JPH03150494A - Nuclear fusion generator - Google Patents

Nuclear fusion generator

Info

Publication number
JPH03150494A
JPH03150494A JP1288024A JP28802489A JPH03150494A JP H03150494 A JPH03150494 A JP H03150494A JP 1288024 A JP1288024 A JP 1288024A JP 28802489 A JP28802489 A JP 28802489A JP H03150494 A JPH03150494 A JP H03150494A
Authority
JP
Japan
Prior art keywords
pressure
discharge
discharge electrodes
reaction
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288024A
Other languages
Japanese (ja)
Inventor
Toyoaki Omori
大森 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1288024A priority Critical patent/JPH03150494A/en
Publication of JPH03150494A publication Critical patent/JPH03150494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To increase the yield of neutrons by disposing a structural body for a pressure bulkhead for controlling the pressure generated at the time of an underwater plasma discharge to the circumference of the plasma region of discharge electrodes. CONSTITUTION:The pressure bulkhead 29a is mounted to the discharge electrodes 23 so as to include the parts of a pair of discharge electrodes 23 and to enclose the discharge electrodes 23b. The underwater plasma discharge takes place between the discharge electrodes 23b and the plasma 27 is generated when a prescribed pulse voltage is impressed to the discharge electrodes 23. The deuterium atom nuclei generated by dissociation form the heavy water of a reaction liquid 22 by the plasma 27 are accelerated by an electric field and are progressed toward the negative electrode and are also accelerated by a large pressure wave 28 by the effect of the pressure bulkhead 29a, by which the atom nuclei are efficiently bombarded against the surface of the supporting electrodes 23a and are trapped therein. The reaction of the deuterium atom unclei with each other is enhanced in this place.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は核融合発生装置に関し、特に従来の真空と強
力磁場による核融合プラズマ閉じ込め方式の熱核反応形
核融合炉から脱却した簡便な新しい核融合発生装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a nuclear fusion generator, and in particular to a new and simple thermonuclear reactor that departs from the conventional thermonuclear reaction type fusion reactor that uses a fusion plasma confinement method using a vacuum and a strong magnetic field. It relates to nuclear fusion generators.

[従来の技術] 従来、大規模集中形エネルギシステムの代表的な未来の
新エネルギ技術として永年に渡って核融合が研究されて
きた。しかし、トカマク方式と呼ばれる方式をはじめと
する核融合炉による熱核融合反応の制御は極限技術や高
度なバイテクノロジーの集積があってはじめて可能であ
り、実用化までにはなお、かなりの期間と莫大な費用を
要することが指摘されており、その近い将来の実用開発
は漸く悲観的な様相を呈するに至っている。
[Conventional technology] Nuclear fusion has been studied for many years as a representative future new energy technology for large-scale concentrated energy systems. However, controlling thermonuclear fusion reactions in nuclear fusion reactors, including the so-called tokamak method, is only possible with the accumulation of extreme technology and advanced biotechnology, and it will still take a considerable amount of time to put it into practical use. It has been pointed out that this method requires a huge amount of cost, and its practical development in the near future is finally taking on a pessimistic appearance.

このような情勢下において、最近、1989年3月23
日、フイナンシャルタイムズに発表されたフライシュマ
ンとポンダによる成果の報道以来、重水の電気分解によ
る常温核融合の研究が脚光を浴び、前記熱核融合装置と
は比較にならない装置の簡便性に対する魅力も手伝って
世界的な研究ブームが展開されている状況である。これ
らの技術内容については新聞等のトピックス記事として
成果の肯定・否定面とともにセンセイショナルに報道さ
れている段階であるので、ここではその説明は省略する
。なお、上記のような電気分解法では中性子量の収量は
1秒間当り0.1個程度である。
Under these circumstances, recently on March 23, 1989,
Since the report on the results by Fleischman and Ponda published in the Financial Times in Japan, research into cold fusion using electrolysis of heavy water has been in the spotlight, and the simplicity of the device is incomparable to thermonuclear fusion devices. Thanks to this, a worldwide research boom is occurring. The details of these technologies have already been sensationally reported in topic articles in newspapers, etc., with both positive and negative aspects of the results, so their explanation will be omitted here. In addition, in the above electrolysis method, the yield of neutrons is about 0.1 per second.

ところが、科学朝日(7月号) 1898 P、109
に掲載された記事によれば、1989年4月下旬になっ
て、イタリア・フラスカッチ研究所のグループが電気分
解を使わずに極めて静的な方法で低温核融合を起こさせ
ることに成功したという論文を開示している。
However, Science Asahi (July issue) 1898 P, 109
According to an article published in , in late April 1989, a group from the Frascacci Institute in Italy published a paper stating that they had succeeded in generating cold fusion in an extremely static manner without using electrolysis. is disclosed.

第5図はこの文献に示された実験段階の低温核融合装置
の構成説明図である。図において、まず、ステンレス鋼
容器1内に100grのチタン2を置き、バルブ4.5
を開いて真空ポンプ3で排気する。
FIG. 5 is an explanatory diagram of the configuration of the experimental stage cold fusion device shown in this document. In the figure, first, 100g titanium 2 is placed in a stainless steel container 1, and a valve 4.5 is placed inside a stainless steel container 1.
Open and evacuate using vacuum pump 3.

ついで、バルブ4を閉じてバルブ6を開き重水素ガスボ
ンベ7から徐々に重水素ガスを送り、圧力計8で監視し
ながら最終的には50気圧まで上げて十分にチタン2に
重水素を吸着させる。その後、液体窒素10を充填した
冷却タンク9にステンレス鋼容器1を浸し、図示しない
バルブ5,6を閉じて温度測定装置で液体窒素温度−1
96℃の平衡温度に達するまで冷却し、チタン2に重水
素ガスが冷却前よりさらに吸着されたことを確認する。
Then, close the valve 4 and open the valve 6 to gradually feed deuterium gas from the deuterium gas cylinder 7. While monitoring with the pressure gauge 8, the pressure is finally raised to 50 atm to allow the titanium 2 to sufficiently adsorb deuterium. . Thereafter, the stainless steel container 1 is immersed in a cooling tank 9 filled with liquid nitrogen 10, valves 5 and 6 (not shown) are closed, and a temperature measuring device is measured to measure the liquid nitrogen temperature by -1.
It was cooled until the equilibrium temperature of 96° C. was reached, and it was confirmed that more deuterium gas was adsorbed on titanium 2 than before cooling.

さらに吸着が進行したことは圧力がより低下することか
ら知られる。なお、11は図示しない計数装置に接続す
る中性子検出器であり、ステンレス鋼容器1の脇に配置
されている。もしD−D反応(Dは重水素原子核)によ
る核融合が反応したときは、中性子が発生するから中性
子検出器11の出力が増大して計数されるようになって
いる。
It is known that the adsorption has progressed further because the pressure decreases further. Note that 11 is a neutron detector connected to a counting device (not shown), and is placed beside the stainless steel container 1. If nuclear fusion occurs due to a D-D reaction (D is a deuterium nucleus), neutrons are generated, so the output of the neutron detector 11 increases and is counted.

以上の構成と状態において、液体窒素が蒸発するにまか
せておくとチタン2の温度も徐々に室温に近くなるまで
に上昇するが、チタン2の温度が上がってゆく途中で、
バックグランドの35倍という多量の中性子が発生した
ことが観測された。また、この実験法を一寸変えて、重
水素を吸わせたチタン2を真空中に置き、同様の実験、
すなわち液体窒素温度まで冷却したのち徐々に常温にも
どす実験ではさらに収量が増大し、バックグランドの5
00倍もの中性子発生が測定されたとされている。
In the above configuration and condition, if the liquid nitrogen is allowed to evaporate, the temperature of titanium 2 will gradually rise until it approaches room temperature, but as the temperature of titanium 2 increases,
It was observed that a large amount of neutrons were generated, 35 times the background. In addition, by slightly changing this experimental method, we placed titanium 2 that had absorbed deuterium in a vacuum, and conducted a similar experiment.
In other words, in an experiment in which the temperature was cooled to liquid nitrogen temperature and then gradually returned to room temperature, the yield increased further, and the background 5
It is said that 00 times more neutron generation was measured.

上記の実験の結果は、最近話題となった前述の電気分解
を行うこともなく、単に重水素ガスの圧力や温度を上げ
たり下げたりするだけで大量の中性子が発生したことを
示すもので、現状では常識はずれの成果というはかなく
、その真偽を確めたくなる程の貴重な注目すべき実験結
果とみなされるものである。
The results of the above experiment show that a large amount of neutrons were generated simply by increasing or decreasing the pressure and temperature of deuterium gas, without the need for the aforementioned electrolysis, which has recently become a hot topic. At present, it is considered to be an ephemeral result that is beyond common sense, but a remarkable and valuable experimental result that makes you want to confirm its authenticity.

[発明が解決しようとする課題] 上記のような従来の低温核融合発生装置は、それ以前の
熱核融合炉に代わる可能性を有するものとして、現在研
究の緒にについたばかりの段階にあるものであり、この
発明が解決しようとする課題として取上げることには直
接関係がない技術であると考えられる。課題として強い
ていえば、第5図の従来例の成果以外では、電気分解に
よる核融合方法は前述のように中性子の収量が極めて小
さいから、さらに出力増大へと検討を重ねてゆく必要が
あるということが挙げられる。
[Problem to be solved by the invention] The conventional low-temperature fusion generator as described above is currently in the early stages of research as a potential replacement for previous thermonuclear fusion reactors. Therefore, it is considered that this technology is not directly related to the problem to be solved by this invention. To put it bluntly, the problem is that, apart from the results of the conventional example shown in Figure 5, the neutron yield of the electrolytic fusion method is extremely small, as mentioned above, so it is necessary to consider ways to further increase the output. This can be mentioned.

この発明は上記の点に鑑みてなされたもので、重水の電
気分解という従来の手段のみに拘泥することなく、また
上記のような温度及び圧力の変化という新しい手段を使
用することなく、単に従来の強電実験的な手段のみによ
って核融合を行わせる核融合発生装置を提供することを
目的とするものである。
This invention has been made in view of the above points, and does not rely only on the conventional means of electrolysis of heavy water, nor does it use the new means of changing temperature and pressure as described above. The object of the present invention is to provide a nuclear fusion generator that performs nuclear fusion only by experimental means of strong electric current.

[課題を解決するための手段] この発明に係る核融合発生装置は、重水を反応液として
充填した反応槽内に1対の放電用電極を配設し、この1
対の放電用電極にパルス高電圧を供給する電源からパル
ス電圧を印加して生ずる水発生とその圧力波によって重
水素原子核−重水素原子核(D−D)反応の核融合を起
こさせるものであり、上記の水中プラズマ放電時に発生
した圧力を制御するための圧力隔壁用の構造体を放電用
電極のプラズマ領域の周囲に配設したものである。
[Means for Solving the Problems] A nuclear fusion generator according to the present invention includes a pair of discharge electrodes disposed in a reaction tank filled with heavy water as a reaction liquid.
A pulsed voltage is applied from a power source that supplies pulsed high voltage to a pair of discharge electrodes, and water is generated and the resulting pressure wave causes nuclear fusion in the deuterium nucleus-deuterium nucleus (D-D) reaction. , a pressure barrier structure for controlling the pressure generated during the underwater plasma discharge described above is disposed around the plasma region of the discharge electrode.

なお、この場合に、重水素原子核を放電電界と圧力波に
より衝撃して核融合反応を発生させる反応体は、少くと
も表面側水素吸着性の優れた金属(例えばチタン)等で
構成されるものであり、この反応体は上記の放電用電極
の一部であってもよく、また上記の圧力隔壁を構成する
構造体そのものであってもよい。
In this case, the reactant that generates a nuclear fusion reaction by bombarding deuterium nuclei with a discharge electric field and pressure waves must be made of at least a metal (e.g., titanium) with excellent hydrogen adsorption on the surface side. This reactant may be a part of the above-mentioned discharge electrode, or may be the structure itself constituting the above-mentioned pressure partition.

〔作 用] この発明においては、重水を含む反応液中に1対の放電
用電極を配設し、この電極間にパルス高電圧を印加して
水中プラズマ放電を起こすが、このプラズマ領域を取囲
むように、プラズマ放電に付随する圧力波を制御する圧
力隔壁を設けているから、圧力隔壁のない場合に比べて
圧力波の圧力をさらに増大させ、重水素原子核同志の核
融合反応を促進させる。
[Function] In this invention, a pair of discharge electrodes is disposed in a reaction solution containing heavy water, and a pulsed high voltage is applied between the electrodes to generate underwater plasma discharge. Since a pressure barrier is provided surrounding the plasma discharge to control the pressure waves accompanying the plasma discharge, the pressure of the pressure waves is further increased compared to the case without a pressure barrier, promoting the fusion reaction between deuterium nuclei. .

すなわち、このプラズマ放電によって重水D20から重
水素イオンが発生し、その際生じる増大された圧力波に
よってこの重水素イオンすな2 + わち重水素核D(1H)が水素吸着性のよい支持電極面
又は圧力隔壁面に吸着し、その際に重水素原子核り同志
間の衝突(非弾性衝突)反応を促進させ、よく知られた
下記(1)式又は(2)式、あるいは(1) 、 (2
)式の同時反応が進行し核融合反応が上記圧力隔壁のな
い場合よりより多く発生すると考えられる。ここで、T
は三重水素原子核(トリチウム)、nは中性子、pは陽
子(水素の原子核)を示す。
That is, deuterium ions are generated from heavy water D20 by this plasma discharge, and due to the increased pressure waves generated at this time, these deuterium ions, 2 + that is, deuterium nuclei D (1H), are transferred to the supporting electrode with good hydrogen adsorption property. It adsorbs on the surface or pressure partition surface, and at that time promotes the collision (inelastic collision) reaction between deuterium nuclei, and the well-known formula (1) or (2) below, or (1), (2
) It is thought that the simultaneous reactions of the equation proceed and the nuclear fusion reaction occurs more frequently than in the case without the above-mentioned pressure barrier. Here, T
represents a tritium nucleus (tritium), n represents a neutron, and p represents a proton (hydrogen nucleus).

D+D+ ”He 十n      ・(1)D+D→
T+p        ・・・(2)これらの反応にお
いて、核融合反応が発生したか否かはn又はpを検出す
ることで確認するようになっているが、現状ではnを中
性子検出器で計測する方法が採用される。
D+D+ “He tenn ・(1)D+D→
T + p ... (2) In these reactions, whether or not a nuclear fusion reaction has occurred is confirmed by detecting n or p, but currently the method of measuring n with a neutron detector is will be adopted.

[実施例] 第3図はこの発明による核融合発生装置の原型的なもの
、すなわち圧力隔壁の構造体を有しない場合の一実施例
を示す模式説明図である。また、第4図は第3図の実施
例装置を駆動するパルス電圧発生用の制御電源の一実施
例を示す回路図である。
[Embodiment] FIG. 3 is a schematic explanatory diagram showing a prototype of the nuclear fusion generator according to the present invention, that is, an embodiment without a pressure partition structure. Further, FIG. 4 is a circuit diagram showing an embodiment of a control power source for generating a pulse voltage that drives the embodiment device of FIG. 3.

第3図において、反応槽21には重水を反応物質(燃料
)とする反応液22が充填されている。反応液22は純
重水であることが好ましいが経済性を考慮して通常水で
希釈した重水からなるものであってもよく、あるいは電
解質を少量溶解した通常水との混合液であってもよい。
In FIG. 3, a reaction tank 21 is filled with a reaction liquid 22 using heavy water as a reactant (fuel). The reaction solution 22 is preferably pure heavy water, but considering economic efficiency, it may be made of heavy water diluted with normal water, or it may be a mixed solution with normal water in which a small amount of electrolyte is dissolved. .

反応液22中には1対の放電用電極23を所定の間隔を
もって対称的に対向するよう配置し、その上部から端子
24を取出して電極間にパルス高電圧を印加するように
なっている。1対の放電用電極23はチタンやパラジウ
ム等の水素に対して吸着又は吸蔵性のよい金属からなる
支持電極29aと、タングステン、タンタルのような高
融点金属からなる放電電極23bとが一体形成により構
成されている。一対の放電電極23bが対向する側は球
状面体で形成されており、この形状は棒状又は平面状で
あってもよく限定されないが、できるだけ均質かつ再現
性のよい水中プラズマ放電が得られる形状であることが
望ましい。この電極間のギャップは約3cmを基準とし
て配置される。また、反応液22の内又は外にはパルス
放電のノイズその他に対して電気シールドの良好な図示
しない中性子検出器が配設され、反応生成物の中性子量
を計測するようになっている。
A pair of discharge electrodes 23 are arranged symmetrically opposite each other at a predetermined interval in the reaction solution 22, and a terminal 24 is taken out from above to apply a pulsed high voltage between the electrodes. The pair of discharge electrodes 23 is formed by integrally forming a support electrode 29a made of a metal such as titanium or palladium that has good adsorption or occlusion properties for hydrogen, and a discharge electrode 23b made of a high melting point metal such as tungsten or tantalum. It is configured. The side where the pair of discharge electrodes 23b face each other is formed of a spherical surface, and the shape is not limited and may be rod-like or planar, but it is a shape that allows for underwater plasma discharge to be as homogeneous and reproducible as possible. This is desirable. The gap between the electrodes is set on the basis of about 3 cm. Further, a neutron detector (not shown) with good electrical shielding against pulse discharge noise and the like is disposed inside or outside the reaction liquid 22 to measure the amount of neutrons in the reaction product.

制御電源については第4図にみられるように、電極端子
24に通常D C20kV程度の電圧が印加されるよう
に、C1−Cnで示される高耐圧コンデンサ25が複数
個並列に配置され、正極(+)側は高耐圧の切替スイッ
チ26の各端子に接続されており、各コンデンサ25は
図示しない充電装置によって充電状態に保たれる。なお
、第4図の制御回路はこれに限定されないものである。
As for the control power source, as shown in FIG. The (+) side is connected to each terminal of a high voltage changeover switch 26, and each capacitor 25 is maintained in a charged state by a charging device (not shown). Note that the control circuit shown in FIG. 4 is not limited to this.

1対の放電用電極23へ印加されるパルス電圧は切替ス
イッチ26の正極に接続されたニュートラル端子を回転
して切替えることによりコンデンサ25のC1・・・C
nに充電された電圧を所定の間隔で周期的に順次印加す
るようになっている。なお充電電圧は20kVに限定さ
れず、反応液22の水中放電の難易に応じて調整できる
ようにしておくとよい。
The pulse voltage applied to the pair of discharge electrodes 23 is changed by rotating and switching the neutral terminal connected to the positive terminal of the changeover switch 26, so that the pulse voltage applied to the pair of discharge electrodes 23 is changed to C1...C of the capacitor 25.
The voltage charged to n is applied periodically and sequentially at predetermined intervals. Note that the charging voltage is not limited to 20 kV, but may be adjusted depending on the difficulty of discharging the reaction liquid 22 in water.

以上のように構成された該融合発生装置において、電極
端子24にパルス電圧が印加されると、反応液22の絶
縁破壊が放電電極Llb間で起こり、水中のプラズマ2
7が発生して例えばコンデンサ25のCIに充電された
電荷がパルス放電となって消費される。このプラズマ放
電に伴って重水素イオン(重水素原子核D)が発生し、
さらに放電による圧力波が付随するので、その圧力によ
って重水D20が解離して生じた重水素イオンすなわち
(D)が支持電極23aの表面に衝突してトラップされ
る。このようにして引続いて衝突してきたもう一つのD
と反応してD−D反応と呼ばれる前述の式(1)又は式
(2)による核融合反応を発生するようになる。このよ
うにして得られた核融合は、前述の中性子検出器により
計測した結果、電気分解による従来法による結果が1秒
当り0.3個の中性子nを検出していた収量に対して、
数10倍〜数100倍の収量が得られている。
In the fusion generator configured as described above, when a pulse voltage is applied to the electrode terminal 24, dielectric breakdown of the reaction liquid 22 occurs between the discharge electrodes Llb, and plasma 2 in the water
7 occurs, and for example, the charge charged in CI of the capacitor 25 becomes a pulse discharge and is consumed. Along with this plasma discharge, deuterium ions (deuterium nuclei D) are generated,
Further, since pressure waves are generated due to the discharge, deuterium ions (D) generated by dissociation of the heavy water D20 collide with the surface of the supporting electrode 23a and are trapped. Another D that continued to collide in this way
A nuclear fusion reaction according to the above-mentioned formula (1) or formula (2), which is called the D-D reaction, is generated. The nuclear fusion obtained in this way has a yield of 0.3 neutrons n per second as measured by the aforementioned neutron detector, whereas the conventional method using electrolysis detected 0.3 neutrons n per second.
Yields several tens to hundreds of times higher have been obtained.

第1図はこの発明による核融合発生装置の一実施例を示
す模式断面図である。図において、21〜27は第3図
、第4図の実施例で用いた符号と同−又は相当部分を示
し、その説明を省略する。29aは例えば円筒状の繊維
強化プラスチック(FRPともいう)からなる圧力隔壁
であり、1対の放電用電極23の部分を含んで放電電極
23bを取りかこむように放電用電極23に取つけられ
ている。この場合FRPは放電用電極23間の絶縁を行
い、かつ同時に放電用電極23と圧力隔壁29aの円筒
体とで構成される領域はほぼ密閉状態を形成する。この
場合、特に負極として用いる放電用電極23の支持電極
23aの放電電極23bの周囲に後述する核融合反応に
対して重要な役目を果す1個以上の穴30が設けられて
いる。なお、FRPからなる圧力隔壁29a用の構造体
はそれ自身上記の圧力増大による破裂に耐える強度と構
造をもつように形成される必要があることはいうまでも
ない。
FIG. 1 is a schematic sectional view showing an embodiment of a nuclear fusion generator according to the present invention. In the figure, numerals 21 to 27 indicate the same or corresponding parts as those used in the embodiments of FIGS. 3 and 4, and their explanations will be omitted. 29a is a pressure partition made of, for example, cylindrical fiber-reinforced plastic (FRP), and is attached to the discharge electrode 23 so as to surround the discharge electrode 23b, including the portion of the pair of discharge electrodes 23. . In this case, the FRP provides insulation between the discharge electrodes 23, and at the same time, the area formed by the discharge electrodes 23 and the cylindrical body of the pressure partition 29a forms a substantially sealed state. In this case, one or more holes 30 are provided around the discharge electrode 23b of the support electrode 23a of the discharge electrode 23 used as a negative electrode, which plays an important role in the nuclear fusion reaction described later. It goes without saying that the structure for the pressure partition wall 29a made of FRP must be formed to have strength and structure that can withstand bursting due to the above-mentioned pressure increase.

第1図のような構成において、電極端子24を介して放
電用電極23に所定のパルス電圧を印加すると、放電電
極23b間で水中プラズマ放電が起りプラズマ27が発
生する。プラズマ27によって反応液22の重水から解
離して生じた重水素原子核(イオン状態の重水素原子)
Dは電界により加速されて負極の方へ進行するとともに
、圧力隔壁29aの効果により、第3図のような圧力隔
壁29aのない場合の圧力より大きい圧力を得た圧力波
28によって加速され圧力勾配の大きい穴30の方へ選
択的に進行し、チタン等からなる支持電極23aの面に
効率よく衝突してトラップされ、その場所で重水素原子
核同志のD−D反応を高めるようになる。その結果得ら
れた中性子収率は第3図の場合より約−桁間上を示した
In the configuration shown in FIG. 1, when a predetermined pulse voltage is applied to the discharge electrode 23 via the electrode terminal 24, an underwater plasma discharge occurs between the discharge electrodes 23b and plasma 27 is generated. Deuterium nuclei (deuterium atoms in ionic state) generated by dissociation from heavy water in the reaction solution 22 by plasma 27
D is accelerated by the electric field and advances toward the negative electrode, and due to the effect of the pressure partition 29a, it is accelerated by the pressure wave 28 which has a pressure greater than the pressure without the pressure partition 29a as shown in FIG. 3, resulting in a pressure gradient. selectively proceeds toward the large hole 30, efficiently collides with the surface of the support electrode 23a made of titanium, etc., and is trapped, increasing the D-D reaction between deuterium nuclei at that location. The resulting neutron yield was approximately two orders of magnitude higher than that shown in FIG.

第2図はこの発明による他の実施例を示す模式断面図で
ある。第2図の実施例においては、圧力隔壁29bを円
筒状のチタン材で構成したものであり、放電用電極23
とは強靭な絶縁材31を介して一体組立てを行い、この
圧力隔壁29aをD−D反応面とするものである。この
ため、第1図、第3図の実施例のように支持電極23a
の表面は必ずしもチタン材などで構成する必要はなく、
通常の金属で構成している。また、この構成においては
、電極端子24に印加する電圧が小さくてもすむように
、放電電極23b間のギャップを第1図の実施例の場合
の1/10程度に狭めることが可能なような配置になっ
ている。なお圧力隔壁29bはアース電位としてもよい
が、より望ましくは中点アースとし、印加電圧の1/2
すなわち中点電圧をアース電位としてもよい。そして、
圧力隔壁29bには、第1図の実施例と同様の目的で、
プラズマ27の発生領域の周囲に穴30aを設けている
FIG. 2 is a schematic sectional view showing another embodiment of the present invention. In the embodiment shown in FIG. 2, the pressure partition wall 29b is made of a cylindrical titanium material, and the discharge electrode 23
The pressure partition wall 29a is integrally assembled with a strong insulating material 31 interposed therebetween, and the pressure partition wall 29a is used as a D-D reaction surface. For this reason, as in the embodiments of FIGS. 1 and 3, the support electrode 23a
The surface does not necessarily have to be made of titanium, etc.
It is made of ordinary metal. In addition, in this configuration, the arrangement is such that the gap between the discharge electrodes 23b can be narrowed to about 1/10 of that in the embodiment shown in FIG. 1 so that the voltage applied to the electrode terminal 24 can be small. It has become. Note that the pressure partition wall 29b may be set to a ground potential, but more preferably it is grounded at a midpoint, and is set at 1/2 of the applied voltage.
That is, the midpoint voltage may be set to the ground potential. and,
The pressure bulkhead 29b has the same purpose as the embodiment of FIG.
A hole 30a is provided around the plasma 27 generation area.

第2図の構成においては、プラズマ27による圧力波2
8は図に示したようにプラズマ27の方向とほぼ直角方
向に放射されるので、プラズマ27で生じた重水素原子
核りは電界及び圧力波28、主として圧力波28により
加速され穴30aの方向に進行して圧力隔壁29bのチ
タン面で第1図の場合と同様に効率よく核融合が行われ
る。
In the configuration shown in FIG. 2, the pressure wave 2 caused by the plasma 27
As shown in the figure, the deuterium atoms generated in the plasma 27 are accelerated by the electric field and the pressure wave 28, mainly the pressure wave 28, and are emitted in the direction of the hole 30a. As it progresses, nuclear fusion is efficiently performed on the titanium surface of the pressure partition wall 29b as in the case of FIG.

以上のほか、この発明による核融合発生装置の核融合の
高熱効率の応用として、反応槽に熱交換器を組込み、夜
間電力を用いてコンデンサを充電して本装置を作動させ
ることにより、電力需要平準化/ロードレベリング)の
線に沿った例えば温水器やその他の電力貯蔵設備への利
用が考えられる。
In addition to the above, as an application of the high thermal efficiency of nuclear fusion in the fusion generator according to the present invention, a heat exchanger is built into the reaction tank, and the power demand is increased by charging the capacitor using nighttime electricity and operating the device. For example, applications along the lines of load leveling/load leveling can be considered, such as water heaters and other power storage equipment.

[発明の効果] 以上のようにこの発明によれば、重水を反応物質とする
反応液中に配設した1対の放電用電極の周りに圧力隔壁
を設け、この電極間に起させる水中プラズマ放電によっ
て生ずる重水素イオンの発生と放電に付随する圧力波の
圧力をさらに高めることができ、この圧力波によってD
−D核反応を行わせるようにしたので、極めて簡単な装
置構成ながら、I)−D核反応断面積圧力隔壁のない場
合よりさらに増大することができた。これによって、従
来の電気分解型核融合装置で得られる中性子収量より2
桁以上の高い収量が得られる。
[Effects of the Invention] As described above, according to the present invention, a pressure partition is provided around a pair of discharge electrodes disposed in a reaction liquid containing heavy water as a reactant, and an underwater plasma is generated between the electrodes. The generation of deuterium ions caused by the discharge and the pressure of the pressure wave accompanying the discharge can be further increased, and this pressure wave causes the D
Since the -D nuclear reaction was carried out, the cross section of the I)-D nuclear reaction was able to be further increased compared to the case without a pressure partition, although the device configuration was extremely simple. As a result, the neutron yield obtained with conventional electrolytic fusion devices is 2
Yields that are orders of magnitude higher can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す模式断面図、第2図
はこの発明の他の実施例を示す模式断面図、第3図はこ
の発明の核融合発生装置の原型的なもの、すなわちこの
発明による圧力隔壁をもたない場合の一実施例を示す模
式断面図、第4図は装置を駆動する制御電源の回路図、
第5図は文献に示された低温核融合の実験装置を示す模
式図である。 図において、21は反応槽、22は反応液、23は15 極、24は電極端子、25はコンデンサ、26は切替ス
イッチ、27はプラズマ、28は圧力波、29a、29
bは圧力隔壁、30.30aは穴、31は絶縁剤である
FIG. 1 is a schematic sectional view showing one embodiment of this invention, FIG. 2 is a schematic sectional view showing another embodiment of this invention, and FIG. 3 is a prototype of the fusion generator of this invention. That is, a schematic cross-sectional view showing an embodiment of the present invention without a pressure partition; FIG. 4 is a circuit diagram of a control power source that drives the device;
FIG. 5 is a schematic diagram showing an experimental device for cold fusion disclosed in the literature. In the figure, 21 is a reaction tank, 22 is a reaction liquid, 23 is a 15-pole, 24 is an electrode terminal, 25 is a capacitor, 26 is a changeover switch, 27 is a plasma, 28 is a pressure wave, 29a, 29
b is a pressure partition, 30.30a is a hole, and 31 is an insulating material.

Claims (1)

【特許請求の範囲】 重水を反応物質とする反応液を充填した反応槽と、この
反応槽内に配設した1対の放電用電極と、この1対の放
電用電極にパルス電圧を供給する制御電源とを有し、前
記1対の放電用電極に前記パルス電圧を印加して生ずる
重水素イオンの発生とさらに水中プラズマ放電によって
生ずる圧力波によって核融合反応を起させる核融合発生
装置において、 上記圧力波の圧力制御用の隔壁構造体を上記水中プラズ
マ放電領域の周囲に配設したことを特徴とする核融合発
生装置。
[Claims] A reaction tank filled with a reaction solution containing heavy water as a reactant, a pair of discharge electrodes disposed within the reaction tank, and a pulse voltage supplied to the pair of discharge electrodes. A nuclear fusion generator that has a control power source and causes a nuclear fusion reaction by generating deuterium ions by applying the pulse voltage to the pair of discharge electrodes and by pressure waves generated by underwater plasma discharge, A nuclear fusion generator characterized in that a partition wall structure for controlling the pressure of the pressure wave is disposed around the underwater plasma discharge region.
JP1288024A 1989-11-07 1989-11-07 Nuclear fusion generator Pending JPH03150494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288024A JPH03150494A (en) 1989-11-07 1989-11-07 Nuclear fusion generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288024A JPH03150494A (en) 1989-11-07 1989-11-07 Nuclear fusion generator

Publications (1)

Publication Number Publication Date
JPH03150494A true JPH03150494A (en) 1991-06-26

Family

ID=17724829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288024A Pending JPH03150494A (en) 1989-11-07 1989-11-07 Nuclear fusion generator

Country Status (1)

Country Link
JP (1) JPH03150494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041361A3 (en) * 1995-06-06 1997-02-06 Andre Jouanneau Method and apparatus for producing and using plasma
US5729580A (en) * 1994-07-21 1998-03-17 Millspaugh; Gregory L. Hydrogen ion array acceleration generator and method
WO2022264567A1 (en) * 2021-06-16 2022-12-22 明美 深田 High voltage and high pressure direct application type nuclear fusion method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729580A (en) * 1994-07-21 1998-03-17 Millspaugh; Gregory L. Hydrogen ion array acceleration generator and method
WO1996041361A3 (en) * 1995-06-06 1997-02-06 Andre Jouanneau Method and apparatus for producing and using plasma
WO2022264567A1 (en) * 2021-06-16 2022-12-22 明美 深田 High voltage and high pressure direct application type nuclear fusion method
JP2022191576A (en) * 2021-06-16 2022-12-28 明美 深田 High-voltage electric high pressure direct applying fusion/thunderbolt nuclear fusion system

Similar Documents

Publication Publication Date Title
US11469002B2 (en) Methods, devices and systems for fusion reactions
Bernard et al. The dense plasma focus—A high intensity neutron source
US2991238A (en) Pinched plasma reactor
Yoshikawa Experiments on plasma confinement in internal-ring devices
CN113574206A (en) Magnetohydrodynamic hydrogen electric generator
US20180322963A1 (en) Helium generator
EP3014627B1 (en) Methods, devices and systems for fusion reactions
JP2022191419A (en) Reducing coulombic barrier to interacting reactants
US10767271B2 (en) Electrolysis reactor system
JPH03150494A (en) Nuclear fusion generator
JP2004507713A (en) Cold fusion under nonequilibrium conditions
EP1404897A4 (en) Pulsed electrolytic cell
US20200027570A1 (en) In space startup method for nuclear fusion rocket engines
JPH0368894A (en) Nuclear fusion generating device
US20080205572A1 (en) Apparatus and process for generating nuclear heat
Lehnert Basic features of EXTRAP concept
CN111133841A (en) Bench reactor
Chen et al. Introduction to Controlled Fusion
CA3063182C (en) Tabletop reactor
KR20160119481A (en) generating system using cold fusion
WO1991018397A1 (en) Deuterium accumulation energy conversion apparatus
EP0393463A2 (en) Electrode for nuclear fusion and method for using the same
EP0830688A1 (en) Triode apparatus for control of nuclear fusion
TW202146759A (en) Magnetohydrodynamic hydrogen electrical power generator
JPH03215786A (en) Solar fusion device