JPH03150114A - Method and apparatus for hardening resin of molded coil for electrical device - Google Patents

Method and apparatus for hardening resin of molded coil for electrical device

Info

Publication number
JPH03150114A
JPH03150114A JP29037589A JP29037589A JPH03150114A JP H03150114 A JPH03150114 A JP H03150114A JP 29037589 A JP29037589 A JP 29037589A JP 29037589 A JP29037589 A JP 29037589A JP H03150114 A JPH03150114 A JP H03150114A
Authority
JP
Japan
Prior art keywords
resin
coil
mold
cavity
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29037589A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsuoka
俊幸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29037589A priority Critical patent/JPH03150114A/en
Publication of JPH03150114A publication Critical patent/JPH03150114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent voids or cracks from developing in a molded coil and consequently improve its quality by a method wherein heat released from the part, which is far away from a resin inlet, of a cavity and given to a mold is checked by utilizing heat insulating member. CONSTITUTION:Under the condition that resin 27 is poured in a cavity 15, a coil 20 or four split coils 16 - 19 are energized in order to generate heat in the coil 20. Due to the generation of heat in the coil, the heat transmits from the coil 20 to the resin 27 and released from the resin 27 and given to a mold 11. At this time, the heat dissipated from the sin 27 at the lower part of the part, which is the farthest away from a resin inlet 15a, of the cavity 15 to the mold 11 is checked by heat insulating member 16. Thus, the temperature of the resin 17 at the lower part of the cavity becomes higher and the temperature of the resin 27 becomes gradually lower from that at said lower part to that at the resin inlet 15a. Accordingly, the resin 27 at said lower part firstly starts to harden and the resin 27 near the resin inlet 15a hardens lastly. Thus, stress is released at the resin inlet 15a, resulting in preventing the stress from remaining in the resin 27 as small as possible and allowing to preventing voids, cracks or the like from developing.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の■的] (産業上の利川分野) 本発明は、型のキャビティ内にコイルを配置し、キャビ
ティ内にその樹脂注入口から樹脂を注入し、この樹脂を
加熱して硬化させる電気機器用モールドコイルの樹脂硬
化方法及びその硬化装置に関する。 (従来の技術) 従来の電気機器用モールドコイルの樹脂硬化装置の一例
を第5図に示す。この第5図において、1は金型で、こ
れは円筒状をなす金型部材2、この金型部材2の下面開
口部を閉塞する底部金型部材3及びこの底部金型部材3
の上面中心部に突設され金型部材2の軸心に沿って延び
る凸部金型部材4からなる。上記金型部材2は、それぞ
れ半円筒状をなす金型部材2a及び2およりなる。この
ような金型1のキャビディ5内には、複数例えば4個の
分割コイル6を軸方向に並べて配置している。そして、
金型1及び分割コイル6を予備的に加熱しておいた状態
で、キャビティ5内に熱硬化性の樹脂フが注入される。 この後、金型1を図示しない熱風循環式の加熱炉内に収
容して均一に加熱することにより、上記樹脂フを加熱硬
化していた。 上記従来構成では、金型1を外側から加熱しているので
、樹脂は金型lと接触している部分即ち外側部分から硬
化し始め、中心部分の硬化が遅れる。また、樹脂は硬化
したとき収縮する。このため、硬化の遅れる中心部分は
外側が硬化した密閉状態で硬化収縮するので、硬化が完
了した該中心部分に応力が残留したり、その樹脂密度が
小さくなったりすることがあった。この結果、硬化完了
後のモールドコイルに空洞やクラックが生じるという欠
点があった。これを避けるために、従来においては、応
力を樹脂フの樹脂注入口部分即ち第5図中上部部分7a
に集中させ、硬化完了後に、該上部部分7aを切断して
捨てるようにしている。 しかしながら、このような構成では、十分な効果を得る
ことができなかった。 上記欠点を解決する構成として、特開昭49−6395
3号公報に示されたものがある。この構成を第6図及び
mフ図に示す。この第6図及び第7図において、4個の
分割コイル6を直列に接続すると共に、接続した分割コ
イル6の両端から導出された端子8.8を金型部材2の
壁部に貫通させて外部へ引出しており、この端子8.8
を電源9に接続している。尚、端子8と金型部材2との
1rA1には絶縁部材10が介装されている。この構成
では、分割コイル6に電流iを通電して発熱させること
により、樹脂フを加熱して硬化させている。 この場合、樹脂フは分割コイル6に接触する部分即ち中
心部分から硬化し始め、順次外側へ硬化が進むようにな
るから、中心部分に応力が残留することがなくなる。 (発明が解決しようとする312fI)しかし、上記構
成では、樹脂フの外側部分である金型1に接触する部分
が後から硬化するから、成形物であるモールドコイルの
外周面にひけ等が生じることがあり、モールドコイルの
品質はいまだ十分なものとはいえなかった そこで、本発明の目的は、モールドコイルに空洞やクラ
ックが生じることを防止できて、その品質を向上できる
電気機器用モールドコイルの樹脂硬化方法及びその硬化
装置を提供するにある。
[Objective of the invention] (Industrial field in Icheon) The present invention is an electric device that places a coil in a mold cavity, injects resin into the cavity from the resin injection port, and heats and hardens the resin. The present invention relates to a resin curing method for molded coils and a curing device therefor. (Prior Art) An example of a conventional resin curing device for molded coils for electrical equipment is shown in FIG. In FIG. 5, 1 is a mold, which includes a cylindrical mold member 2, a bottom mold member 3 that closes the lower opening of this mold member 2, and this bottom mold member 3.
It consists of a convex mold member 4 that is protruded from the center of the upper surface of the mold member 2 and extends along the axis of the mold member 2. The mold member 2 includes mold members 2a and 2 each having a semi-cylindrical shape. In the cavity 5 of such a mold 1, a plurality of, for example, four, divided coils 6 are arranged side by side in the axial direction. and,
A thermosetting resin is injected into the cavity 5 while the mold 1 and the split coil 6 are preheated. Thereafter, the mold 1 was housed in a hot air circulation type heating furnace (not shown) and uniformly heated to heat and harden the resin film. In the above-mentioned conventional structure, since the mold 1 is heated from the outside, the resin starts to harden from the part that is in contact with the mold 1, that is, the outer part, and the hardening of the central part is delayed. Also, the resin contracts when cured. For this reason, the central portion, which is delayed in curing, cures and shrinks in a sealed state where the outside is hardened, so that stress may remain in the central portion that has been completely cured, or the resin density may decrease. As a result, there was a drawback that cavities and cracks were formed in the molded coil after curing was completed. In order to avoid this, conventionally, the stress is reduced to the resin inlet part of the resin pipe, that is, the upper part 7a in FIG.
After curing is completed, the upper portion 7a is cut and discarded. However, with such a configuration, sufficient effects could not be obtained. As a configuration to solve the above drawbacks, Japanese Patent Application Laid-Open No. 49-6395
There is one shown in Publication No. 3. This configuration is shown in FIG. 6 and FIG. In FIGS. 6 and 7, four divided coils 6 are connected in series, and terminals 8.8 led out from both ends of the connected divided coils 6 are passed through the wall of the mold member 2. It is pulled out to the outside, and this terminal 8.8
is connected to power supply 9. Note that an insulating member 10 is interposed between the terminal 8 and the mold member 2 at 1rA1. In this configuration, a current i is applied to the split coil 6 to generate heat, thereby heating and hardening the resin film. In this case, the resin film begins to harden from the part that contacts the split coil 6, that is, from the central part, and the hardening progresses outward in sequence, so that no stress remains in the central part. (312fI to be solved by the invention) However, in the above configuration, since the outer part of the resin cover that contacts the mold 1 is cured later, sink marks etc. occur on the outer peripheral surface of the molded coil, which is a molded product. Therefore, the object of the present invention is to provide a molded coil for electrical equipment that can prevent cavities and cracks from forming in the molded coil and improve its quality. The present invention provides a resin curing method and a curing device.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明の電気機器用モールドコイルの樹脂硬化方法は、
型のキャビティ内にコイルを配置し、前記キャビティ内
にその樹脂注入口から樹脂を注入し、この樹脂を前記コ
イルに通電して発熱させることにより加熱硬化させる方
法において、断熱部材を用いて前記キャビティのうち前
記樹脂注入口から遠く離れた部分から前記型への熱放出
を阻止するようにしたところに特徴を有する。 また、本発明の電気機器用モールドコイルの硬化装置は
、型のキャビティ内に複数の分割コイルを配置し、前記
キャビティ内にその樹脂注入口から樹脂を注入し、この
樹脂を前記分割コイルに通電して発熱させることにより
加熱硬化させるものにおいて、前記キャビティのうち前
記樹脂注入口から遠く離れた部分に前記型への熱放出を
阻止する断熱部材を設けたところに特徴を有する。 (作用) 上記手段によれば、コイルに通電して発熱させると、コ
イルから樹脂に熱が伝わり、更に、樹脂から型へ熱放出
される。この場合、断熱部材により、キャビティのうち
樹脂注入口から遠く離れた部分の樹脂から型への熱放熱
が阻止される。このため、上記樹脂注入口から遠く離れ
た部分の樹脂の温度が高くなると共に、この部分から樹
脂注入口へ順次樹脂の温度が低くなる。従って、樹脂注
入口から遠く離れた部分の樹脂から先に硬化し始め、樹
脂注入口に近い部分の樹脂が最後に綬化するよるになる
。これにより、応力が樹脂中に残留することを極力防止
できる。 (実施例) 以下、本発明の一実施例につき第1図ないし第5図を参
照しながら説明する。 第1図において、金型11は、はぼ円筒状をなす金型部
材12、この金型部材12の下面開口部を閉塞する底部
金型部材13及びこの底部金型部材13の上面中心部に
突設され金型部材12の軸心に沿って延びる凸部金型部
材14から構成されている。上記金型部材12は、それ
ぞれ半円筒状をなす金型部材12a及び12およりなる
。そして、このような金型11のキャビティ15内には
、複数例えば4個の分割コイル16.1?、18゜19
が軸方向に並べて配置されている。これら4個の分割コ
イル16.17,18.19からコイル20が構成され
ている。ここで、4個の分割コイル16〜19のうち、
キャビティ15の樹脂注入口15aから最も遠く離れた
部分である例えばキャビティ15の第1図中下部に配置
された2個の分割コイル16.17を直列に接続する。 この接続した分割コイル16.17を第2図に示すよう
に下部コイル21と称し、この下部コイル21の両端か
ら導出された端子21a、21bを金型部材12の壁部
に形成された貫通孔を通して外部へ引出しており、この
端子21a、21bを電源22に接続している。また、
4個の分割コイル16〜19のうち、樹脂注入口15a
に近い部分である例えばキャビティ15の第1図中上部
に配置された2IQの分割コイル18.19を直列に接
続する。この接続した分割コイル18.19を第2図に
示すように上部コイル23と称し、この上部コイル23
の両端から導出された端子23a、23bを金型部材1
2の壁部に形成された貫通孔を通して外部へ引出してお
り、この端子23a、23bを電源22に接続している
。この場合、下部コイル21及び上部コイル23は電源
22に対して並列接続されていると共に、上部コイル2
3の過電路には電流制御手段である例えば可変抵抗器2
4が設けられている。この可変抵抗器24は、0〜−(
Ω)の抵抗値を設定可能になっている。 尚、端子21a、21b、 2−3a、 23bと金型
部材12の貫通孔との各間には、絶縁部材25が介装さ
れている。 さて、前記金型11のキャビティ15内のうち、樹脂注
入口15aから最も遠く離れた部分である例えば内底部
に、金型11に比べて熱抵抗が大きい部材よりなり円環
板状をなす断熱部材26が配設されている。そして、上
述したキャビティ15内に、樹脂注入口15gから熱硬
化性の樹脂27が注入されるようになっている。 次に、上記構成の作用を第3図及び第4v!Jも参照し
て説明する。キャビティ15内に樹脂27を注入した状
態で、コイル20即ち4個の分割コイル16〜19に通
電してこれらを発熱させる。コイル20の発熱により、
コイル20から樹脂27に熱が伝わり、更に、樹脂27
から金型11へ熱が放出される。このとき、断熱部材2
6により、キャビティ15のう5樹脂注入口158から
最も遠く離れた部分である下部の樹脂27から金型11
への熱放散が阻止される。このため、上記下部の樹脂2
7の温度が高くなると共に、この部分から樹脂注入口1
5Mへ樹脂27の温度が順次低くなる。従って、下部の
樹脂27から先に硬化し始め、樹脂注入口15aに近い
部分の樹脂27が最後に硬化するようになる。これによ
り、応力が樹脂注入口15aから開放されるから、応力
が樹脂27中に残留することを極力防止でき、モールド
フィルに空洞、クラック等が生じることを防■1−でき
ると共に、モールドコイルの外周面にひけ等が生じるこ
とを防止でき、品質を向上できる。 尚、上下部のコイル21.23にariするに際しては
、それぞれ同じ大きさの電流を流してもよいが、可変抵
抗器24の抵抗値を適宜設定することにより、下部コイ
ル21に通電する電流の大きさに比べて上部コイル23
に通電する電流の大きさを小さくして下部コイル21の
発熱量が上部コイル23の発熱量よりも多くなるように
してもよい。これによって、キャビティ15内の下部の
樹脂27の温度が高くなると共に、キャビティ15内の
上部の樹脂27の温度が低くなり、しかも、上述したよ
うに、断熱部材26によ−リ、キャビティ15のうちの
下部の樹脂27から金型11への熱放出が阻Iトされる
。このため、第3図に示すように、樹脂注入015aか
ら最も遠く離れた部分の樹脂27の温度が高くなると共
に、この部分から樹脂注入口15aへ順次樹脂27の温
度が低くなるという温度分布が確実に得られる。従って
、一層確実に、樹脂注入口20から最も遠く離れた部分
の樹脂27から先に硬化し始め、樹脂注入口20に近い
部分の樹脂27が最後に硬化するようになる。尚、上記
実施例において、断熱部材26をキャビティ15内に配
設しない場合の温度分布を第4図に示す。この第4図か
ら明らかなように、下部コイル21に通電する電流の大
きさに比べて上部コイル23に通電する電流の大きさを
小さくするだけでは、キャビティ15の最下部の温度が
低くなってしまい、該最下部の樹脂が先に硬化しなくな
る。 その他、上記実施例では、4aの分割コイル16〜19
のうち上下の2組の分割コイルに通電する電流の大きさ
を変えるようにしたが、これに限られるものではなく、
各分割コイルに同じ大きさの電流を通電する、即ち分割
コイルを直列に接続して分割しない一つのコイルとして
扱い、この一つのコイルに通電するようにしても良い。
(Means for Solving the Problems) The resin curing method for a molded coil for electrical equipment of the present invention includes:
A method in which a coil is placed in a cavity of a mold, a resin is injected into the cavity from the resin injection port, and the resin is heated and cured by applying electricity to the coil to generate heat. It is characterized in that heat is prevented from being released to the mold from a portion far away from the resin injection port. Further, in the curing device for a molded coil for electrical equipment of the present invention, a plurality of divided coils are arranged in a mold cavity, a resin is injected into the cavity from the resin injection port, and the resin is energized to the divided coils. The resin molding device is characterized in that a heat insulating member is provided in a portion of the cavity far away from the resin injection port to prevent heat from being released to the mold. (Function) According to the above means, when the coil is energized to generate heat, the heat is transmitted from the coil to the resin, and further, the heat is released from the resin to the mold. In this case, the heat insulating member prevents heat dissipation from the resin to the mold in a portion of the cavity that is far away from the resin injection port. For this reason, the temperature of the resin in a portion far away from the resin injection port increases, and the temperature of the resin gradually decreases from this portion toward the resin injection port. Therefore, the resin in the portion far away from the resin injection port begins to harden first, and the resin in the portion close to the resin injection port becomes a ribbon last. This can prevent stress from remaining in the resin as much as possible. (Example) An example of the present invention will be described below with reference to FIGS. 1 to 5. In FIG. 1, the mold 11 includes a mold member 12 having a substantially cylindrical shape, a bottom mold member 13 that closes the lower opening of the mold member 12, and a center portion of the upper surface of the bottom mold member 13. It is comprised of a convex mold member 14 that is provided in a protruding manner and extends along the axis of the mold member 12 . The mold member 12 includes mold members 12a and 12 each having a semi-cylindrical shape. In the cavity 15 of such a mold 11, there are a plurality of, for example, four divided coils 16.1? , 18°19
are arranged side by side in the axial direction. A coil 20 is constituted by these four divided coils 16, 17, 18, 19. Here, among the four divided coils 16 to 19,
Two split coils 16 and 17 disposed in the farthest part of the cavity 15 from the resin injection port 15a, for example, in the lower part of the cavity 15 in FIG. 1, are connected in series. The connected divided coils 16 and 17 are referred to as a lower coil 21 as shown in FIG. The terminals 21a and 21b are connected to a power source 22. Also,
Among the four divided coils 16 to 19, the resin injection port 15a
For example, 2IQ split coils 18 and 19 arranged in the upper part of the cavity 15 in FIG. 1 are connected in series. The connected divided coils 18 and 19 are referred to as upper coils 23 as shown in FIG.
The terminals 23a and 23b led out from both ends of the mold member 1
The terminals 23 a and 23 b are connected to the power source 22 through a through hole formed in the wall of the terminal 2 . In this case, the lower coil 21 and the upper coil 23 are connected in parallel to the power supply 22, and the upper coil 21 and the upper coil 23 are connected in parallel to the power supply 22.
For example, a variable resistor 2, which is a current control means, is connected to the overcurrent path 3.
4 is provided. This variable resistor 24 is 0 to -(
The resistance value (Ω) can be set. Note that an insulating member 25 is interposed between each of the terminals 21a, 21b, 2-3a, and 23b and the through hole of the mold member 12. Now, in the cavity 15 of the mold 11, the part farthest from the resin injection port 15a, for example, the inner bottom, is provided with an annular plate-shaped heat insulating material made of a material having a higher thermal resistance than the mold 11. A member 26 is provided. A thermosetting resin 27 is injected into the cavity 15 described above from the resin injection port 15g. Next, the effect of the above configuration will be explained in Figs. 3 and 4v! This will be explained with reference to J. With the resin 27 injected into the cavity 15, electricity is applied to the coil 20, that is, the four divided coils 16 to 19, to generate heat. Due to the heat generated by the coil 20,
Heat is transferred from the coil 20 to the resin 27, and further the resin 27
Heat is released from the mold 11 to the mold 11. At this time, the heat insulating member 2
6, the mold 11 is transferred from the lower resin 27, which is the part of the cavity 15 farthest from the resin injection port 158.
heat dissipation to is prevented. For this reason, the lower resin 2
As the temperature of 7 increases, the resin injection port 1 starts from this part.
The temperature of the resin 27 gradually decreases to 5M. Therefore, the resin 27 at the bottom begins to harden first, and the resin 27 near the resin injection port 15a hardens last. As a result, the stress is released from the resin injection port 15a, so it is possible to prevent the stress from remaining in the resin 27 as much as possible, to prevent cavities, cracks, etc. from forming in the mold fill. It is possible to prevent sink marks from occurring on the outer peripheral surface and improve quality. Incidentally, when applying current to the upper and lower coils 21 and 23, the same magnitude of current may be passed through each, but by appropriately setting the resistance value of the variable resistor 24, the current flowing through the lower coil 21 can be adjusted. Upper coil 23 compared to size
The amount of heat generated by the lower coil 21 may be greater than the amount of heat generated by the upper coil 23 by reducing the magnitude of the current applied to the lower coil 21 . As a result, the temperature of the lower resin 27 inside the cavity 15 becomes higher, and the temperature of the upper resin 27 inside the cavity 15 becomes lower. Heat release from the resin 27 in the lower part of the mold 11 to the mold 11 is prevented. Therefore, as shown in FIG. 3, there is a temperature distribution in which the temperature of the resin 27 at the part farthest from the resin injection port 15a increases, and the temperature of the resin 27 sequentially decreases from this part to the resin injection port 15a. You can definitely get it. Therefore, it is more reliably ensured that the portion of the resin 27 farthest from the resin injection port 20 begins to harden first, and the portion of the resin 27 closest to the resin injection port 20 hardens last. Incidentally, in the above embodiment, the temperature distribution when the heat insulating member 26 is not disposed inside the cavity 15 is shown in FIG. As is clear from FIG. 4, simply reducing the magnitude of the current flowing through the upper coil 23 compared to the magnitude of the current flowing through the lower coil 21 will lower the temperature at the bottom of the cavity 15. As a result, the resin at the bottom is not cured first. In addition, in the above embodiment, the divided coils 16 to 19 of 4a
Although the magnitude of the current flowing through the upper and lower two sets of divided coils is changed, the present invention is not limited to this.
The same magnitude of current may be applied to each divided coil, that is, the divided coils may be connected in series and treated as one undivided coil, and current may be applied to this one coil.

【発明の効果】【Effect of the invention】

本発明は以上の説明から明らかなように、断熱部材を用
いて、キャビティのうち樹脂注入口から遠く離れた部分
から型への熱放出を阻止するようにしたので、モールド
コイルに空洞やクラックが生じることを防止できて、そ
の品質を向上できるという優れた効果を奏する。 4 図面のIil Qtな説明 第1図ないし第4図は本発明の一実施例を示すもので、
第1図は電気的構成と共に示す縦断面図、第2図は電気
的構成図、第3図及び第4図はコイルの縦断面と温度分
布との対応を示す図である。また、第5図は従来構成を
示す第1図相当図、第6図及び第7図は異なる従来構成
を示す第1図相当図及び第2図相当図である。 図面中、11は金型(型)、15はキャビティ、15a
は樹脂注入口、20はコイル、26は断熱部材、27は
樹脂を示す。 第1Im ム tIl1 11.11 1  I 第 2図 第5図 :46  図
As is clear from the above description, the present invention uses a heat insulating member to prevent heat from being released into the mold from a portion of the cavity far away from the resin injection port, thereby preventing cavities or cracks in the mold coil. This has the excellent effect of preventing this from occurring and improving its quality. 4 Iil Qt Explanation of the Drawings Figures 1 to 4 show one embodiment of the present invention.
FIG. 1 is a longitudinal sectional view showing the electrical configuration, FIG. 2 is an electrical configuration diagram, and FIGS. 3 and 4 are diagrams showing the correspondence between the longitudinal section of the coil and temperature distribution. Further, FIG. 5 is a diagram equivalent to FIG. 1 showing a conventional configuration, and FIGS. 6 and 7 are diagrams equivalent to FIG. 1 and FIG. 2 showing different conventional configurations. In the drawing, 11 is a mold, 15 is a cavity, and 15a
20 is a resin injection port, 20 is a coil, 26 is a heat insulating member, and 27 is a resin. 1Im 11.11 1 I Figure 2Figure 5:46 Figure

Claims (1)

【特許請求の範囲】 1、型のキャビティ内にコイルを配置し、前記キャビテ
ィ内にその樹脂注入口から樹脂を注入し、この樹脂を前
記コイルに通電して発熱させることにより加熱硬化させ
る方法において、断熱部材を用いて前記キャビティのう
ち前記樹脂注入口から遠く離れた部分から前記型への熱
放出を阻止するようにしたことを特徴とする電気機器用
モールドコイルの樹脂硬化方法。 2、型のキャビティ内にコイルを配置し、前記キャビテ
ィ内にその樹脂注入口から樹脂を注入し、この樹脂を前
記コイルに通電して発熱させることにより加熱硬化させ
るものにおいて、前記キャビティのうち前記樹脂注入口
から遠く離れた部分に前記型への熱放出を阻止する断熱
部材を設けたことを特徴とする電気機器用モールドコイ
ルの樹脂硬化装置。
[Claims] 1. A method in which a coil is placed in a cavity of a mold, resin is injected into the cavity from the resin injection port, and the resin is heated and cured by applying electricity to the coil to generate heat. . A method of curing resin for a molded coil for electrical equipment, characterized in that a heat insulating member is used to prevent heat from being released from a portion of the cavity far away from the resin injection port to the mold. 2. A coil is placed in the cavity of the mold, resin is injected into the cavity from the resin injection port, and the resin is heated and cured by applying electricity to the coil to generate heat, in which the 1. A resin curing device for a molded coil for electrical equipment, characterized in that a heat insulating member for preventing heat release to the mold is provided in a portion far away from a resin injection port.
JP29037589A 1989-11-08 1989-11-08 Method and apparatus for hardening resin of molded coil for electrical device Pending JPH03150114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29037589A JPH03150114A (en) 1989-11-08 1989-11-08 Method and apparatus for hardening resin of molded coil for electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29037589A JPH03150114A (en) 1989-11-08 1989-11-08 Method and apparatus for hardening resin of molded coil for electrical device

Publications (1)

Publication Number Publication Date
JPH03150114A true JPH03150114A (en) 1991-06-26

Family

ID=17755207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29037589A Pending JPH03150114A (en) 1989-11-08 1989-11-08 Method and apparatus for hardening resin of molded coil for electrical device

Country Status (1)

Country Link
JP (1) JPH03150114A (en)

Similar Documents

Publication Publication Date Title
US3710437A (en) Method of preparing insulated coil in slotted core
JPH10188707A (en) Molding method of compound insulator and metal mold device used therefor
JPH03150114A (en) Method and apparatus for hardening resin of molded coil for electrical device
US2095705A (en) Method of enclosing coil structures
JP2851112B2 (en) Manufacturing method of casting insulator and casting mold for casting insulator used in the method
JPS6315707A (en) Thermoset resin molding device having molding tool with built-in high-frequency inductor
JP3059680B2 (en) Method for forming composite insulator and manufacturing apparatus for composite insulator
JPS6388814A (en) Manufacture of resin-molded electrical machinery and apparatus
JPH091610A (en) Heater of transfer mold
JPH076909A (en) Manufacture of high voltage wire wound resistor
JPH05242942A (en) Resin molding method for cable connection part
JPH04185312A (en) Resin curing method and its curing device of molding coil for electric apparatus
JPS5837954B2 (en) How to connect cross-linked polyethylene cable
JPH0336914A (en) Manufacture of insulation spacer
EP0170417B1 (en) Travelling wave induction heater
JPH04119609A (en) Manufacture of molded coil
JPH04320314A (en) Manufacture of mold coil
JPS6185037A (en) Manufacture of armature
JPH028542B2 (en)
JPH0349206A (en) Molded coil
JP2005271362A (en) Resin casting mold and resin-cast article
JPH04129207A (en) Manufacture of mold coil
JPS634314B2 (en)
JP4118230B2 (en) Casting mold
JPH0443012A (en) Injection molding die