に、このような光記録媒体を用いて光記録を行なう方
法について説明する。
Next, a method for performing optical recording using such an optical recording medium will be explained.

上記合金薄膜をマルテンサイト変態および逆変態させる
加熱手段としては、特に加熱効率の高いレーザ光線が用
いられる。また、薄膜の光反射率変化を読み出す手段と
しては、特定の波長の光、特にレーザ光線が好適である
As a heating means for transforming the alloy thin film into martensitic transformation and reverse transformation, a laser beam having particularly high heating efficiency is used. Further, as a means for reading out changes in light reflectance of a thin film, light of a specific wavelength, particularly a laser beam, is suitable.

情報を記入する場合には、前記のように全体が母相とさ
れた薄膜の、情報を記入すべき箇所にレーザ光線を照射
し、照射条件を制御して加熱後の冷却が超急冷で行われ
るようにし、この箇所のみを母相からマルテンサイト相
に変態させる。
When writing information, a laser beam is irradiated onto the area where the information is to be written on the thin film, which is made entirely of the matrix as described above, and the irradiation conditions are controlled so that the cooling after heating is done in an ultra-rapid manner. so that only this portion is transformed from the matrix phase to the martensitic phase.

加熱後に薄膜を超急冷するには、レーザ光線の単位面積
当たりの出力を調整し、薄膜の照射面を短時間で加熱す
る。すると照射箇所の近傍での熱勾配が大きくなり、照
射後には照射箇所から急速に周囲に熱が拡散するため、
結果的に照射箇所が常温まで超急冷されることになる。
To ultra-quickly cool a thin film after heating, the output per unit area of the laser beam is adjusted to heat the irradiated surface of the thin film in a short time. This increases the thermal gradient near the irradiated area, and after irradiation, heat rapidly diffuses from the irradiated area to the surrounding area.
As a result, the irradiated area is ultra-quickly cooled to room temperature.

なお、実際の照射条件は、薄膜の厚さや、合金種による
熱伝導率および逆変態開始温度の差異、基板の種類によ
って異なるため一部に言うことはできない。実験を行な
って決定すべきである。
Note that the actual irradiation conditions cannot be specified because they vary depending on the thickness of the thin film, differences in thermal conductivity and reverse transformation start temperature depending on the type of alloy, and the type of substrate. This should be determined through experimentation.

こうして薄膜に生じたマルテンサイト相部分は、合金の
As点が常温以上の高温であるので、常温ではマルテン
サイト相として安定に存在する。例えばCu−^Q−N
i合金のマルテンサイト相の光反射率は、グラフからも
明らかなように、母相のそれよりも高く、薄膜の一部で
光反射率の変化が生じるため、情報の記録(書き込み)
が行える。
The martensitic phase portion thus generated in the thin film stably exists as a martensitic phase at room temperature because the As point of the alloy is at a high temperature higher than room temperature. For example, Cu-^Q-N
As is clear from the graph, the light reflectance of the martensitic phase of the i-alloy is higher than that of the parent phase, and changes in light reflectance occur in some parts of the thin film, making it difficult to record (write) information.
can be done.

そして、この光反射率の変化を先のレーザ光線等の光検
知手段で検出することにより、記録の再生(読み取り)
が可能である。
Then, by detecting this change in light reflectance using a light detection means such as a laser beam, the recording can be reproduced (read).
is possible.

一方、記入された情報の部分消去を行なうには、薄膜の
消去すべき情報記入箇所に、レーザ光線を前記記入操作
よりも相対的に低出力で照射し、薄膜を局部的1こAs
点以上に加熱する。すると、照肘時間は必然的に比較的
長くなり、照射中に周囲に熱が拡散するため、照射箇所
の近傍での熱勾配は小さく、これにより照射後の冷却速
度が小さくなって、マルテンサイト相が母相に転換され
る。
On the other hand, in order to partially erase written information, a laser beam is irradiated to the part of the thin film where the information to be erased is written at a relatively lower output than in the writing operation, and the thin film is locally irradiated with As.
Heat above point. Then, the irradiation time will inevitably be relatively long, and the heat will diffuse to the surrounding area during irradiation, so the thermal gradient in the vicinity of the irradiation area will be small, which will reduce the cooling rate after irradiation and reduce martensite. The phase is converted into the parent phase.

なお、この場合の照射条件も、前記同様に薄膜の厚さや
、合金様による熱伝導率および適度!IJlffn始温
度の差異、基板の種類によって異なるため−慨に言うこ
とはできない。実験を行なって決定すべきである。
In addition, the irradiation conditions in this case are the same as above, depending on the thickness of the thin film, the thermal conductivity depending on the alloy type, and the appropriateness! It is difficult to generalize because the difference in IJlffn starting temperature varies depending on the type of substrate. This should be determined through experimentation.

一方、薄膜に記入された情報を一括消去する場合には、
薄膜全体を基板ごとAs点以上に加熱する。これにより
、局部的にマルテンサイト相となっている情−報記入部
分がすべて母相に変態し、記録全体が一括消去される。
On the other hand, when erasing information written on the thin film all at once,
The entire thin film together with the substrate is heated above the As point. As a result, all the information-recorded portions that are locally in the martensitic phase are transformed into the matrix phase, and the entire record is erased at once.

以上のようにして、本発明にあっては情報の書き込み、
読み取り、消去、書き替えが行える。そして、変態に伴
う光反射率は、波長を選ぶことにより、その強度比を2
以上とすることができ、SZN比の高い光記録を行うこ
とができる。また、マルテンサイト変態は温度条件さえ
満足すれば、何回でも緑返し起こりうるので、この光記
録媒体は半永久的に記録−消去を繰り返すことができ、
長寿命である。
As described above, in the present invention, information writing,
Can be read, erased, and rewritten. By selecting the wavelength, the light reflectance accompanying the transformation can be reduced to 2
The above can be achieved, and optical recording with a high SZN ratio can be performed. In addition, martensitic transformation can occur any number of times as long as the temperature conditions are met, so this optical recording medium can be repeatedly recorded and erased semi-permanently.
It has a long lifespan.

「実施例」 以下、実施例を示して、本発明を具体的に説明する。"Example" Hereinafter, the present invention will be specifically explained with reference to Examples.

ガラス製の基板上に、Cu14vt%、A123.4w
t%、NlrIjc部よりなる膜厚800人の合金薄膜
を成膜した。この合金薄膜は、常温ではマルテンサイト
相であった。この薄膜全体を基板ごと250℃で10分
間加熱して母相に逆変態させた。この状態で波長830
 rvでの光反射率は29%であった。この状態の薄膜
に、波長633nmの半導体レーザー光線を焦点0.8
μmに絞り、照射したところ、加熱超急冷され、マルテ
ンサイト相に変態し、830nmでの光反射率は61%
に増大した。
Cu14vt%, A123.4w on a glass substrate
An alloy thin film having a thickness of 800% and consisting of NlrIjc portions was formed. This alloy thin film was in a martensitic phase at room temperature. The entire thin film together with the substrate was heated at 250° C. for 10 minutes to reversely transform into the parent phase. In this state, the wavelength is 830
The light reflectance at rv was 29%. A semiconductor laser beam with a wavelength of 633 nm is applied to the thin film in this state at a focus of 0.8 nm.
When focused to μm and irradiated, it was heated and ultra-quenched, transformed into a martensitic phase, and the light reflectance at 830 nm was 61%.
It increased to

この結果、情報の書き込みおよび読み出しが可能である
ことがわかった。
As a result, it was found that writing and reading information was possible.

また、上記マルテンサイト相に、上記半導体レーザ光線
を焦点1.2μmに絞り照射したところ、母相に逆変態
して、光反射率は29%と元に復帰し、情報の消去が可
能であることが認められた。
Furthermore, when the martensitic phase was irradiated with the semiconductor laser beam with a focus of 1.2 μm, it was reversely transformed into the matrix phase, and the light reflectance returned to its original value of 29%, making it possible to erase information. This was recognized.

また、薄膜全体を250℃で加熱したところ、母相にす
べて逆変態し、情報の一括消去が行なえた。
Furthermore, when the entire thin film was heated at 250° C., all of the thin film was reversely transformed into the parent phase, and information could be erased all at once.

さらに、上記情報の記録および部分消去を1分間隔に1
000回繰り返したが、光反射率の相転移に伴う変化に
は変動が認められず、多数回の操り返し使用が可能であ
ることが示された。
Furthermore, the above information is recorded and partially erased once every minute.
Although the test was repeated 1,000 times, no fluctuation was observed in the change in light reflectance due to phase transition, indicating that it can be used repeatedly many times.

なお、Cu1.99wt%、Zn5.9wt%、AI2
残部よりなる合金、Ni21.Ivt%、A(残部より
なる合金、およびNi45.9wt%、Ti残部よりな
る合金の薄膜についてもそれぞれ同様の結果が得ら・れ
た。
In addition, Cu1.99wt%, Zn5.9wt%, AI2
The balance consists of an alloy, Ni21. Similar results were obtained for thin films of alloys consisting of Ivt%, A (balance) and alloys consisting of 45.9wt% Ni, balance Ti.

「発明の効果」 以上説明したように、この発明に係わる光記録法および
光記録媒体では、母相である/V膜の情報を記入すべき
箇所にレーザ光線を照射し、この箇所を加熱後に急冷さ
せることにより、母相をマルテンサイト相に転換し、光
反射率を変化させて情報の記入が行なえる。したがって
、レーザ照射装置を用いるだけで、情報の書き込みを容
易かつ高速に行なうことができ、光記録の用途を拡大す
ることが可能である。
"Effects of the Invention" As explained above, in the optical recording method and optical recording medium according to the present invention, a laser beam is irradiated to the location where information of the /V film, which is the matrix phase, is to be written, and this location is heated. By rapidly cooling, the matrix phase is converted to a martensitic phase, and the light reflectance is changed so that information can be written. Therefore, simply by using a laser irradiation device, information can be written easily and at high speed, and the applications of optical recording can be expanded.

また、相変簡に伴って薄膜の光反射率は二値変化するう
え、合金様に応じた特定波長の光を反射率測定に用いる
ことにより、光反射率の変化度合を大きくとることがで
き、高SlN比が実現可能である。
In addition, the light reflectance of the thin film changes in binary values as the phase changes, and by using light with a specific wavelength depending on the alloy type for reflectance measurement, the degree of change in the light reflectance can be increased. , a high SlN ratio is achievable.

一方、本発明の第2の光記録法では、第!の方法に加え
て、不要な情報が記入された箇所に対し、この箇所をレ
ーザ光線に上りを照射することにより、照射箇所を母相
に復帰させる。したがって、従来の光記録法では困難だ
った情報の部分消去が容易に行なえる。
On the other hand, in the second optical recording method of the present invention, the second! In addition to the above method, by irradiating the upward direction of the laser beam on the area where unnecessary information has been written, the irradiated area is returned to the parent phase. Therefore, partial erasure of information, which was difficult with conventional optical recording methods, can be easily performed.

さらに、本発明の第3の光記録法では、情報が不要にな
った場合に、薄膜全体を適度り開始温度以上に加熱する
ことにより、マルテンサイト相となっている情報記入部
分を全て母相に復帰さ什る。
Furthermore, in the third optical recording method of the present invention, when the information is no longer needed, the entire thin film is heated to a temperature above the starting temperature to remove all the information-recorded portions that are in the martensitic phase from the matrix phase. I will return to .

したがって、薄膜を加熱するだけで全ての情報を−括消
去することができる。
Therefore, all information can be erased at once by simply heating the thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、マルテンサイト変態/適度懇の温度ヒステリシ
スを示すグラフである。 −◆温度
The figure is a graph showing the temperature hysteresis of martensitic transformation/moderate transformation. −◆Temperature

Claims (4)

【特許請求の範囲】[Claims] (1)マルテンサイト変態開始温度が0℃以下、かつ逆
変態開始温度が40℃以上である合金の薄膜をスパッタ
リング法または蒸着法により基板上に形成した後、前記
薄膜を母相に統一した光記録媒体を用い、 前記薄膜の情報を記入すべき箇所にレーザ光線を照射し
、前記箇所を加熱後に母相からマルテンサイト相へ転換
可能な速度で急冷させることにより母相をマルテンサイ
ト相に転換し、光反射率を変化させて情報の記入を行な
うことを特徴とする光記録法。
(1) After forming a thin film of an alloy with a martensitic transformation starting temperature of 0°C or lower and a reverse transformation starting temperature of 40°C or higher on a substrate by sputtering or evaporation, a light beam is formed using the thin film as the matrix. Using a recording medium, a laser beam is irradiated to a location on the thin film where information is to be written, and the location is heated and then rapidly cooled at a rate capable of converting the parent phase to the martensite phase, thereby converting the parent phase to the martensite phase. An optical recording method characterized by recording information by changing the light reflectance.
(2)マルテンサイト変態開始温度が0℃以下、かつ逆
変態開始温度が40℃以上である合金の薄膜をスパッタ
リング法または蒸着法により基板上に形成した後、前記
薄膜を母相に統一した光記録媒体を用い、 前記薄膜の情報を記入すべき箇所にレーザ光線を照射し
、前記箇所を加熱後に母相からマルテンサイト相へ転換
可能な速度で急冷させることにより母相をマルテンサイ
ト相に転換し、光反射率を変化させて情報の記入を行な
う一方、 前記薄膜の不要な情報が記入された箇所に対し、この箇
所を逆変態開始温度以上に加熱可能で、かつ加熱後にマ
ルテンサイト相から母相へ転換可能な冷却速度となる強
度でレーザ光線を照射し、照射箇所を母相に復帰させ、
情報の部分消去を行なうことを特徴とする光記録法。
(2) After forming a thin film of an alloy with a martensitic transformation starting temperature of 0°C or lower and a reverse transformation starting temperature of 40°C or higher on a substrate by sputtering or vapor deposition, light is produced using the thin film as the matrix. Using a recording medium, a laser beam is irradiated to a location on the thin film where information is to be written, and the location is heated and then rapidly cooled at a rate capable of converting the parent phase to the martensite phase, thereby converting the parent phase to the martensite phase. Then, while writing information by changing the light reflectance, it is possible to heat the part of the thin film where unnecessary information is written to a temperature higher than the reverse transformation start temperature, and after heating, the martensitic phase changes. The laser beam is irradiated with an intensity that allows the cooling rate to convert to the parent phase, and the irradiated area is returned to the parent phase.
An optical recording method characterized by partially erasing information.
(3)マルテンサイト変態開始温度が0℃以下、かつ逆
変態開始温度が40℃以上である合金の薄膜をスパッタ
リング法または蒸着法により基板上に形成した後、前記
薄膜を母相に統一した光記録媒体を用い、 前記薄膜の情報を記入すべき箇所にレーザ光線を照射し
、前記箇所を加熱後に母相からマルテンサイト相へ転換
可能な速度で急冷させることにより母相をマルテンサイ
ト相に転換し、光反射率を変化させて情報の記入を行な
う一方、 前記情報が不要になった場合には、前記薄膜全体を逆変
態開始温度以上に加熱し、マルテンサイト相となってい
る部分を全て母相に復帰させ、情報の一括消去を行なう
ことを特徴とする光記録法。
(3) After forming a thin film of an alloy with a martensitic transformation start temperature of 0°C or lower and a reverse transformation start temperature of 40°C or higher on a substrate by sputtering or vapor deposition, light is produced using the thin film as the matrix. Using a recording medium, a laser beam is irradiated to a location on the thin film where information is to be written, and the location is heated and then rapidly cooled at a rate capable of converting the parent phase to the martensite phase, thereby converting the parent phase to the martensite phase. Then, while changing the light reflectance to write information, if the information is no longer needed, the entire thin film is heated to a temperature higher than the reverse transformation start temperature, and all the parts that are in the martensitic phase are heated. An optical recording method characterized by returning to the matrix and erasing information all at once.
(4)マルテンサイト変態開始温度が0℃以下かつ逆変
態開始温度が40℃以上である合金の薄膜を、スパッタ
リング法または蒸着法により、基板上に0.03〜2μ
mの厚さに形成し、前記薄膜の全域を母相に転換してな
ることを特徴とする光記録媒体。
(4) A thin film of an alloy having a martensitic transformation starting temperature of 0°C or lower and a reverse transformation starting temperature of 40°C or higher is deposited on a substrate with a thickness of 0.03 to 2 μm by sputtering or vapor deposition.
An optical recording medium characterized in that the thin film is formed to a thickness of m and the entire area of the thin film is converted into a matrix phase.
JP2142632A 1983-08-03 1990-05-31 Optical recording method and optical recording medium Granted JPH03150737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142632A JPH03150737A (en) 1983-08-03 1990-05-31 Optical recording method and optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58142113A JPS6032130A (en) 1983-08-03 1983-08-03 Optical recording method and optical recording medium
JP2142632A JPH03150737A (en) 1983-08-03 1990-05-31 Optical recording method and optical recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58142113A Division JPS6032130A (en) 1983-08-03 1983-08-03 Optical recording method and optical recording medium

Publications (2)

Publication Number Publication Date
JPH03150737A true JPH03150737A (en) 1991-06-27
JPH0576101B2 JPH0576101B2 (en) 1993-10-21

Family

ID=15307715

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58142113A Granted JPS6032130A (en) 1983-08-03 1983-08-03 Optical recording method and optical recording medium
JP2142632A Granted JPH03150737A (en) 1983-08-03 1990-05-31 Optical recording method and optical recording medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP58142113A Granted JPS6032130A (en) 1983-08-03 1983-08-03 Optical recording method and optical recording medium

Country Status (1)

Country Link
JP (2) JPS6032130A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129944A (en) * 1983-12-15 1985-07-11 Seikosha Co Ltd Optical information recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475270A1 (en) * 1980-02-01 1981-08-07 Thomson Csf REVERSIBLE MEMORY STRUCTURE, THERMO-OPTICAL INTEGRATION AND OPTICAL READING, AND METHOD FOR INSCRIPTION AND ERASURE OF THIS STRUCTURE
JPS56119949A (en) * 1980-02-25 1981-09-19 Nippon Telegr & Teleph Corp <Ntt> Production of medium for optical recording
JPS5823334A (en) * 1981-08-04 1983-02-12 Mitsubishi Electric Corp Recording element
JPS5823335A (en) * 1981-08-04 1983-02-12 Mitsubishi Electric Corp Recording element

Also Published As

Publication number Publication date
JPS6032130A (en) 1985-02-19
JPH0576101B2 (en) 1993-10-21
JPH0352650B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
JPH03150737A (en) Optical recording method and optical recording medium
JPS6119749A (en) Spectral reflectance variable alloy and recording material
JPS62226446A (en) Optical recording medium
JPS59193452A (en) Optical recording medium
JPH04232780A (en) Phase change optical recording medium
JP2588169B2 (en) Optical recording medium
JPS62200544A (en) Optical recording medium
JPH0776171A (en) Write-once optical disk
JPS59171689A (en) Optical recording method
JPS63155442A (en) Optical recording medium
JP3118554B2 (en) Method for manufacturing magneto-optical recording medium
JPS61153829A (en) Optical information storage device
JPS6057551A (en) Optical recording medium
JPS63153737A (en) Optical recording medium
JPS61194639A (en) Optical recording and reproducing device
JP2974556B2 (en) Information recording method
JPH04186538A (en) Information recording medium
JPS62229547A (en) Optical recording medium
JPS63263641A (en) Information recording medium
JPH03153389A (en) Optical recording medium
JPS62172542A (en) Optical disk
JPH0316783A (en) Optical recording medium
Uchino et al. High Density PWM Recording And Rewritable Capability In The GeSbTe Phase Change System By Using Visual Laser Beam At Lower Linear Velocity
JPH0966668A (en) Optical disk
JPH02168447A (en) Rewritable optical recording medium and its erasure and recording method