JPH03150352A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH03150352A
JPH03150352A JP28750389A JP28750389A JPH03150352A JP H03150352 A JPH03150352 A JP H03150352A JP 28750389 A JP28750389 A JP 28750389A JP 28750389 A JP28750389 A JP 28750389A JP H03150352 A JPH03150352 A JP H03150352A
Authority
JP
Japan
Prior art keywords
sample
electron beam
thin film
film
irradiated object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28750389A
Other languages
Japanese (ja)
Inventor
Masaaki Sudo
正昭 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28750389A priority Critical patent/JPH03150352A/en
Publication of JPH03150352A publication Critical patent/JPH03150352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To allow the efficient use of a sample for formation of a thin film by rotating and moving the sample back and forth in a crucible when the sample is irradiated with an electron beam in a vacuum chamber and forming the thin film by the sample on a substrate surface. CONSTITUTION:A substrate 9 for forming the thin film is supported by a holding member 10 in the vacuum chamber 31 and the sublimatable sample 3, such as graphite, is mounted to a shaft 17 and is disposed in the crucible 1 below the same. The sample 3 is irradiated with the electron beam 6 of high energy generated from a filament 24 of an electron gun provided near the crucible 1, by which the sample is heated and sublimated and the thin film 8 consisting of the graphite is formed on the surface of the substrate 9. The sample 3 is rotated in a 34b direction around the shaft 17 and is moved back and forth in 19a, 19b directions during this operation. The surface of the sample 3 is spirally irradiated with the electron beam 6 is thereby sublimated, by which the surface of the sample 3 is uniformly sublimated and the thin film is formed on the substrate 9. The thickness of the graphite film to be formed in detected by providing a film thickness detecting section 11 near the substrate 9. The irradiation with the electron beam 6 is automatically stopped in a control section 13 when the prescribed thickness is attained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高真空中で薄膜を形成するための薄膜形成装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thin film forming apparatus for forming a thin film in a high vacuum.

(従来の技術) 電子衝撃式の蒸発を利用した薄膜形成装置において、炭
素のような昇華性物質を蒸発させると、特に電子ビーム
が当たる所のみ深い穴があくという現象がおこる。この
穴堀現象が生じると蒸発速度が低下するが、さらに穴明
き後も電子ビームを照射し続けると、るつぼの損傷へと
つながる。また、蒸発物質を効率よく蒸発させることが
できないために、試料交換の時間も早まり、特に、真空
層内での交換となるため面倒なも、のとなる。
(Prior Art) When a sublimable substance such as carbon is evaporated in a thin film forming apparatus using electron impact evaporation, a phenomenon occurs in which deep holes are formed only in the areas that are particularly hit by the electron beam. When this hole-hole phenomenon occurs, the evaporation rate decreases, but if the electron beam continues to be irradiated even after the hole has been drilled, it will lead to damage to the crucible. Furthermore, since the evaporated substance cannot be evaporated efficiently, the time required for sample exchange is shortened, and in particular, the exchange is performed within a vacuum layer, which is troublesome.

これを解決する手法として、例えば特公昭51−602
5号及び特公昭51−17148号に開示されているよ
うに、ビームをX軸、Y軸にスキャニングさせる方法が
ある。この方法は磁場を付加しながら、電子ビームをス
キャニングさせ蒸発させるものである。
As a method to solve this problem, for example,
5 and Japanese Patent Publication No. 51-17148, there is a method of scanning the beam in the X-axis and the Y-axis. This method involves scanning and evaporating an electron beam while applying a magnetic field.

(発明が解決しようとする課題) しかしながら、この様な従来の解決手法は、以下のよう
な欠点をもっている。すなわち、■スキャニング範囲に
限界があり、範囲を拡大しようとすると装置が大型化す
る。■スキャニング範囲を大きくすると、蒸発させるた
めの電子ビーム出力を大きくせざるを得ない。■成膜中
に、RHE E D (Reflectlon hlg
h energy electrondlffract
ion;高速反射電子線回折法)などによる測定を行な
う場合、磁場変動により電子線が振動し、精密な測定が
行えない。
(Problems to be Solved by the Invention) However, such conventional solutions have the following drawbacks. That is, (1) there is a limit to the scanning range, and attempting to expand the range would increase the size of the device; ■If the scanning range is increased, the output of the electron beam for evaporation must be increased. ■During film formation, RHE E D (Reflectlon hlg
h energy electrondlffract
ion (high-speed reflection electron beam diffraction method), etc., the electron beam oscillates due to magnetic field fluctuations, making it impossible to perform precise measurements.

本発明は、上記事情に着目してなされたもので、昇華性
物質に対しても安定した蒸発速度をうろことができ、蒸
発物質の効率的利用および電子ビームの低出力化を可能
とする、電子衝撃式の薄膜形成装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances, and is capable of achieving a stable evaporation rate even for sublimable substances, making it possible to efficiently utilize the evaporation substance and lowering the output of the electron beam. The purpose of the present invention is to provide an electron impact type thin film forming apparatus.

【発明の構成] (課題を解決するための手段と作用) 本発明は、蒸発物質からなる被照射体に電子ビームを照
射しこれにより蒸発した蒸発物質を被成膜体に成膜させ
る薄膜形成装置において、上記電子ビームを一定の照射
位置に照射する電子ビーム照射手段と、上記被照射体を
上記照射位置に保持するとともに上記電子ビームをこの
電子ビームが上記被照射体を均一に照射するように移動
させる被照射体保持手段と、この被照射体保持手段に保
持された被照射体からの上記蒸発物質を被着する位置に
設けられ上記被成膜体を保持する被成膜体保持手段と、
上記被成膜体において成膜された薄膜の膜厚を検出する
膜厚検出手段と、この膜厚検出手段における膜厚検出結
果に基づいて被成膜体保持手段による上記被照射体の移
動を制御する制御手段とを具備するもので、電子ビーム
の出力を変動させることなく、試料の蒸発速度を制御で
きる結果、昇華性物質に対して顕著に生じる穴掘り現象
を抑制できるので、穴掘り現象による蒸発速度低下を防
止できるとともに、薄膜を形成するのに、蒸発速度と時
間の関係から膜厚を決定する場合は、蒸発速度を安定化
できるため、膜厚誤差の少ない薄膜を製作できる。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides a thin film formation method in which an electron beam is irradiated onto an irradiated object made of an evaporated substance, and thereby the evaporated substance is deposited on the irradiated object. The apparatus includes an electron beam irradiation means for irradiating the electron beam to a fixed irradiation position, and an electron beam irradiation means for holding the irradiation object at the irradiation position and controlling the electron beam so that the electron beam uniformly irradiates the irradiation object. an irradiation object holding means for moving the irradiation object to the irradiation object holding means; and a film formation object holding means for holding the film formation object, which is provided at a position to deposit the evaporated substance from the irradiation object held by the irradiation object holding means. and,
A film thickness detecting means for detecting the thickness of the thin film formed on the film-forming object, and a film-forming object holding means that controls the movement of the irradiated object based on the film thickness detection result of the film thickness detecting means. As a result, the evaporation rate of the sample can be controlled without changing the output of the electron beam, and as a result, the burrowing phenomenon that occurs noticeably with sublimable substances can be suppressed. In addition, if the film thickness is determined based on the relationship between the evaporation rate and time when forming a thin film, the evaporation rate can be stabilized, making it possible to produce a thin film with less error in film thickness.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図及び第2図は、この実施例の薄膜形成装置を示し
ている。この薄膜形成装置は、有底円筒状の耐火物質か
らなるるつぼ(1)と、このるつぼ(1)の中空部(2
)にて試料(3)を水平方向の軸線(4)のまわりに回
転自在かつ軸線(4)にそって進退自在に保持する試料
保持部(5)と、この試料保持部(5)に保持された円
柱状の試料(3)に電子ビーム(8)を放射する電子ビ
ーム放射部(7)と、この試料保持部(5)に保持され
た試料(3)の直上位置に設けられ薄膜(8)が形成さ
れる基板(9)を保持する基板保持部(10)と、この
基板保持部(1G)に形成された薄膜(8)の膜厚を検
出する膜厚検出部(11)と、上記るつぼ(1)及び上
記試料保持部(5)°に保持された試料(3)及び基板
保持部(lO)を真空状態にて格納する格納部(12)
と、上記試料保持部(5)及び上記電子ビーム放射部(
7)及び上記膜厚検出部(11)に電気的に接続された
制御(13)とからなっている。しかして、るつぼ(1
)の中空部(2)は、上方にすり林状に開口している。
1 and 2 show the thin film forming apparatus of this embodiment. This thin film forming apparatus includes a bottomed cylindrical crucible (1) made of a refractory material, and a hollow part (2) of the crucible (1).
), the sample holding part (5) holds the sample (3) rotatably around the horizontal axis (4) and moving forward and backward along the axis (4), and the sample is held in the sample holding part (5). An electron beam emitting part (7) that emits an electron beam (8) to a cylindrical sample (3), and a thin film ( 8), a substrate holder (10) that holds the substrate (9) on which the substrate 8) is formed, and a film thickness detector (11) that detects the thickness of the thin film (8) formed on the substrate holder (1G). , a storage section (12) for storing the sample (3) held in the crucible (1) and the sample holding section (5) and the substrate holding section (lO) in a vacuum state.
and the sample holding section (5) and the electron beam emitting section (
7) and a control (13) electrically connected to the film thickness detection section (11). However, the crucible (1
The hollow part (2) of ) opens upward in the form of a forest.

そうして、るつぼ(1)には、試料(3)が遊挿される
横穴(14)が穿設されている。この横穴(14)の軸
線は、中空部(2)の軸線に直交している。また、横穴
(14)の一端部は、るつぼ(1)の側面に開口し、他
、端部は中空部(2)を横切って中途まで延在している
。さらに、るつぼ(1)の横穴(14)が開口している
一側部に対し反対側の他側部には突出部(tS)が、設
けられている。この突出部(15)には、上下方向に電
子ビーム(6)が通過する案内孔(18)が穿設されて
いる。また、突出部(15)上端部には、シールド板(
15a)が、横方向に突設されている。なお、図示せぬ
が、るつぼ(1)は、水冷機構により、冷却されるよう
になっている。一方、試料保持部(5)は、一端部に試
料(3)を同軸に保持する導電性のシャフト(17)と
、このシャフト(17)の他端部に連結されシャフト(
17)を軸線(4)のまわりに回転させる例えばパルス
モータなどからなる第1の駆動手段(18)と、この第
1の駆動手段(18)を保持してシャフト(17)を軸
線(4)に沿う矢印(19a)。
The crucible (1) has a horizontal hole (14) into which the sample (3) is loosely inserted. The axis of this horizontal hole (14) is perpendicular to the axis of the hollow part (2). Moreover, one end of the horizontal hole (14) opens to the side surface of the crucible (1), and the other end extends halfway across the hollow part (2). Further, a protrusion (tS) is provided on the other side of the crucible (1) opposite to the one side where the side hole (14) is open. This protrusion (15) is provided with a guide hole (18) through which the electron beam (6) passes in the vertical direction. In addition, a shield plate (
15a) is provided to protrude laterally. Although not shown, the crucible (1) is cooled by a water cooling mechanism. On the other hand, the sample holder (5) has a conductive shaft (17) coaxially holding the sample (3) at one end, and a shaft (17) connected to the other end of the shaft (17).
17) around the axis (4), a first drive means (18) consisting of, for example, a pulse motor, and a shaft (17) that holds the first drive means (18) and rotates the shaft (17) around the axis (4). An arrow along (19a).

(19b)方向に進退させる第2の駆動手段(20)と
からなっている。この第2の駆動手段(20)は、シャ
フト(17)が連結された第1の駆動手段(18)を保
持する保持体(21)と、この保持体(21)を矢印(
19a)。
(19b) A second driving means (20) for advancing and retracting in the direction (19b). This second drive means (20) includes a holder (21) that holds a first drive means (18) to which a shaft (17) is connected, and a holder (21) that is connected to an arrow (
19a).

(19b)方向に案内する案内機構(22)と、この案
内機構(22)により案内される方向に保持体(21)
を駆動する例えばパルスモータなどの駆動源(23)と
からなっている。なお、この試料保持部(5)は、シャ
フト(11)の一部を除いて格納部(12)の外側に設
けられている。他方、電子ビーム放射部(7)は、電子
ビーム(6)が通過する案内孔(16)の下端部間口に
近接して設けられたフィラメント(24)と、このフィ
ラメント(24)が取り付けられた導電性の台座(25
)と、この台座(25)に電気的に接続された第1の高
圧ケーブル(26)と、シャフト(17)に電気的に接
続された第2の高圧ケーブル(21)と、これら第1の
高圧ケーブル(2G)と第2の高圧ケーブル(21)と
が電気的に接続された高圧電源(28)とからなってい
る。この高圧電源(28)により、シャフト(17)側
が陽極に、また、フィラメント(24)側が陰極となる
。なお、シャフト(11)は、第1の駆動手段(18)
に図示せぬ絶縁体を介して連結され、第1の駆動手段(
18)に流れないようになっている。さらに、上記膜厚
検出部(11)は、基板保持部(10)に保持された基
板(9)に近接して設けられ基板保持部(10)に形成
された薄膜(8)の膜厚に対応する周波数を有する電気
信号Sdを出力する水晶発振子(29)と、成膜部(1
2)の外側に設けられ水晶発振子(29)から出力され
た電気信号SDを入力して薄膜(8)の膜厚dを演算し
演算結果を示す電気信号SDを制御部(13)に印加す
る膜厚モニタ(30)とからなっている。そうして、成
膜部(12)は、例えばステンレス製の真空槽(31)
と、この真空層(31)の内部を真空状態にする真空源
(32)とからなっている。そして、シャフト(17)
は、真空槽(31)に気密に挿脱自在に取り付けられて
いる。さらに、制御H(13)は、電気信号SDを人力
するとともに、この電気信号SDに基づいて制御信号S
CI。
(19b) A guide mechanism (22) that guides in the direction, and a holder (21) in the direction guided by this guide mechanism (22).
and a drive source (23) such as a pulse motor. In addition, this sample holding part (5) is provided outside the storage part (12) except for a part of the shaft (11). On the other hand, the electron beam emitting part (7) includes a filament (24) provided close to the lower end opening of the guide hole (16) through which the electron beam (6) passes, and a filament (24) to which the filament (24) is attached. Conductive pedestal (25
), a first high voltage cable (26) electrically connected to this pedestal (25), a second high voltage cable (21) electrically connected to the shaft (17), and It consists of a high voltage power source (28) to which a high voltage cable (2G) and a second high voltage cable (21) are electrically connected. This high voltage power supply (28) makes the shaft (17) side an anode and the filament (24) side a cathode. Note that the shaft (11) is the first driving means (18).
is connected to the first drive means (
18). Further, the film thickness detection unit (11) is provided close to the substrate (9) held by the substrate holding unit (10), and is configured to detect the thickness of the thin film (8) formed on the substrate holding unit (10). A crystal oscillator (29) that outputs an electric signal Sd having a corresponding frequency and a film forming section (1
2) inputs the electric signal SD outputted from the crystal oscillator (29), calculates the film thickness d of the thin film (8), and applies the electric signal SD indicating the calculation result to the control section (13). and a film thickness monitor (30). Then, the film forming section (12) is installed in a vacuum chamber (31) made of stainless steel, for example.
and a vacuum source (32) that brings the inside of this vacuum layer (31) into a vacuum state. And the shaft (17)
is attached to the vacuum chamber (31) in an airtight manner so that it can be freely inserted and removed. Further, the control H (13) manually generates the electric signal SD, and also generates the control signal S based on this electric signal SD.
C.I.

SC2,SC3をそれぞれ第1の駆動手段(18)及び
第2の駆動手段(20)の駆動源(23)及び高圧電源
(28)に印加するようなプログラムが組み込まれてい
る。
A program is incorporated to apply SC2 and SC3 to the drive source (23) and high voltage power supply (28) of the first drive means (18) and second drive means (20), respectively.

つぎに、上記構成の薄膜形成装置の作動について述べる
Next, the operation of the thin film forming apparatus having the above configuration will be described.

まず、基板保持部(lO)に基板(9)を保持させる。First, the substrate (9) is held by the substrate holding section (lO).

ついで、試料(3)を試料保持部(5)に保持させる。Next, the sample (3) is held in the sample holding section (5).

その結果、試料(3)は、るつぼ(1)の中空部(2)
横穴(14)と同軸となる位置に位置決めされる。
As a result, the sample (3) is placed in the hollow part (2) of the crucible (1).
It is positioned coaxially with the horizontal hole (14).

このとき、試料(3)は、その先端部に電子ビーム(6
)が照射されるように調整されている。そして、基板(
9)及び試料(3)を格納している真空槽(31)内を
真空源(32)により真空状態にする。つぎに、制御部
(13)から制御信号SC3を高圧電源(28)に印加
する。その結果、シャフト(17)側が陽極に、また、
フィラメント(24)側が陰極となり、フィラメント(
24)から電子ビーム(6)が案内孔(IB)を経由し
て矢印(33)方向に放射される。この電子ビーム(6
)は、陽極となっている試料(3)を照射し衝撃を与え
る。なお、シールド板<15a)は、試料(3)の蒸発
の際に生じるプラズマや迷走蒸発物質によるフィラメン
ト(20及び第1の高圧ケーブル(26)の汚染を防止
する役割を果たしている。一方、制御部(13)からは
第1の駆動手段(18)及び第2の駆動手段(20)の
駆動源(23)に制御信号SCI。
At this time, the sample (3) has an electron beam (6
) is adjusted so that it is irradiated. And the board (
9) and the inside of the vacuum chamber (31) storing the sample (3) is brought into a vacuum state by a vacuum source (32). Next, a control signal SC3 is applied from the control section (13) to the high voltage power supply (28). As a result, the shaft (17) side becomes the anode, and
The filament (24) side becomes the cathode, and the filament (
24), an electron beam (6) is emitted in the direction of arrow (33) via a guide hole (IB). This electron beam (6
) irradiates and shocks the sample (3), which serves as an anode. Note that the shield plate <15a) plays a role in preventing contamination of the filament (20 and the first high-voltage cable (26)) by plasma and stray evaporated substances generated during evaporation of the sample (3). A control signal SCI is supplied from the unit (13) to the drive sources (23) of the first drive means (18) and the second drive means (20).

SC2が印加される。その結果、シャフト(17)は、
軸線(4)のまわり矢印(34a)方向に毎分10回転
しながら、軸線(4)に沿う矢印(19a)方向に毎分
51で移動する。つまり、試料(3)は、螺旋運動する
ことになる。すると、電子ビーム(6)による衝撃を受
けている試料(3)は、溶融する。その結果、試料(3
)は、第3図に示すように、クラスタ分子(35)・・
・となって蒸発し、基板(9)及び水晶発振子(29)
上に薄膜(8)が形成される。そして、螺旋運動してい
る試料(3)には、電子ビーム(6)の照射スポットの
軌跡に対応して、第4図に示すような螺旋溝(35)が
形成される。しかして、試料(3)の先端部から末端部
までの電子ビーム(6)の照射が完了−すると、今度は
、制御部(13)から第1の駆動手段(18)及び第2
の駆動手段(2◎)の駆動源(23)に制御信号SC1
,SC2が印加される。その結果、シャフト(ty)は
、軸111(4)のまわり矢印(34b)方向に毎分1
0回転で回転しながら、軸線(4)に沿う矢印(19b
)方向に毎分5龍で移動する。
SC2 is applied. As a result, the shaft (17)
It rotates around the axis (4) in the direction of the arrow (34a) at 10 revolutions per minute and moves along the axis (4) in the direction of the arrow (19a) at a rate of 51 per minute. In other words, the sample (3) moves in a spiral manner. Then, the sample (3) being bombarded by the electron beam (6) melts. As a result, sample (3
) is a cluster molecule (35) as shown in Figure 3.
・It evaporates and the substrate (9) and crystal oscillator (29)
A thin film (8) is formed on top. A spiral groove (35) as shown in FIG. 4 is formed in the spirally moving sample (3), corresponding to the locus of the irradiation spot of the electron beam (6). When the irradiation of the electron beam (6) from the tip to the end of the sample (3) is completed, the controller (13) then moves the first driving means (18) and the second driving means (18) to the second driving means (18).
A control signal SC1 is applied to the drive source (23) of the drive means (2◎).
, SC2 are applied. As a result, the shaft (ty) moves about the axis 111 (4) in the direction of the arrow (34b) at a rate of 1/min.
While rotating at 0 rotations, move the arrow (19b) along the axis (4).
) direction at 5 dragons per minute.

つまり、試料(3)は、反対方向に螺旋運動することに
なる。このとき、螺旋溝(35)の凸部に電子ビーム(
6)が照射されるよう調節しておく。すると、螺旋溝(
35)の凸部は、第5図に示すように、電子ビーム(8
)の照射によって平坦化される。これにより、試料(3
)を有効利用することが可能となる。
In other words, the sample (3) will spirally move in the opposite direction. At this time, the electron beam (
Adjust so that 6) is irradiated. Then, the spiral groove (
As shown in FIG. 5, the convex portion of the electron beam (8
) is flattened by irradiation. As a result, the sample (3
) can be used effectively.

しかして、水晶発振子(29)からは、電気信号Sdが
膜厚モニタ(30)に入力する。ついで、この膜厚モニ
タ(30)からは、膜厚(8)の膜厚dを示す電気信号
SDが、制御部(13)に人力する。そして、この制御
部(13)にて薄膜(8)の膜厚dが所望の値に達した
かどうかの判定処理がおこなわれる。また、制御部(1
3)にては、薄膜(8)の膜厚dを示す電気信号SDに
基づいて、成膜速度を演算し、演算された成膜速度があ
らかじめ設定していたものに比べてずれてている場合は
、このずれを解消すべく、制御部(13)からシャフト
(17)の回転速度及び進退速度を変更するための制御
信号SC1″。
Thus, an electrical signal Sd is input from the crystal oscillator (29) to the film thickness monitor (30). Next, from this film thickness monitor (30), an electric signal SD indicating the film thickness d of film thickness (8) is manually inputted to the control section (13). The control unit (13) then performs a process of determining whether the thickness d of the thin film (8) has reached a desired value. In addition, the control unit (1
In 3), the film formation speed is calculated based on the electric signal SD indicating the film thickness d of the thin film (8), and the calculated film formation speed deviates from the preset value. If so, in order to eliminate this deviation, a control signal SC1'' is sent from the control unit (13) to change the rotational speed and advance/retreat speed of the shaft (17).

SC2が第1の駆動手段(18)及び第2の駆動手段(
2G)の駆動源(23)に出力され、成膜速度が一定と
なるようフィードバックamされる。この判定処理にお
いて、薄膜(8)の膜厚dが所望の値に達したと判定さ
れたとき、制御部(13)から$制御信号SC3が高圧
電源(28)に印加される。その結果、高圧電源(28
)による高圧電圧の印加が停止し、これにより電子ビー
ム(6)の資料(3)への照射も停止する。
SC2 has a first drive means (18) and a second drive means (
2G) is outputted to the drive source (23), and fed back am to keep the film forming rate constant. In this determination process, when it is determined that the film thickness d of the thin film (8) has reached a desired value, a $ control signal SC3 is applied from the control section (13) to the high voltage power supply (28). As a result, a high voltage power supply (28
) stops applying the high voltage, thereby stopping the irradiation of the electron beam (6) to the material (3).

以上のように、この実施例の薄膜形成装置においては、
以下のような格別の効果を奏する。■電子ビーム(6)
の出力を変動させることなく、試料(3)の蒸発速度を
制御できる。その結果、昇華性物質に対して顕著に生じ
る穴掘り現象を抑制できるので、穴掘り現象による蒸発
速度低下を防止できる。また、薄膜(8)を形成するの
に、蒸発速度と時間の関係から膜厚を決定する場合は、
蒸発速度を安定化できるため、膜厚誤差の少ない薄膜(
8)を製作できる。■試料(3)を効率よく使用できる
ので、試料(3)の寿命も長くなり、真空容器(31)
内における面倒な交換作業の頻度も少な(なり、生産性
向上にも寄与する。■電子ビーム(6)の照射位置は、
常に一定にしておけばよいので、スキャニングの必要が
なくなる。したがって、装置が大型化することがなく、
装置コストが安くなる。
As mentioned above, in the thin film forming apparatus of this example,
It produces the following special effects. ■Electron beam (6)
The evaporation rate of the sample (3) can be controlled without changing the output of the sample (3). As a result, it is possible to suppress the burrowing phenomenon that occurs noticeably in the sublimable substance, thereby preventing a decrease in the evaporation rate due to the burrowing phenomenon. In addition, when determining the film thickness from the relationship between evaporation rate and time to form the thin film (8),
Because the evaporation rate can be stabilized, thin films with less film thickness errors (
8) can be manufactured. ■Since the sample (3) can be used efficiently, the life of the sample (3) is extended, and the vacuum container (31)
The irradiation position of the electron beam (6) is:
Since it only needs to be kept constant, there is no need for scanning. Therefore, the device does not become large and
Equipment costs are reduced.

なお、資料の形状は、円柱状でなく、例えば横断面が正
方形の角柱状のものでもよい。この場合、試料は、長手
方向のまわりに回転させることなく、長手方向に移動さ
せるだけで、各側面ごとに電子ビームを照射すればよい
。のみならず、試料の移動は、電子ビームが均一に照射
されるかぎりその方向には限定されない。さらに、電子
ビームがうまく試料に照射できるように、磁力を付加す
るようにしてもよい。さらにまた、電子ビームの照射は
、本発明のように、いわゆる電子衝撃式のものにかぎる
ことなく、電子銃方式のものでもよい。
Note that the shape of the material is not cylindrical, but may be, for example, a prismatic shape with a square cross section. In this case, the sample only needs to be moved in the longitudinal direction without being rotated around the longitudinal direction, and each side of the sample can be irradiated with the electron beam. Furthermore, the movement of the sample is not limited to that direction as long as the electron beam is uniformly irradiated. Furthermore, a magnetic force may be added so that the sample can be properly irradiated with the electron beam. Furthermore, the electron beam irradiation is not limited to the so-called electron impact type as in the present invention, and may be an electron gun type.

ただし、この場合、照射位置は、固定する必要がある。However, in this case, the irradiation position needs to be fixed.

[発明の効果] 本発明は、この実施例の薄膜形成装置においては、以下
のような各別の効果を奏する。■電子ビームの出力を変
動させることなく、試料の蒸発速度を制御できる。その
結果昇華性物質に対して顕著に生じる穴場り現象を抑制
できるので、穴場り現象による蒸発速度低下を防止でき
る。また、薄膜を形成するのに、蒸発速度と時間の関係
から膜厚を決定する場合は、蒸発速度を安定化できるた
め、膜厚誤差の少ない薄膜を製作できる。■試料を効率
よく使用できるので、試料の寿命も長くなり、真空容器
内における面倒な交換作業の顯度も少なくなり、生産性
向上にも寄与する。■電子ビームの照射位置は、常に一
定にしておけばよいので、スキャニングの必要がなくな
る。したがって、装置が大型化・複雑化することなく、
装置コストが安くなる。
[Effects of the Invention] The present invention provides the following effects in the thin film forming apparatus of this embodiment. ■The sample evaporation rate can be controlled without changing the electron beam output. As a result, it is possible to suppress the phenomenon of evaporation that occurs noticeably with respect to sublimable substances, thereby preventing a decrease in the evaporation rate due to the phenomenon of evaporation. Further, when forming a thin film, when determining the film thickness from the relationship between the evaporation rate and time, the evaporation rate can be stabilized, so a thin film with less error in film thickness can be manufactured. ■Since the sample can be used efficiently, the life of the sample is extended, and the troublesome replacement work inside the vacuum container is reduced, contributing to improved productivity. ■Since the irradiation position of the electron beam can always be kept constant, there is no need for scanning. Therefore, without making the device larger or more complex,
Equipment costs are lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜形成装置の構成図、第
2図は同じく要部を示す拡大図、第3図ないし第5図は
同じく作動説明図である。 (1)・・・るつぼ、 (2)・・・中空部(開口部)、 (3》・・・試料(被照射体)、 (5)・・・試料保持部(−被照射体保持手段)、(8
》・・・電子ビーム、 (7)・・・電子ビーム放射部(電子ビーム照射手段)
(8)・・・薄膜、− (9)・・一基板(被成膜体)、 (10)・・・基板保持部(m成膜体保持手段)、(1
1)・・・膜厚検出部(膜厚検出手段)、(131−・
制御部(制御手段)、 (14)・・−横穴。
FIG. 1 is a block diagram of a thin film forming apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged view showing the main parts, and FIGS. 3 to 5 are operation explanatory diagrams. (1)... Crucible, (2)... Hollow part (opening), (3)... Sample (irradiated object), (5)... Sample holding part (- irradiated object holding means) ), (8
>> Electron beam, (7) Electron beam irradiation unit (electron beam irradiation means)
(8) Thin film, - (9) One substrate (film-forming object), (10) Substrate holding part (film-forming object holding means), (1
1)...Film thickness detection unit (film thickness detection means), (131-...
Control part (control means), (14)...-side hole.

Claims (3)

【特許請求の範囲】[Claims] (1)蒸発物質からなる被照射体に電子ビームを照射し
これにより蒸発した蒸発物質を被成膜体に成膜させる薄
膜形成装置において、上記電子ビームを一定の照射位置
に照射する電子ビーム照射手段と、上記被照射体を上記
照射位置に保持するとともに上記電子ビームをこの電子
ビームが上記被照射体を均一に照射するように移動させ
る被照射体保持手段と、この被照射体保持手段に保持さ
れた被照射体からの上記蒸発物質を被着する位置に設け
られ上記被成膜体を保持する被成膜体保持手段と、上記
被成膜体において成膜された薄膜の膜厚を検出する膜厚
検出手段と、この膜厚検出手段における膜厚検出結果に
基づいて被成膜体保持手段による上記被照射体の移動を
制御する制御手段とを具備することを特徴とする薄膜形
成装置。
(1) In a thin film forming apparatus that irradiates an irradiated object made of an evaporated substance with an electron beam and thereby forms a film of the evaporated substance on the irradiated object, electron beam irradiation that irradiates the electron beam to a certain irradiation position means, an irradiated object holding means for holding the irradiated object at the irradiation position and moving the electron beam so that the electron beam uniformly irradiates the irradiated object; A film-forming object holding means for holding the film-forming object, which is provided at a position to deposit the evaporated substance from the held irradiation object, and a film-forming object holding means for holding the film-forming object; Thin film formation characterized by comprising a film thickness detecting means for detecting the film thickness, and a control means for controlling the movement of the irradiated object by the film forming object holding means based on the film thickness detection result by the film thickness detecting means. Device.
(2)被照射体保持手段に保持された被照射体は、円柱
状を成し、この被照射体保持手段によりその軸方向に進
退駆動されるとともにその軸方向のまわりに回転駆動さ
れ膜厚検出手段における膜厚検出結果に基づいて軸方向
の進退速度軸方向のまわりの回転速度が調節されること
を特徴とする請求項(1)記載の薄膜形成装置。
(2) The irradiated object held by the irradiated object holding means has a cylindrical shape, and is driven forward and backward in its axial direction by this irradiated object holding means, and is also rotated around its axial direction to increase the film thickness. 2. The thin film forming apparatus according to claim 1, wherein the rotational speed around the axial direction is adjusted based on the film thickness detection result by the detection means.
(3)被照射体保持手段に保持された被照射体は、耐火
性のるつぼに包囲され、このるつぼには、電子ビームが
通過して上記被照射体を照射する開口部が設けられてい
るとともに、上記被照射体が軸方向に進退自在に遊挿さ
れる穴が上記開口部に連通して設けられていることを特
徴とする請求項(2)記載の薄膜形成装置。
(3) The irradiated object held by the irradiated object holding means is surrounded by a fireproof crucible, and this crucible is provided with an opening through which the electron beam passes and irradiates the irradiated object. 3. The thin film forming apparatus according to claim 2, further comprising a hole in which the irradiated object is loosely inserted so as to be able to move forward and backward in the axial direction and communicate with the opening.
JP28750389A 1989-11-06 1989-11-06 Thin film forming device Pending JPH03150352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28750389A JPH03150352A (en) 1989-11-06 1989-11-06 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28750389A JPH03150352A (en) 1989-11-06 1989-11-06 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH03150352A true JPH03150352A (en) 1991-06-26

Family

ID=17718186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28750389A Pending JPH03150352A (en) 1989-11-06 1989-11-06 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH03150352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084680A (en) * 2007-09-13 2009-04-23 Mitsubishi Materials Corp Vapor deposition method and vapor deposition system
JP2010106320A (en) * 2008-10-30 2010-05-13 Toppan Printing Co Ltd Vapor deposition apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084680A (en) * 2007-09-13 2009-04-23 Mitsubishi Materials Corp Vapor deposition method and vapor deposition system
JP2010106320A (en) * 2008-10-30 2010-05-13 Toppan Printing Co Ltd Vapor deposition apparatus

Similar Documents

Publication Publication Date Title
KR20220162657A (en) Composite charged particle beam apparatus
JPH03104861A (en) Device for use in laser abrasion
CN111748772B (en) Film forming apparatus and film forming method
US5849371A (en) Laser and laser-assisted free electron beam deposition apparatus and method
US20140124367A1 (en) Sample preparation apparatus, sample preparation method, and charged particle beam apparatus using the same
KR100700254B1 (en) Vacuum treatment installation and method for producing workpieces
JP6499754B2 (en) Ion milling apparatus and ion milling method
JPH03150352A (en) Thin film forming device
JP2007149861A (en) Ion milling apparatus
JP2859344B2 (en) Electron beam position adjusting method and electron beam position adjusting device
CA2237280C (en) Free-standing rotational rod-fed source
JPH04268072A (en) Method and device for guiding and centering of electron beam
JP2007115706A (en) Sample processing device
JP3230834B2 (en) Film forming method and apparatus
JP3679113B2 (en) Layer deposition method and apparatus
JP3080096B2 (en) Fabrication method of large area thin film
JP2003301254A (en) Evaporation source device and film forming device provided with the same
GB2300426A (en) Thin film forming apparatus using laser and secoindary sputtering means
JP6810482B2 (en) Composite charged particle beam device
JPH08225932A (en) Electron beam heating vapor deposition method and apparatus thereof
JP2790361B2 (en) Inclusion analysis sample dissolution method
WO2022092271A1 (en) Carbon ion generating device
JP5514595B2 (en) Electron beam irradiation device
JP2004018892A (en) Process, mask and automatic system used for setting deposition condition
JP2005187864A (en) Film deposition apparatus and film deposition method