【発明の詳細な説明】[Detailed description of the invention]
[産業上の利用分野J
本発明は新規な石油精製及び石油化学プロセス用中和剤
に関するものである。さらに詳しくいえば、本発明は、
特に石油精製装置の腐食防止、例えば石油蒸留装置にお
ける初期水凝縮箇所で起こる酸腐食の防止、あるいは石
油化学プロセスにおける酸腐食や中和塩による弊害を防
止するのに好適な中和剤に関するものである。
[従来の技術J
石油精製や石油化学プロセスにおいては、原油中に含ま
れていて系内に持ち込まれる酸性物質や、プロセス内で
生成する酸性物質、例えば硫化水素、シアン化水素、二
酸化炭素、塩化水素などによって、原油塔などの塔内ト
レー、熱交換器、受容タンク、連結バイブなどの各機器
における金属表面上でpti低下による激しい酸腐食が
発生することが知られている。
例えば、原油の常圧蒸留装置においては、原油中に含ま
れる塩化マグネシウムや塩化カルシウムなどが、加熱に
より塩化水素を発生し、その結果、塔頂系でドレン水の
pHを著しく低下させて、激しい金属腐食をもたらす。
特に、水分が最初に凝縮する凝縮器中及び分留塔から通
じている塔頂管路中においては、激しい腐食が起こるの
を免れなしゝ。
このような酸腐食は、前記石油精製装置に限らず、石油
化学プロセスにおいても起こり、例えばトッパーを用い
て精製するBTX精製プロセスでは同様な問題が生じる
。また、これ以外でも、塩化水素とエチレンとからエチ
レンジクロリドを得たのち、脱塩酸して塩化ビニル七ツ
マ−を製造する塩ビモノマー製造プラントにおいても、
精製工程において微量の塩酸が存在するため、酸腐食を
引き起こすとともに、精製が困難となる場合がある。
したがって、従来、酸による腐食やその他の弊害を防止
、抑制するために、例えばアンモニア、モルホリン、エ
チレンジアミンやピペラジン(特公昭52−3898号
公報)、モノ又はジイソプロパノ−ルアミン(特公昭5
3−47241号公報)を系内に注入する方法が試みら
れている。
しかしながら、アンモニア、モルホリン、エチレンジア
ミンやピペラジンを装置内に注入する方法は、中和によ
り生成する塩酸塩が難溶性であったり、融点が高いため
に、装置内で析出して流路妨害を引き起こすおそれがあ
るという欠点を有している。
一方、モノ又はジイソプロパノ−ルアミンを注入する方
法においては、モノ又はジイソプロパノ−ルアミン塩酸
塩の融点が、前記アミン類の塩酸塩の融点に比べて低く
、流路妨害はかなり抑えられるものの、該塩酸塩の熱分
解温度が比較的低く、一部が熱分解を受けて塩化水素を
再度放出するおそれがあるなどの欠点を有している。
そこで、このような欠点を改良するために、生成する塩
酸塩の融点が低く、流路妨害が抑えられ、かつ分解によ
る塩化水素の再放出の少ない特定のアルカノールアミン
を含有する中和剤が提案され(特開昭63−15886
号公報)、実用されている。
しかしながら、このアルカノールアミンは、塩化水素と
反応して生成する塩が、トッパー塔頂部付近の温度条件
ではE) H4,0以下となり、このアルカノールアミ
ン塩酸塩と接する金属の酸腐食を完全には防止すること
ができない場合があるという欠点がある。
そこで、本発明者らは、先に、腐食傾向の強いトッパー
上部でのアミン塩酸塩の生成をできるだけ少なくするた
めに、予め加熱炉より前のラインにおいてアミン類を原
油中に添加し、ケロシン、軽油、重油ラインからアミン
塩酸塩として系外へ除去する方法を見い出した。しかし
ながら、このような方法においては、トッパー上部での
アミン塩酸塩による腐食をかなり防止しうるものの、ト
ッパー上部におけるアミン塩酸塩の生成を完全には阻止
することができず、さらに塩酸塩の腐食、性の低し)中
和剤の開発が強く望まれていた。[Industrial Application Field J The present invention relates to a novel neutralizing agent for petroleum refining and petrochemical processes. More specifically, the present invention
In particular, it relates to a neutralizing agent suitable for preventing corrosion in petroleum refinery equipment, for example, preventing acid corrosion that occurs at the initial water condensation point in petroleum distillation equipment, or preventing harmful effects caused by acid corrosion and neutralized salts in petrochemical processes. be. [Conventional Technology J In petroleum refining and petrochemical processes, acidic substances contained in crude oil and brought into the system and acidic substances generated in the process, such as hydrogen sulfide, hydrogen cyanide, carbon dioxide, hydrogen chloride, etc. It is known that severe acid corrosion occurs on the metal surfaces of various devices such as the trays in the crude oil tower, heat exchangers, receiving tanks, connecting vibes, etc. due to a decrease in PTI. For example, in a crude oil atmospheric distillation unit, magnesium chloride, calcium chloride, etc. contained in the crude oil generate hydrogen chloride when heated, and as a result, the pH of the drain water in the tower top system decreases significantly, resulting in severe Causes metal corrosion. In particular, severe corrosion is inevitable in the condenser where water first condenses and in the overhead pipe leading from the fractionating column. Such acid corrosion occurs not only in the petroleum refinery but also in petrochemical processes. For example, a similar problem occurs in the BTX refining process that uses a topper. In addition to this, in a vinyl chloride monomer manufacturing plant where ethylene dichloride is obtained from hydrogen chloride and ethylene, and then dehydrochloric acid is produced to produce vinyl chloride hetamine,
The presence of trace amounts of hydrochloric acid during the purification process may cause acid corrosion and make purification difficult. Therefore, in order to prevent and suppress corrosion and other harmful effects caused by acids, for example, ammonia, morpholine, ethylenediamine, piperazine (Japanese Patent Publication No. 52-3898), mono- or diisopropanolamine (Japanese Patent Publication No. 52-3898),
3-47241) into the system has been attempted. However, with the method of injecting ammonia, morpholine, ethylenediamine, or piperazine into the equipment, the hydrochloride produced by neutralization is poorly soluble or has a high melting point, so there is a risk that it will precipitate in the equipment and cause flow path obstruction. It has the disadvantage that there is On the other hand, in the method of injecting mono- or diisopropanolamine, the melting point of mono- or diisopropanolamine hydrochloride is lower than the melting point of the hydrochloride of the above-mentioned amines, and although flow path obstruction is considerably suppressed, the hydrochloride has a relatively low thermal decomposition temperature, and there is a risk that a portion of it will undergo thermal decomposition and release hydrogen chloride again. Therefore, in order to improve these drawbacks, a neutralizing agent containing a specific alkanolamine that has a low melting point of the generated hydrochloride, suppresses flow path obstruction, and reduces re-release of hydrogen chloride due to decomposition has been proposed. (Unexamined Japanese Patent Publication No. 63-15886
(No. Publication), has been put into practical use. However, when this alkanolamine reacts with hydrogen chloride, the salt produced becomes less than E) H4.0 under the temperature conditions near the top of the topper column, and acid corrosion of metals in contact with this alkanolamine hydrochloride is completely prevented. The disadvantage is that it may not be possible to do so. Therefore, the present inventors first added amines to the crude oil in the line before the heating furnace in order to minimize the formation of amine hydrochloride in the upper part of the topper, which has a strong tendency to corrode. We have found a method to remove the amine hydrochloride from the light oil and heavy oil lines. However, although such a method can considerably prevent corrosion caused by amine hydrochloride in the upper part of the topper, it cannot completely prevent the formation of amine hydrochloride in the upper part of the topper, and furthermore, corrosion of the hydrochloride, There was a strong desire to develop a neutralizing agent.
【発明が解決しようとする課題】[Problem to be solved by the invention]
本発明は、このような事情のもとで、石油精製及び石油
化学プロセスにおいて、特に石油精製装置の腐食防止、
例えば石油蒸留装置における初期水凝縮箇所で起こる酸
腐食の防止、あるいは石油化学プロセスにおける酸腐食
や中和塩による弊害を防止するのに効果的な中和剤を提
供することを目的としてなされIこものである。
[課題を解決するための手段]
本発明者らは、前記の好ましい性質を有する中和剤を開
発すべく鋭意研究を重ねた結果、塩基解離定数及び塩酸
塩の融点が特定の範囲にあるアミン類が、中和により生
成する塩酸塩の腐食性が極めて低い上、該塩酸塩によっ
て流路妨害をもたらすことがなく、このアミン類を含有
して成る中和剤により、その目的を達成しうろことを見
い出し、この知見に基づいて本発明を完成するに至った
。
すなわち、本発明は、温度25〜100℃における塩基
解離定数Kb値が15X1G−以上で、かつ塩酸塩の融
点が80℃以下のアミン類を含有して成る石油精製及び
石油化学プロセス用中和剤を提供するものである。
以下、本発明を詳細に説明する。
本発明の中和剤に用いられるアミン類は、温度25〜1
00℃における塩基解離定数Kb値が21XlO−以上
であることが必要である。この塩基解離定数Kb値が2
.5X1G−未満のものは、その塩酸塩の腐食性が高く
、本発明の目的が達せられない。さらに、該アミン類は
、その塩酸塩の融点が80℃以下であることが必要であ
る。
これは、塔頂部の温度が低い場合には、80℃程度にな
るので、アミン類の塩酸塩の融点がそれ以下のものでな
いと、塩化水素を捕捉して生成したアミン類の塩酸塩が
固体塩として析出し、流路妨害など好ましくない事態を
招来するおそれがあるからである。このようなアミン類
としては、例えばn−プロパノ−ルアミンなどを挙げる
ことができる。メチルエタノールアミン、モノイソプロ
パノ−ルアミン、モノエタノールアミンなどは、その塩
酸塩の融点が80℃以下であるが、塩基解離定数Kb値
が2.5XIO−未満であるので、Kb値が2.5Xl
O−以上のn−プロパノ−ルアミンなどに比べて、塔頂
部やオーバーヘッド系などにおける腐食防止効果がはる
かに劣る。
本発明の中和剤は、対象油中にそのまま注入してもよい
し、あらかじめ水、対象油、その他溶媒などに溶解し、
溶液の形で添加してもよく、また連続的に添加してもよ
いし、間欠的に添加してもよいが、連続的に添加するの
が有利であり、また、対象油中に均一に分散するように
、十分撹拌−しながら注入するのが特に好ましい。その
注入量は処理対象によっても異なるが、例えば対象油が
原油の場合、石油精製装置における初期凝縮部の水分の
pnを約5.0以上、好ましくは約6.0以上に上げる
のに十分な量とするのが望ましい。
さらに、本発明の中和剤は、本発明の目的を損なわない
範囲で、所望に応じ他の皮膜形成性アミンや公知の中和
剤とともに用いることもできる。
本発明の中和剤の注入箇所については特に制限はなく、
塔内に注入してもよく、また、例えば処理対象が原油の
場合には、原油脱塩器と加熱炉の間のラインにて、原油
中に添加することもできる。
これにより、加熱炉〜トッパー間で発生する塩化水素は
該中和剤のアミン類に捕捉され、その塩酸塩として、溶
融状態でケロシン、軽油、重油ラインなどから系外へ除
去されるので、トッパー上部やオーバーヘッド系におい
て、塩酸やアミン類の塩酸塩によるpH低下は起こらず
、系の腐食が防止される。
次に、処理対象が原油である場合における本発明の中和
剤を注入する方法の好適な1例を添付図面に従って説明
すると、第1図は原油の1塔式常圧蒸留法の1例の工程
図であって、まず原油は原油脱塩器lに連続的に供給さ
れて、脱塩、脱水、固形分の除去が行われる。脱塩器l
を出た原油はライン5を通って加熱炉2に供給されるが
、ライン5において、本発明の中和剤が原油中に添加さ
れる。加熱炉2で適当な温度まで加熱された該中和剤含
有原油は常圧蒸留塔3に供給され、各留分に分留される
。ナフサ蒸気は塔頂部よりラインフを通って凝縮され、
ナフサ留分としてナフサ受器4に集められ、ライン9を
通って系外へ排出されるとともに、−Sはライン8を通
ってトップリフラックスされる。ケロシン、軽油留分は
ラインlOを通って、残油はライン11を通って系外へ
排出される。6はサイドリフラックスラインである。
加熱炉2〜蒸留塔3間で発生した塩化水素ガスは、ライ
ン5にて原油中に添加された本発明の中和剤により捕捉
され、その塩酸塩として析出することなく、溶融状態の
形で、主としてライン10から系外に除去され、一部分
はライン11から系外に除去される。
【実施例J
次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
実施例1
n−プロパノ−ルアミン塩酸塩109及び純水109を
試験管に入れ、混合し−、アルゴンガスを通して脱気し
たのち、これにケロシン10+1を加え、90℃に昇温
後、表面積15cm”の軟鋼(SPCC)製テストピー
スを浸漬し、20時間後の腐食減量を求めた。なお、恒
温槽にて試験温度を90℃に保ち、空気の混入を防ぐた
めにアルゴンガスを通気した。n−ゲロパノールアミン
のにお値、塩酸塩の融点及び腐食減量を第1表に示す。
比較例1〜5
実施例1におけるn−プロパノ−ルアミン塩酸塩の代わ
りに、第1表に示す各種塩酸塩を用い、実施例1と同様
にして試験を行った。腐食減量をKb値及び塩酸塩の融
点とともに、第1表に示す。
(以下余白)
第1表から分かるように、本発明のn−プロパノ−ルア
ミンの塩酸塩は、比較例の他のアミン塩酸塩に比べて腐
食性が極めて小さい。なお、本発明のn−プロパノ−ル
アミンの塩酸塩は融点が低く、トッパー塔内環境では液
体であり、流路を妨害することがない。
[発明の効果]
本発明の中和剤は塩基解離定数Kb値及びその塩酸塩の
融点が特定の範囲にあるアミン類を含有するものであっ
て、中和により生成する塩酸塩の腐食性が極めて低い上
、該塩酸塩による流路妨害をもたらすことがなく、石油
精製及び石油化学プロセス用中和剤として、特に石油精
製装置の腐食防止、例えば石油蒸留装置における初期水
凝縮箇所で起こる酸腐食の防止、あるいは石油化学プロ
セスにおける酸腐食や中和塩による弊害を防止するのに
、好適に用いられる。Under these circumstances, the present invention is aimed at preventing corrosion of petroleum refining equipment, in particular, in petroleum refining and petrochemical processes.
For example, the purpose of this invention is to provide a neutralizing agent that is effective for preventing acid corrosion that occurs at the initial water condensation point in petroleum distillation equipment, or for preventing the harmful effects of acid corrosion and neutralizing salts in petrochemical processes. It is. [Means for Solving the Problems] As a result of intensive research to develop a neutralizing agent having the above-mentioned preferable properties, the present inventors found that an amine with a base dissociation constant and a hydrochloride melting point within a specific range. The hydrochloride produced by neutralization of these amines has extremely low corrosiveness, and the hydrochloride does not obstruct the flow path. Based on this finding, we have completed the present invention. That is, the present invention provides a neutralizing agent for petroleum refining and petrochemical processes, which contains an amine having a base dissociation constant Kb value of 15X1G- or more at a temperature of 25 to 100°C and a hydrochloride melting point of 80°C or less. It provides: The present invention will be explained in detail below. The amines used in the neutralizing agent of the present invention have a temperature of 25 to 1
It is necessary that the base dissociation constant Kb value at 00°C is 21XlO- or more. This base dissociation constant Kb value is 2
.. If it is less than 5X1G-, the hydrochloride thereof is highly corrosive and the object of the present invention cannot be achieved. Further, it is necessary that the hydrochloride of the amine has a melting point of 80° C. or lower. If the temperature at the top of the column is low, it will be around 80°C, so unless the melting point of the amine hydrochloride is lower than that, the amine hydrochloride produced by capturing hydrogen chloride will turn solid. This is because there is a risk that it will precipitate as a salt and cause undesirable situations such as obstruction of the flow path. Examples of such amines include n-propanolamine. Methylethanolamine, monoisopropanolamine, monoethanolamine, etc. have melting points of their hydrochlorides below 80°C, but the base dissociation constant Kb value is less than 2.5XIO-, so the Kb value is 2.5Xl.
Compared to n-propanolamine having O- or more, it has a far inferior corrosion prevention effect at the top of the column and overhead system. The neutralizing agent of the present invention may be directly injected into the target oil, or may be dissolved in water, target oil, other solvents, etc. in advance, and
It may be added in the form of a solution, and it may be added continuously or intermittently, but it is advantageous to add it continuously, and it may be added uniformly into the target oil. It is particularly preferable to inject the mixture with sufficient stirring to ensure dispersion. The injection amount varies depending on the target to be treated, but for example, if the target oil is crude oil, the injection amount is sufficient to raise the pn of water in the initial condensation section of the oil refinery to about 5.0 or more, preferably about 6.0 or more. It is preferable to set it as a quantity. Furthermore, the neutralizing agent of the present invention can be used together with other film-forming amines or known neutralizing agents as desired, as long as the object of the present invention is not impaired. There are no particular restrictions on the injection location of the neutralizer of the present invention.
It may be injected into the column, or, for example, if the object to be treated is crude oil, it may be added to the crude oil in a line between the crude oil desalter and the heating furnace. As a result, hydrogen chloride generated between the heating furnace and the topper is captured by the amines of the neutralizing agent, and is removed from the system as a hydrochloride in a molten state from the kerosene, light oil, heavy oil line, etc. In the upper part or overhead system, no pH drop occurs due to hydrochloric acid or amine hydrochloride, and corrosion of the system is prevented. Next, a preferred example of the method for injecting the neutralizing agent of the present invention when the object to be treated is crude oil will be explained with reference to the attached drawings. Figure 1 shows an example of a single column atmospheric distillation method for crude oil. This is a process diagram. First, crude oil is continuously supplied to a crude oil desalter 1, where it is desalted, dehydrated, and solids removed. Desalter l
The crude oil that has exited is supplied to the heating furnace 2 through line 5, where the neutralizing agent of the present invention is added to the crude oil. The neutralizing agent-containing crude oil heated to an appropriate temperature in the heating furnace 2 is supplied to the atmospheric distillation column 3 and fractionated into each fraction. Naphtha vapor is condensed from the top of the tower through a linef.
The naphtha fraction is collected in the naphtha receiver 4 and discharged to the outside of the system through line 9, while -S is top refluxed through line 8. The kerosene and gas oil fractions are discharged through line IO, and the residual oil is discharged out of the system through line 11. 6 is a side reflux line. The hydrogen chloride gas generated between the heating furnace 2 and the distillation column 3 is captured by the neutralizing agent of the present invention added to the crude oil in the line 5, and is not precipitated as a hydrochloride, but remains in a molten state. , is mainly removed from the system through line 10, and a portion is removed from the system through line 11. [Example J] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples. Example 1 N-propanolamine hydrochloride 109 and pure water 109 were placed in a test tube, mixed, and degassed through argon gas. Kerosene 10+1 was added thereto, and after heating to 90°C, the surface area was 15 cm. A test piece made of mild steel (SPCC) was immersed, and the corrosion loss after 20 hours was determined.The test temperature was maintained at 90°C in a constant temperature bath, and argon gas was vented to prevent air from entering.n- Table 1 shows the chemical value of gelopanolamine, the melting point of hydrochloride, and the corrosion loss. Comparative Examples 1 to 5 In place of n-propanolamine hydrochloride in Example 1, various hydrochloric acids shown in Table 1 were used. A test was conducted using salt in the same manner as in Example 1. The corrosion loss is shown in Table 1 along with the Kb value and the melting point of the hydrochloride. -Propanolamine hydrochloride has extremely low corrosivity compared to other amine hydrochlorides in comparative examples.The n-propanolamine hydrochloride of the present invention has a low melting point and is liquid in the topper column environment. [Effects of the Invention] The neutralizing agent of the present invention contains an amine whose base dissociation constant Kb value and the melting point of its hydrochloride are within a specific range. The hydrochloride produced by neutralization has extremely low corrosiveness, and the hydrochloride does not cause flow channel obstruction, and can be used as a neutralizing agent for petroleum refining and petrochemical processes, especially for preventing corrosion of petroleum refining equipment, e.g. It is suitably used to prevent acid corrosion that occurs at the initial water condensation point in petroleum distillation equipment, or to prevent harmful effects caused by acid corrosion and neutralized salts in petrochemical processes.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は、本発明の中和剤を注入する方法の1例を説明
するための原油の1塔式常圧蒸留法の1例の工程図であ
って、図中符号lは原油脱塩器、2は加熱炉、3は常圧
蒸留塔、4はナフサ受器である。FIG. 1 is a process diagram of an example of a one-column atmospheric distillation method for crude oil to explain an example of the method of injecting the neutralizing agent of the present invention, and the symbol l in the figure is a crude oil desalting process. 2 is a heating furnace, 3 is an atmospheric distillation column, and 4 is a naphtha receiver.